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Abstract: On a NVIDIA Jetson Nano device, this study illustrates a unique and original usage of 

automated control and artificial intelligence algorithms for angular velocity estimates of a first-order 

manipulator device. A platform can be used as a position estimation platform using computer vision and 

three state estimation algorithms: sliding mode differentiator, high gain observer, and static filter. A 

hybrid system for process performance improvement is proposed using computer vision and three state 

estimation algorithms: sliding mode differentiator, high gain observer, and static filter. The results of 

numerical simulations are provided, as well as real-time judgments. The ITAE and IAE indices reveal 

that the sliding mode differentiator is much superior in angular velocity estimation for position signals 

utilizing artificial intelligence sensors. 
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1. INTRODUCTION 

The study of motion, which refers to the change in the location 

of a particle or a system of particles with respect to time, is 

called mechanics. This system of particles, together with their 

motion, is called a mechanical system. As previously stated, a 

mechanical system is a collection of parts that transport or 

change energy (Cosenza et al. 2015). All robotic systems are 

mechanical systems first and foremost, which leads to 

mathematical modelling based on Newton's law dynamics, as 

well as electrical and computer design. To manage these 

systems, one must modify their natural dynamics in such a 

manner that they have a desired reference point. The design of 

manipulator robots, in which visual, referenced, and resilient 

dynamics are desirable, is a classic example of the former. The 

extension of controlled manipulator robots has gained a lot of 

attention in recent years because it is well known that 

automation is a technical boundary issue in the latest 

generation of industrial technologies. The utilization of fourth 

generation technology, which focuses on robotics mixed with 

artificial intelligence techniques and the most powerful 

electronics, is now being advocated. The notion of applying 

artificial intelligence approaches to electromechanical 

systems or robots has been around for decades, and fuzzy logic 

was one of the most quickly adopted ideas. Modern control 

theory already includes fuzzy logic control. Samir Kouro and 

Rodrigo Musalem developed a control using fuzzy logic to 

control a helicopter prototype in 2002. By its nature, a 

helicopter's stability control can be thought of as an inverted 

pendulum with two actuators in which they describe the 

system's process and characteristics, in this case using an 

optical sensor to determine its inclination (also known as an 

encoder) (Kouro & Musalem, 2002). The real-time estimation 

methods such as the high gain observer, static low-pass filter, 

and Super Twisting estimator are programmed on an Arduino 

UNO-MATLAB platform. 

In 2021, David Fernández Llorca, Antonio Hernández 

Martínez and Iván García Daza develop a paper about speed 

estimation using artificial vision, which is called “Vision-

based vehicle speed estimation: A survey”. They explain 

different algorithms of distance and speed of a vehicle 

described in more than 135 and propose a method using 

vehicle detection, position determination and physics 

equations for determinate speed and distance traveled. 

(Fernandez-Llorca et al 2021). 

A simulation of an inverted pendulum control system, which 

is the foundation of any robotic manipulation system, was 

carried out by Valenzuela-Hernández et al in 2013, with the 

goal of designing a robust control approach based on artificial 

intelligence. One of the advantages of using an artificial 

intelligence-based control system is that it does not require a 

rigorous mathematical model of the plant; however, one of the 

complexities is that the effectiveness of this control system is 

directly dependent on the knowledge of the expert who 

describes the system's dynamics using linguistic sentences 

(Kouro & Musalem, 2002). It has been possible to investigate 

the design of robust controllers and compare them to classical 

techniques, such as the traditional PD and PID control with 

the most modern Mode Control (SMC) for manipulator 

systems but with the provision of all states to measure in work 

such as (Nasis et al 2012). However, this is not always 

possible, and it is also sometimes necessary to use non-

invasive techniques where machine vision plays an important 
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role, such as using artificial vs. natural vision. (Rodriguez-

Rangel et al 2022). 

Complex approaches based on state observers or the renowned 

Kalman filter must be employed to estimate the speed using 

artificial vision techniques, with which a system with memory 

may estimate the speed based on a fixed reference point based 

on past information. This type of technique, which is based on 

feedbacks and derivative solutions, has issues in the presence 

of analog noise. Furthermore, the estimation must be 

calculated for each pixel of the general matrix of the camera 

sensor, making it a very difficult problem to calculate for high 

resolution rates.  Estimation techniques based on neural 

networks have been implemented, but they must be trained on 

a large database, which is not always practical. Also, because 

the learning algorithms are based on the calculation of 

immediate derivatives, they will have problems with 

singularities in the process of identification and learning for 

the calculation of the network's weight matrices (Rodriguez-

Rangel et al 2022). 

Therefore, it is necessary to search for a technique that is 

robust to analog noise, easy to implement, with low 

computational cost, that also allows us to measure the position 

based on artificial vision algorithms, but that estimates the 

immediate angular velocity in real time in a way that is 

insensitive to disturbances.  In this work we propose a real-
time estimation system based on the interconnection of two 

apparently very dispersed systems: an estimator based on 

sliding mode control techniques and real-time computer 

vision for comparison with classical techniques. An NVIDIA 

Jetson Nano platform interfaced with an Arduino - MATLAB 

system will be used to test and validate the algorithms 

proposed in this work. 

 

2. MATHEMATICAL MODELING AND PROBLEM 

DEFINITION 

A simple pendulum is a mechanical system with a mass hung 

by a rope or any other minimal fixed element that allows it to 

produce oscillatory motions by applying forces, as shown in 

Figure 1, and this mechanical device is the fundamental 

system of a manipulator robot by definition. Because it is the 

most basic component of a robot, it has been widely 

researched over the past century. It was able to acquire many 

kinds of control system, as well as estimation and optimization 

of the device's dynamics. When a force is given to the 

pendulum, it will move, but the continual action of gravity 

pressing on it will gradually lead it to remain vertically still, 

making it a stable dynamic system since it will always tend to 

return to the origin (Kahalil, 2002). 

 

Figure 1. Simple pendulum dynamic. 

However, the second equilibrium point is unstable. A mass is 

supported by a pole and connected to a motor in an inverted 

pendulum system. The motor's movement or torque leads it to 

stabilize at a reference point, most typically a vertical, 

producing a desirable angle or angular dynamics and so 

achieving the intended trajectory. This indicates that it is a 

nonlinear system with a level of complexity that has piqued 

academic interest in experimenting with, evaluating, and 

comparing contemporary control strategies. The fixed 

inverted pendulum system (Messner et al., 2017) has been 

activated as a result of all this (Ooi, 2003). We will focus on 

the mathematical model of the static pendulum in this study, 

reaffirming that this is the simplest robotic manipulator device 

par excellence and that by doing so, we will be able to expand 

the outcomes of this research effort to far more sophisticated 

devices in the future. The robotic device's model is as follows 

(Vidyasagar et al. 1994): 

𝑥̇1 =  𝑥2 

𝑥̇2  =  − 𝑔
𝑙  sin 𝑥1 − 𝑘

𝑚 + 1
𝑚𝑙2 𝑢(𝑡)                      (1) 

Where g(x) and f(x) are bounded, differentially continuous, 

and Lipschtz functions, respectively. For any f, g>0, such that 

|g(x)|< g and |f(x)|<f. 

To control or regulate the preceding system, it is important to 

be able to estimate all of the states, that is, to estimate all of 

the states through a signal, either a position or velocity signal, 

since the classical or modern controllers. As a result, the key 

issue is being able to predict velocity signals from location 

inputs. This research focuses on the robust estimate of the 

velocity signal from location, in this instance employing a 

real-time computer vision approach rather than traditional 

techniques based on static filtering models or state observers. 

A state observer is a technique that allows us to estimate a 

variable that can be measured using another system 

measurement. A high number of state observers assist us in 

estimating velocity from a robot manipulator's location data. 

The high gain observers are the most well-known of these 

strategies. The following is based on the pendulum's 

mathematical model: 

𝑥̇  =  𝐴0𝑥 + 𝑓(𝑥) + 𝑔(𝑥)𝑢(𝑡)                      (2) 
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Where: 

𝐴0  =  (0 10 0) 

𝑓(𝑥)  =  ( 0
− 𝑔𝑙 sin(𝑥1) − 𝑔𝑙 (𝑥2)) 

𝑔(𝑥)  =  ( 01𝑚𝑙2) 

𝐶 =  (1 0)                                   (3) 

As a result, based on the work published in (Celikovskyet al 

2015), a high gain observer is constructed for the 

aforementioned system (1): 

𝑧̇  =  𝐴0𝑧 + 𝑓(𝑧) + 𝑔(𝑧)𝑢(𝑡) + Ψ(𝑟, 𝑙𝑖)𝐶𝑒 

𝑒 = 𝑧 − 𝑥 

Ψ(𝑟, 𝑙𝑖) = (𝑟𝑙1 𝑟2𝑙2)                                 (4) 

Where ψ is the high-gain output feedback ratio, e is the 

estimation error, and: 

𝐴0 = (𝑙1 1𝑙2 0)                                  (5) 

Where the spatial velocity is based on the signal generated by 

the machine vision-based position sensor, and the angular 

velocity estimate z2 is based on the signal emitted by the 

machine vision-based position sensor. The gains are the high 

gain matrix, and the gains 1 and 2 are the gains that make 

matrix A of (5) stable. Equation (4) shows a high gain 

observer which is used later. 

The fundamental drawback of this sort of method is its 

sensitivity to noise in the measured output signal. Because of 

the influence of the high gain on the highest instantaneous 

noise level, it is known that location signals based on non-

invasive methods such as computer vision might produce 

singularity difficulties. The static low-pass filter, on the other 

hand, is a sort of open-loop feedback that does not need the 

calculation of the error signal or the numerical model to be the 

following first-order system: 

𝑥1 = 𝑓(𝑡) 

𝑑𝑓
𝑑𝑡 = −𝑎𝑓 + 𝑏𝑓(𝑡)                             (6) 

Where f(t) is the signal to be filtered and subsequently derived 

using Euler's technique with gains a=b, because it is well 

known that it is required to remove and smooth signals with 

noise in order to estimate derivatives in real time afterwards, 

otherwise discontinuities may arise. Static filters are not 

particularly robust due to their lack of online correction, and 

they are extremely vulnerable to the type of signal to derive; 

for example, if the signal to derive contains white noise, this 

sort of static filter will not function well. 

In this case, robust algorithms might be sliding mode 

approaches, which have exhibited a high level of resilience to 

sudden shocks and noise in analog and digital signals. The 

"super twisting" algorithm, also known as Super Twisting, is 

a fantastic approach. In the presence of disturbances, this 

approach allows us to estimate continuously differentiable 

functions of a signal. The super twisting controller or any 

other sort of single degree control system with a single output 

signal is employed for systems with a unit relative degree (as 

illustrated in the system described in (1)). (Labbadi et al 

2020). To stabilize the system with those of a relative degree 

larger than 1, however, a controller must forcibly regulate all 

of the system's states. To estimate using real measurements, a 

differentiator or observer is necessary. Popular high-gain 

linear observers are incapable of limited time-in-time 

stabilization because they only provide asymptotic stability in 

an equilibrium state (Perez-Ventura et al 2019). In the 

presence of noise, the sliding-mode differentiator enables 

finite-time estimate (Shtessel et al, 2014). As a result, the 

following distinguishing factor is proposed: 

𝑧̇1 = 𝜆1|𝑧0 + 𝑓(𝑡)|0.5𝑠𝑖𝑔𝑛(𝐶𝑒) + 𝑧2 

𝑧2 = −𝜆0𝑠𝑖𝑔𝑛(𝐶𝑒) 

𝑒 = 𝑧 − 𝑥 

𝐶 = (1 0)                                    (7) 

Where z2 is the robust velocity estimation that is utilized 

directly with the computer vision location signal, 1 and 0 are 

the two gains of this sort of estimator or observer, and the sign 

function is the representation of the sign function of the error 

variable e. Finally, computer vision is a strong tool that allows 

us to apply matrix techniques to measure the position of an 

object or device. When compared to traditional optical 

sensors, it offers the benefit of being non-invasive. As a result 

of the need to automate systems based on fourth-generation 

technologies, it is necessary to consider the need to use this 

type of algorithm as a source of measurement. As a result, we 

plan to use it as a means of angular estimation to estimate the 

angular velocity in real time with the three previous 

algorithms in this work. 

 

3.    MATERIALS, METHODS, AND EQUIPMENT 

The NVIDIA Jetson Nano, according to (NVIDIA, 2021), is a 

compact computer that can perform various artificial 

intelligence algorithms, including neural networks, for 

applications such as image classification, object recognition, 

segmentation, and so on. All of this is done on a 5-volt 

platform. In this situation, two algorithms are used, one for tilt 

detection and the other for artificial intelligence tilt detection. 

In this study, a device of this sort is employed, with artificial 
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vision algorithms written in Python and based on the Open-

Source Computer Vision Library (Bradski, et al. 2005), an 

open-source library with a large number of artificial vision 

algorithms. 

3.1 Algorithms for computer vision 

The usage of Open-Source Computer Vision Library 

(OpenCV) routines-based algorithms is offered as the 

algorithm. The paper proposes a new form of optical 

instrument made up of NVIDIA Jetson Nano, digital cameras, 

and a visual set point to assess the angular location of the 

robotic device using computer vision technology. 

Displacement measurements were carried out using the 

OpenCV routines findChessboardCorners and cornerSubPix. 

On the platform, five optical settlement instruments were 

placed for field testing. For long-term settlement monitoring, 

the optical instrument is generally more cost-effective than the 

IOT-based equipment. This artificial vision algorithm 

operates at 9 ms ± 1 ms. 

3.2 Hardware 

A 6-volt motor with a nominal angular speed of 320 RPM, a 

metallic gear system, and a torque of 2kgf/cm was employed 

to create the manipulator structure. Its measurements are 35.5 

x 12 x 10 mm, and it weighs 9 grams.  

The camera sensor is a Sony IMX219, 8 Megapixel, 3280 x 

2646 pixel capture resolution and 160° viewing angle and 9 
ms ± 1 ms of sampling time. It takes a dark-colored backdrop 

of the manipulator for the vision system, and the mass of the 

pendulum has a pattern that the vision system detects, 

recalling that the angular position can be approximated using 

this pattern. 

A NVIDIA Jetson Nano is used for processing, it has a 1.43 

GHz Quad-core ARM processor, with 4 GB of RAM, 64-bit, 

LPDDR4 25.6 GB/s memory, NVIDIA L4T operating system 

with Linux Kernel. 

Figure 2 shows the connection diagram of the equipment used 

for the tests performed on this system. NVIDIA Jetson Nano 

is connected to Arduino UNO, and this is linked to MATLAB. 

In the other part of the diagram is the motor coupled to 

inverted pendulum, controlled by another Arduino UNO. 

 

Figure 2. Visual diagram of the hardware and software used 

in this project. 

 

4.  RESULTS IN REAL TIME 

The following are the findings of a real-time experiment in 

which the vision algorithms, observers, and state estimations 

were programmed in 200 seconds. The technique and 

hardware used in the preceding part were used to carry out the 

task online. The gains are the same for all three methods, and 

they will be compared using the two indices mentioned above. 

Figure 3 depicts the voltage signal necessary to create the 

desired oscillatory behavior. Figures 4 and 5 illustrate the 

location and velocity estimate signals, respectively. The state 

estimate based on the mathematical model of the basic robotic 

device described in equation in (1) is proposed in MATLAB 

Simulink 2018 b language. Where a1 = 98.1, a2 = 0.6, and b1 

= 4000 are the parameters of the functions f(x) and g(x). It is 

suggested to employ a Dorman-Price algorithm of order 45 in 

a period of 12 seconds. To make it more realistic, white noise 

with a frequency of 0.1 is suggested. We suggest using an 

observer in the system in (4) with a projected high gain of r = 

10, l1= -10, and l2 = -5, and an output signal y = x1. It is 

suggested that a gain of 1 = 800 and a gain of 0 = 800 be used 

in the case of the sliding mode differentiator presented in (7). 

A = b = 1 is proposed for the situation of the static 

differentiator in (6).  

 

Figure 3. Voltage signal sent to the motor to produce the 

torque used in the experiment.  
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Figure 4. velocity signal using the 3 estimators. Observer (4), 

static filter (6) and differentiator (7).  

 

Figure 5. Position signal obtained by computer vision 

algorithms using the NVIDIA Jetson Nano platform.  

In order to compare the different performances, it is proposed 

to use the Integral of the absolute value of the error (IAE) and 

Temporal Integral of the absolute value of the error (ITAE) as 

performance indices to diagnose the best performance in this 

simulation stage (Marzaki et. al 2015).  

𝐼𝑇𝐴𝐸 =  ∫ 𝑡|𝑒| 𝑑𝑡 

𝐼𝐴𝐸 = ∫|𝑒| 𝑑𝑡                                   (8) 

 

Figure 6. Calculation of the ITAE error rate signal by 105 of 

the real-time experiment.  

 

Figure 7. Calculation of the IAE error rate signal of the real-

time experiment.  

It can be seen in Figures 6 and 7 the two indexes are shown 

for the evaluations of the error rate ITAE and IAE it is easy to 

see that the one differentiated by sliding modes is superior to 

the other two differentiators. This is due to the noise signals 

present in the real position signal.  

 

5. CONCLUSIONS 

This paper presented a novel application and combination of 

automatic control algorithms and artificial intelligence for 

angular velocity estimation of a first order manipulator device 

using computer vision and three state estimation algorithms: 

sliding mode differentiator, high gain observer, and static 

filter on an NVIDIA Jetson Nano platform as a position 

estimation platform. The results of numerical simulations as 

well as real- time findings were given. The sliding mode 

differentiator is considerably superior in angular velocity 

estimation for position signals using artificial intelligence 

sensors, as demonstrated by the ITAE and IAE indices. This 

study shows that combining artificial vision with automated 

control approaches to estimate the angular velocity of high-

speed signals, such as those described in this study, yields 

outstanding results. High gain observers, which are often 

superior to the Kalman filter and also to a high gain observer, 

were proven to be superior to sliding mode approaches. This 

research may be used to calculate the velocity of high-speed 

moving pictures, such as determining the ratio of autos, 

people, and objects in general.  
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