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Abstract: This paper addresses the problem of parameter calibration in pipelines based on a
Genetic Algorithm (GA). The parameters under consideration are the pipe roughness and the
minor loss coefficient caused by fittings like valves, elbows, and couplings. These parameters
cannot be directly measured, and their accuracy plays an essential role in successfully
implementing leak diagnosis algorithms. The proposed GA generates calibrated values for both
pipe roughness and minor loss coefficient by minimizing the root mean squared error (RMSE)
in predicting pressures. The method was implemented in MATLAB and the calibration was
validated in an experimental network by comparing the pressure heads measured at the nodes
of the network and those from the calibrated model simulated with EPANET.
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1. INTRODUCTION

Water management companies often use hydraulic mod-
eling and simulation to design efficient water distribution
systems (WDS) and correctly manage them under op-
erational conditions. Well-calibrated hydraulic modeling
allows to implement efficient leak diagnosis strategies
from the model-based approach. However, this task is
not trivial because some pipeline parameters cannot be
directly measured online or are time-varying, for example,
the roughness coefficient and the minor loss coefficient.
The reliability of such modeling depends on the accuracy
of both physical and hydraulic parameters of the WDS.
This work proposes a calibration strategy for a WDS
employing genetic algorithms (GA).

Optimizing hydraulic models comprises computing the
values of roughness and minor loss coefficients that pro-

⋆ This research was supported by Tecnológico Nacional de México
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vide an optimal fit between simulations and measure-
ments. Previous investigations have addressed this task
by using GA. For example, Do et al. (2016) showed how
through multiple iterations of the GA it was possible to
adjust the values of nodal demands and flow rates at
unsensed nodes. It was highlighted that the GA should
be implemented in combination with a decision support
tool for the selection of optimal sensing nodes. Calibration
of the hydraulic parameters of a WDS using heuristic
methodological approaches, especially the GA, has also
been addressed before. In (Drisya and Sathish Kumar,
2018) the Manning’s roughness coefficient was estimated
through a calibration process addressed as an optimiza-
tion problem solved through the use of a genetic algo-
rithm.

In hydraulic analysis, EPANET software (Rossman et al.,
2020) has proven to be a powerful design tool for im-
proving the performance of existing WDS as well as for
new designs. By combinig the characteristics of EPANET
together with the computing power of MATLAB, a pow-
erful tool for hydraulic design and recalibration is avail-
able. Furthermore, in Heydari et al. (2020) EPANET
software was used in combination with a GA in a MAT-
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LAB environment for the optimization of the full design
cost by considering three different WDS. In Mart́ınez-
Bahena et al. (2018) an hydraulic model was designed in
EPANET software considering some restrictions in terms
of the mass and energy conservation laws. The model
was optimized by using a GA aiming to find an optimal
solution focused on the selection of new elements such
as pressure reducing valves, tanks and pipes to solve a
problem related to defficient water distribution while the
redesign cost is minimized. The obtained results showed
that the GA found a feasible solution for the problem
and authors concluded that the GA approach could be
considered an useful tool to redesign already existing
WDS which do not operate in the desired way.

Nicolini and Falcomer (2020) developed a methodology
to calibrate the hydraulic model for a WDS by the com-
bination of both evolutionary algorithms and numerical
modelling of the system. It was shown in this study that
the GA allowed for tuning of the roughness coefficient
of the pipe. Recently, in Santos-Ruiz et al. (2020) a
nonlinear-optimization based method is proposed to es-
timate not only the roughness coefficient but also the
minor loss coefficients by minimizing the fitting error in
the well-known Colebrook-White equation. It is pointed
out that the main limitation of the approach was that
the loss model considered only elbow fittings without
modeling losses in valves and other accessories. Following
this direction, more recently, in Santos-Ruiz et al. (2021) a
nonlinear optimization method was proposed to estimate
the same hydraulic parameters, namely: the roughness
and minor loss coefficients, in this case by using a Lambert
W-function and by considering the roughness coefficient
as aditional friction assumed as an equivalent pipe length.
Since the calibration process for a WDS represents an
important challenge nowadays for an efficient water man-
agment, in this work a GA-driven optimization approach
is presented for the sake of the improvement of those
approaches recently proposed in Santos-Ruiz et al. (2020)
and Santos-Ruiz et al. (2021).

This work is organized as follows: Section 2 presents the
theoretical background. In Section 3, the proposed GA-
based methodology is presented. Experimental results are
provided in Section 4. Finally some conclusions and future
perspectives are discussed in Section 5.

2. THEORETICAL BACKGROUND

2.1 Hydraulics fundamentals

The relationship between pressures and flows in hydraulic
models is determined by pressure losses, which are clas-
sified into major losses (associated with flow turbulence
and pipe roughness) and minor losses (associated with
energy loss through pipe fittings). The relative roughness
coefficient (εr) and the minor loss coefficient (K) are
important parameters for an accurate hydraulic modeling
in pipelines. In particular, the coefficient K is associated

to fittings installed along the pipeline as valves, elbows,
and tees, among others.

Fig. 1. Variables in the pipeline model

To analize the effect of those parameters, let us first
consider a pipeline section of size L [m] and inner di-
ameter D [m] transporting pressurized water, as shown
in Fig. 1, where Q [m3/s] is the flow rate, Hin [m] is the
pressure head at upstream and Hout [m] at downstream,
respectively. The major head-loss between upstream and
downstream can be easily computed as: hf = Hin−Hout,
but also it can be modeled through the Darcy-Weisbach
equation:

hf = CQ2, (1)

where C [s2/m5] is a resistance coefficient computed as
follows:

C = f(εr,Re)
8L

gπ2D5
, (2)

where g [m/s2] is the acceleration due to gravity ,
f(εr,Re) [dimensionless] is the friction factor, and Re =
DQ/(Aν) [dimensionless] is the Reynolds number, A [m2]
is the cross-section area of the pipe and ν [m2/s] is the
kinematic viscosity of the water at the operating temper-
ature. The relation between f , Re, and εr in a turbulent
regime (Reynolds number greater than 4000) is modeled
by the well-known Colebrook-White equation:

1
√
f
= −2 log10

(
εr
3.7

+
2.51

Re
√
f

)
. (3)

Since (3) can not be easily solved analytically, an iterative
approach can be adopted instead. In addition, since
the operational conditions in pipelines are continually
changing, an update of the Reynolds number must be
performed using measured data. The relative roughness
coefficient εr remains approximately constant in the short
term, but can vary over long periods, due to corrosion
and the accumulation of solids on the pipe walls. This
parameter is a normalized (dimensionless) version of the
the absolute roughness coefficient ε [m], as defined by:

εr = ε/D. (4)

The minor head losses due to fittings is modeled as:

hL = K
v2

2g
, (5)

where K [dimensionless] is the minor loss coefficient
computed as follows:

K =
n∑

i=1

ki, (6)

where ki is the minor head-loss coefficient due to the i-th
fitting, and n is the total number of fittings. It should be
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noted that the value of each ki could be roughly approxi-
mated from datasheets but with the drawback that those
values are not accurate because they are determined to
satisfy only raw design requeriments. Nonetheless, from a
practical point of view, an accurate hydraulic analysis and
diagnosis (e.g., leak diagnosis) depends on the accuracy of
the model parameters. For this reason, in this work a pa-
rameter estimation based on computational intelligence is
proposed with the aim to provide values of the roughness
coefficient and the minor loss coefficient as accurate as
possible by using measurements of pressure head and flow
rate. A genetic algorithm for estimating these parameters
is presented below.

2.2 Genetic Algorithm

A genetic algorithm is a population-based stochastic opti-
mization algorithm whose main operations are selection,
crossover, and mutation (Mirjalili, 2019). In the initial
step, a random population of feasible solutions is created,
each comprises a set of parameter solution emulating
the genes of a given individual. The whole set of genes
is known as chromosome, similarly to the chromosomes
of an alive organism. During the initialization stage of
the GA-algorithm, the main objective is to spread the
population across of a search space as uniformly as pos-
sible to increase the possibility of finding regions that
provide good performance. Since natural selection is the
main inspiration for GA, it uses a selection mechanism to
assign selection probabilities to each individual propor-
tionally to their fitness values. The creation of this new
generation of individuals is simulated by combining two
parent solutions to produce two new children solutions.
The last evolutionary operator is known as a mutation,
in which one or multiple genes are altered after creating
children solutions. The operation of mutation preserves
the diversity of the population by introducing another
level of randomness. This operator prevents of similar
solutions while reducing the probability of local solutions
in the GA. The steps of the GA are summarized in Fig. 3.

3. GA-DRIVEN CALIBRATION METHODOLOGY

To perform the GA-driven calibration process, only mea-
surable physical dimensions and topological parameters of
the network are required. To do that, a .INP file contain-
ing the network layout is used in the EPANET-MATLAB
Toolkit to recover these information, see (Eliades et al.,
2016). Ideally, in addition to the pipe length, information
about ε and Ki should also be available for each pipe
segment; however, since these values are unknown, they
are initialized to zero (by default, when there is no prior
estimate). Then, the system under analysis (pipeline or
network) is divided into several pipe segments, in which
the value of ε and Ki are required to be estimated.

Subsequently, experiments are carried out to collect pres-
sure measurements at the network nodes for different
operating points (varying the working frequency of the

pump). The flow measurement is also collected at each
outlet point to be assumed as demand (consumption)
in that node when solving the EPANET model in each
iteration of the GA. Known physical parameters (e.g.,
lengths and diameters) and output flow rates are specified
a priori in the .INP file, so that the GA only fits ε and Ki

minimizing a cost function based on the calibration error.

The GA performs the following steps to calibrate the
model (see Fig. 3):

(S1) Generation of feasible solutions. Each candidate so-
lution is a vector containing estimated values of ε
and K.

(S2) Fitness test of each solution and elimination of the
less fit. This process is performed as follows: the
values of ε and K are taken from each candidate
solution and are updated in the .INP file and then
a hydraulic simulation is performed. Values of the
pressure head at predefined nodes coming from the
simulation are then compared with the correspond-
ing measurements allowing the calibration process
to be validated. The cost function optimizes the
root mean squared error (RMSE) between measured

pressure headHi and the estimated pressure head Ĥi

where suscript i stands for the i-th node as follows:

RMSE =

√√√√ 1

n

n∑

i=1

(
Hi − Ĥi

)2

(7)

To ensure the reliability of the calibrated hydraulic
model no matter the operational condition, this
validation process is performed several times by
updating the input value and by applying the RMSE
criterion for all different data sets (with the pump at
different working frequencies). The performance of
every population member has been tested. However,
since no cross and mutation has occurred, it is
not expected that a next and single generation will
provide a better solution to the problem, in this way,
the fittest members of the population are selected to
be the “parents” of the following generation.

(S3) Generation of new solutions. Cross and mutation
processes implicitly take place during the creation of
a new generation. The mutation process is necessary
to ensure the diversity of the population. In this
way, every possible combination in the search area
is taken into account to locate the most feasible
solutions and directly discard those that provide a
poor performance.

This process is repeated until an established beforehand
number of maximum generations is fulfilled, or until a
satisfactory solution is found considering a predetermined
error criteria. The content of this section has described
how the calibration process was ejecuted for both pipeline
configurations: single and branched configurations. This
is interesting since the paramters to be calibrated are
different in each case.
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Fig. 2. P&ID of the pilot plant.

Fig. 3. Genetic algorithm

4. EXPERIMENTAL RESULTS

To test the proposed method, the experimental network
(pilot plant) shown in Fig. 2 was used as a case study.
This network is built with Schedule 80 PVC pipes with
48.6mm inner diameter. The pilot plant is equipped with
flow-rate sensors (FT01 at upstream and FT02, FT03 and
FT04 at downstream) and pressure head sensors (from
PT01 to PT07) whose measurements are collected by
using a SCADA system connected via ethernet commu-
nication protocol. The collected measurements are stored
as data sets in a personal computer and then are used as
inputs for the GA to calibrate the model. This prototype
is fed with drinking water from a 2500L tank at upstream
by using a 5 hp centrifugal pump. A variable frequency
drive is used to vary the operating frequency of the pump
in the range from 30Hz to 60Hz, this allows the input
pressure head to be regulated during the experimentation.
By manupulating the valves labeled with G1 and G2
the hydraulic system can operate as a branched network.
Moreover, five valves labeled from “Leak 1” to “Leak 5”,
are installed at different positions to emulate leaks. The
spreaded water caused by leaks is collected by using a
second tank and the water is then pumped towards the

main tank at upstream to be reused. On leak valves and
T-type fittings there are no sensors, so the pressure head
at those positions must be estimated somehow. In Fig. 4
a general framework for the calibration methodology is
summarized.

Fig. 4. Calibration workflow

By following the calibration process previously described,
the pipeline system (see Fig. 2) is divided into several
segments as shown in Fig. 5: where N1 stands for the

Fig. 5. Schematic diagram of the branched network

node at reservoir (tank), ε is considered as a constant
value along the network whereas for each pipe segment a
different value of K is considered while the calibration
process takes place. Moreover, the pipes linking nodes
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N3 −N4, N6 −N7, N10 −N11 and N14 −N15 are excluded
from the analysis since K is assumed to be zero because
they do not contain accessories. All nodes and their
corresponding reference are summarized in Table 1:

Table 1. Physical reference of nodes

Node Reference

N1 PT01, FT01
N2 Leak valve 1
N3 PT05
N4 T-type fitting
N5 Leak valve 2
N6 T-type fitting
N7 PT06
N8 Leak valve 3
N9 PT02, FT02

Node Reference

N10 T-type fitting
N11 PT08
N12 Leak valve 5
N13 PT04, FT04
N14 T-type fitting
N15 PT07
N16 Leak valve 4
N17 PT03, FT03

After that, several experiments are performed for both,
single and branched pipeline configurations, at different
operating conditions. Every dataset is saved and pro-
cessed in MATLAB environment using the .INP file and
the GA-driven optimization algorithm. On the one hand,
when the calibration process is run for the single pipeline
configuration, the GA algorithm is set to optimize 7
variables: ε and K1, . . . ,K6. On the other hand, when
the pipeline has the branched configuration the GA is set
to optimize 13 variables: ε and K1, . . . ,K12.

For both configurations, single and branched, the GA
performs the steps to calibrate the model presented in
Section 3 (see Fig. 4): For the process described in
step (S2), the values of ε and K are taken from each
candidate solution and are updated in the .INP file
and then a hydraulic simulation is performed. Values
of the pressure head at nodes N3, N7, N9, N11, N13,
N15 and N17 coming from the simulation are then com-
pared with the corresponding measurements allowing the
calibration process to be validated. The cost function
optimizes the root mean squared error (RMSE) as de-
scribed by (7). To ensure the reliability of the cali-
brated hydraulic model no matter the operating condi-
tion, this validation process is performed several times
by updating the input value and by applying the RMSE
criterion for all data sets (30Hz, 35Hz, . . . , 60Hz) al-
lowing the overall RMSE to be computed by adding
RMSE30Hz,RMSE35Hz, . . . ,RMSE60Hz, respectively.

4.1 Discussion of the results

For the single pipeline configuration the lowest RMSE is
9.3 × 10−3 m corresponding to a sampling rate of 50Hz
whereas for the two-branching configuration the corre-
sponding lowest RMSE is 3.4 × 10−2 m at samplig rate
of 60Hz. Fig. 6 shows a comparison between measured
and estimated values of pressure head for the single
pipeline. Conversely Fig. 7 illustrates the comparison for
the branched network. Table 2 shows the best-fitting
RMSE for every tested operating point for both cases.

Table 2. Fitting RMSE.

(a) Single pipeline

AC Freq. RMSE (m)

60Hz 4.67× 10−2

55Hz 2.17× 10−2

50Hz 9.3× 10−3

45Hz 3.15× 10−2

40Hz 5.46× 10−2

35Hz 12.95× 10−2

30Hz 9.42× 10−2

(b) Branched network

AC Freq. RMSE (m)

60Hz 3.40× 10−2

55Hz 5.04× 10−2

50Hz 3.83× 10−2

45Hz 3.87× 10−2

40Hz 7.74× 10−2

35Hz 9.11× 10−2

30Hz 10.84× 10−2

PT02 PT05 PT06
0

2

4

6
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es
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re

 h
ea

d 
(m

)
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Fig. 6. Pressure heads in single pipeline configuration
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Fig. 7. Pressure heads in branched network configuration

Table 3. Calibrated model parameters

(a) Single pipeline

Parameter Value

ε 2.99 µm
K1 2.945
K2 1.898
K3 0.824
K4 2.468
K5 0.779
K6 2.312

(b) Branched network

Parameter Value

ε 2.93 µm
K1 2.681
K2 1.503
K3 0.504
K4 0.503
K5 0.524
K6 0.520
K7 3.903
K8 2.230
K9 1.720
K10 12.02
K11 1.204
K12 2.966

Calibrated values for each parameter and for both config-
urations are summarized in Table 3 where the reported
ε value matches closely to empirical values for PVC pipe
(Rossman et al. (2020)). The ε value was slightly different
when changing the configuration from single to branched.
However, these values should be the same, since the rel-
ative roughness is obtained from the absolute roughness
and the internal diameter, which do not vary in the short
term.

On the other hand, calibration processes for experiments
without changes in the operating point were also exe-
cuted, showing an almost perfect performance; however,
since the interest from a practical point of view is focused

Congreso Nacional de Control Automático 2022,

12-14 de Octubre, 2022. Tuxtla Gutiérrez, México.

Copyright© AMCA, ISSN: 2594-2492150



on varying operating conditions, a trade-off between range
of operation and accuracy was considered. It also was
concluded that the best calibration process is achieved in
the highest frequencies of the pump operation setup (from
45Hz to 60Hz). The parameters of the calibrated model
shown in Table 3 correspond to the best-performing ex-
ecution of the GA where even if the obtained ε and K
provide a low-error match at different operation points,
their physical feasibility, as well as parametrization of the
K value of every accesory individually still needs to be ad-
dressed. After performing several calibration processes, a
discrepancy was observed related to the fitting of the pres-
sure head at positions of sensors: PT05, PT06, and PT02
(see Fig. 7). Such a discrepancy could be attributed to a
poor calibration of the transducers in the form of a zero-
point adjustment. Thus, it is proposed that the required
zero-point recalibration value can be introduced into the
optimization algorithm as a new variable that needs to
be estimated for each poor-performance sensor. It should
be noted that further research work must be performed
following this direction. More specifically, the discrepancy
showed in Table 3 regarding values of K among both
configurations must be avoided. Such a discrepancy could
be prevented by setting the GA with calibration values
for the variable K for each accessory instead of a global
K value for a pipeline segment. This strategy could be
effective to avoid the estimation of non-realistic K values.
Finally, a direct relation between the working frequency of
the pump and the performance of the calibration process
is observed. For high frequencies, the measurement noise
increases possibly due to the high turbulence and makes
it difficult to compare some measured pressures with the
simulated values; however, it does not significantly affect
the overall performance. Conversely, for a low frequency
operation of the pump, the pipeline system does not
operate to ensure the minimum-required pressure service.

It is highlighted that the noise level affecting the mea-
surements clearly impacts the accuracy of the calibration.
In addition it was also observed that the fitting error is
attributed to the fluctuation of the flow regime in regions
where the complety developed flow regime is not reached
(unstable flow regime). In particular, it can be observed
a less accurate estimation at the transducers PT05 and
PT06 (see Fig. 7). This occurs because those sensors
are installed near of a T-type fitting and a ball-type
valve where a sudden change in the flow direction takes
place. The high turbulence dynamics cause the pressure
transducers to not perform reliably at these locations.
Conversely, a better fit can be seen in the nodes cor-
responding to transducers where flow does not undergo
fluctuant and sudden changes, in other words where the
fully developed flow regime is reached.

5. CONCLUSION

This paper presented a GA-driven methodology to cal-
ibrate hydraulic parameters of a WDS. Experimental
results evidenced a good performance by using a pipeline

prototype which can adopt both: single and branched
pipeline configurations and for which, the roughness and
the minor loss coefficients (ε and K) have been estimated
with accuracy no matter changes in the operation point,
whereas previous investigations performed calibration for
a single operating point. This work is relevant since future
developments can extend this methodolgy to a large-scale
problem of urban WDS always considering the compu-
tational effort and its inherent dependence on reliable
measurements. The calibrated model will be a base tool
for future investigations in leak diagnosis algorithms.
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