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Abstract: Coronary disease modeling and prevention has proven critical to medical applica-
tions and patient evaluation. In this study, a robust observer for a fractional-order Muscular
Blood Vessel (MBV) model that, using only measurements from the change in pressure, is
proposed so it can reconstruct the change in the inner radius of the vessel. With this application,
it is expected to provide a better prediction of future or present problems in the MBV.
Parametric linear and nonlinear reconstruction, as well as state observation, is considered
with noisy measurement cases. Numeric results are presented to demonstrate the capabilities
of the proposed method.
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1. INTRODUCTION

Adaptive systems design for fractional-order systems
(FOS) is still an active research field, as several properties
that have been common in integer-order adaptive systems
do not extrapolate directly to the fractional-order case,
beginning even from the concept of state itself (Sabatier
et al., 2014). Several results on the study of adaptive
systems rely on the analysis of time-varying nonlinear
FOS, and explicit solutions have proven harder to obtain,
compared to integer-order systems, except for counted
cases (Eckert et al., 2019).

The problem of parameter identification has been of
interest (Escobar et al., 2022), as it helps to obtain
a more precise model for physical systems (Sabatier
et al., 2006), or general nonlinear models (González-
Olvera et al., 2015), and even with toolboxes for the
case of linear systems that are already available for
Matlab (Tepljakov et al., 2011). For on-line parameter
and pseudo-state reconstruction, observer design for FOS
has been addressed in recent works (Trigeassou et al.,
2012; Balachandran et al., 2013), as well as the observer-
based control design (N’Doye et al., 2009; Sheng et al.,
2018). Some of the advances recently reported include
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some classes of nonlinear FOS (Zhang and Gong, 2014),
with an integer order adaptation law relying on H∞ by
solving LMIs with an indirect Lyapunov method (N’Doye
et al., 2017) and on-line least-squares algorithm for linear
systems (Wei et al., 2015). In the last case, still integer-
order adaptation laws are considered, and stability and
convergence on-line is not obtained, particularly in the
transient response. In recent works, an adaptive observer
using Lyapunov analysis has been proposed (González-
Olvera and Tang, 2018) and applied to biological systems
(González-Olvera et al., 2021). However, there is still
ongoing research for nonlinear fractional-order observer
design, and generalizations of the fractional-order Kalman
Filter (FKF) have been proposed Soĺıs-Pérez et al. (2019),
as well for the Extended FKF (EFKF) Sun et al. (2018),
where still convergence conditions have to be studied.

In this sense, the application of fractional-order models
has helped to better describe the long-term dynamic
behaviour present in biological and biomedical systems
(Rihan, 2013). For example, Djordjević et al. (2003)
showed how fractional operators describe some rheological
dynamics characteristics in cellular structures. One im-
portant medical application is the analysis of the chaotic
pressure oscillations in the coronary artery in ischemic
heart patients. The chaotic pressure is caused by ex-
tra and intracellular muscle Ca2+ fluxes in muscular

Memorias del 2022 Congreso Nacional de Control Automático

12-14 de Octubre, 2022. Tuxtla Gutiérrez, México.

Copyright© AMCA, ISSN: 2594-2492

368



blood vessels (MBV) (Griffith and Edwards, 1994). Con-
sequently, the vascular spasm behaviour, that is a form
of a ischemic heart disease, can be seen mathematically
as a chaotic state (Lin et al., 2012), and the drugs used
to suppress the chaotic state, and turn it into a normal
periodic orbit, like nitroglycerin, can be considered a con-
trol signal. As indicated by Magin (2010), fractional-order
models have successfully described the elastic properties
of blood vessels and arteries, as well as the energy absorp-
tion, validated by some experimental results with in vivo
tissue Craiem and Armentano (2007). Therefore, a proper
parameter identification and state observation can help to
identify relevant dynamics and, in a future, personalize
the medical treatment for heart diseases, that remains
one of the leading death causes world-wide and imposes
a big burden on health-care systems (Virani et al., 2020).

In this study, we render a multidisciplinary approach to
help to improve the medical treatment for heart diseases,
by proposing an observer and identification scheme based
on an extension of a robust observer for fractional-order
Muscular Blood Vessel model that, using only measure-
ments from the change in pressure, can reconstruct, via an
adapted EFKF from Sun et al. (2018), the change in the
inner radius of the vessel, and therefore help to better
identify future or present problems in the MBV. Also,
a parametric reconstruction is considered even in noisy
measurement cases.

2. PROBLEM FORMULATION

2.1 Fractional-Order systems

Consider the SISO nonlinear fractional-order system
given by

0D
α
t x(t) = f(x(t), t) (1)

y = h(x) (2)

The fractional Riemann-Liouville integral of order α ∈
(0, 1) is given by

Iα0 x(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1x(τ)dτ (3)

The fractional Caputo derivative of a function f(t) is
defined by

C
0D

α
t x(t) = Iα−1

0

dx(t)

dt
, (4)

and the fractional Riemann-Liouville derivative of a func-
tion f(t) is defined by

RL
0 Dα

t x(t) =
d

dt

(

I1−α
0 x(t)

)

(5)

It is known that the Caputo and Riemann-Liouville
derivatives are related, when α ∈ (0, 1), by

C
0D

α
t x(t) =

RL
0 Dα

t x(t)−
t1−α

Γ(1− α)
x(0) (6)

It is worth noticing that if initial conditions are zero, both
derivatives converge to the same solution. However, this
is not the case for the analysis of fractional-order dynamic
systems, where initial conditions are not usually zero.

Also, it is known that the Riemann-Liouville derivatives
can be obtained from the Grünwald-Letnikov definition,
given by

GL
0 Dα

t x(t) = lim
N→∞

1

hα
N

N
∑

k=0

c(α, k)x(t− khN ) (7)

where hN = t
N
, υ(α, k) = Γ(α+1)

Γ(α−k+1)Γ(k+1) , c(α, k) =

(−1)kυ(α, k).

2.2 Muscular Blood Vessel Fractional-Order Model

In (Lin et al., 2012), the integer-order model for a Mus-
cular Blood Vessel (MBV) has been described as

ẋ =

(

−bx1 − cx2

−(1 + b)λx1 − (1 + c)λx2 + λx3
1 + I(ω, t)

)

, (8)

where the state x1 models the change of the internal
diameter of the blood vessel, x2 is the pressure change
in the vessel, I(ω, t) is a periodical stimulus, and b,
c, λ are the system parameters. It has been described
that a myocardial infarction can occur due to coronary
atherosclerosis and/or a spasm in the coronary artery.

In (Gong et al., 2006; Aghababa and Borjkhani, 2014),
the fractional-order model for a Muscular Blood Vessel
(FOMBV) has been described by

C
0D

α
t x =

(

−bx1 − cx2

−(1 + b)λx1 − (1 + c)λx2 + λx3
1 + I

)

, (9)

where 0 < α < 1 and I = I(ω, t).

In Fig. 1 it is shown how the change of the blood vessel
internal diameter, as well as the change in pressure,
change periodically when considering parameters α =
0.95, b = 0.15, c = −1.7, λ = −0.65, I(ω, t) = 1.2 +
0.5 cos(ω(t)(t − tf ))θ(t − tf ), where ω = 1.2. However, if
a sudden change in ω occurs (in this case, simulated at
tf = 150 in Fig. 1), the FOMBV enters into a chaotic
behaviour.

3. MAIN RESULT

From Mendes et al. (2019), a numerical method in di-
fference equations developed to consider the effect of the
initial condition for (9) is then given by
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Fig. 1. Simulation of the FOMBV, considering a change
in the nonlinear parameter of the external stimulus
ω(t) in I(ω, t) at t = 150 s.

xi+1 = hα×
(

−bx1(ih)− cx2(ih)
−(1 + b)λx1(ih)− (1 + c)λx2 + λx3

1 + I(ω, ih)

)

−

i+1
∑

k=1

c(α, k)x(i− k + 1) + x(0)



1 +
i+1
∑

k,i=1

c(α, k)





(10)

where xi = x(ih) and h is the time step of the numerical
solution, i.e. t = ih.

Numerically, a fractional difference that updates the so-
lution of the fractional-order differential equation can be
seen as

∆αxi+1 = hα×
(

−bx1(ih)− cx2(ih)
−(1 + b)λx1(ih)− (1 + c)λx2 + λx3

1 + I(ω, ih)

)

∆
= fh(xi, ih) (11)

and the update equation in discrete-time is given by

xi+1 = ∆αxi+1 −

i+1
∑

k=1

c(α, i)xi+1−k (12)

Considering that only the pressure change in the vessel
can be measured, then the output depends linearly from
the states, so it can be expressed by

yi = Cxi (13)

where C ∈ ℜp×n, where p is the number of outputs and
n the number of pseudo-states.

3.1 Extended Fractional-Order Kalman Filter

From Sun et al. (2018), given (12), the EFKF for a single
output system can be obtained by

x̂i+1 =fh(x̂i, ih)−
i+1
∑

k=1

c(α, k)x̂i+1−k

+ (Ki + θi) (yi − Cx̂i)

+ x̂(0)

(

1 +
i+1
∑

k=1

c(α, k)

)

(14)

where δ is a design parameter, I is the identity matrix,
and

Pi+1 =AiP
T
i A

T
i +Qi +DiδI

+AiPiυ(α, 1) +PiA
T
i υ(α, 1)

+

i+1
∑

k=1

υ(α, k)2Pi+1−k

−
(

AiPiC
T + υ(α, 1)PiC

T
)

×

D−1
i ×

(

AiPiC
T + υ(α, 1)PiC

T
)T

, (15)

Ki =
(

AiPiC
T + υ(α, 1)PiC

T
)

×D−1
i , (16)

Di = CPiC
T +Ri, (17)

Ai =
∂fh(x, t)

∂x

∣

∣

∣

∣

x=x̂i, t=hi

= hα ∂f(x, t)

∂x

∣

∣

∣

∣

x=x̂i, t=hi

, (18)

Ci =
∂h(x)

∂x

∣

∣

∣

∣

x=x̂i

. (19)

3.2 Observer and parametric reconstruction

If it is considered that only the change in blood pressure
x2 is measurable and the nonlinear term ω is unknown,
then an augmented system is considered as





C
0D

α
t x1

C
0D

α
t x2

C
0D

α
t ω



 =





−bx1 − cx2

−(1 + b)λx1 − (1 + c)λx2 + λx3
1 + I

0



 ,

(20)

then (14) can be used for the reconstruction of both x1

and ω in I = I(ω, t).

4. NUMERICAL RESULTS

The method presented was used in system (20) to re-
construct state x1 and the nonlinear parameter ω that
changes in t = 100 s as depicted in Fig. 9, and the
parameters reported in Section 2. The design parameters
were chosen as h = 0.05 s, Qi = 10−3I3×3, Ri = 1,
d = 10−4, P0 = 10I3×3, considering an output signal
contaminated by noise yi = Cxi + ν(t), with E{ν(t)} =
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Fig. 2. Observer results for state x1. In solid line it
is presented the state x1, while in red dashed line
corresponds to the reconstructed state x̂1.

0, E{ν2(t)} = 10−4. In Fig. 2,3 and 4 it can be seen how
the proposed extended Kalman filter for the fractional
case does achieve state and parameter reconstruction,
even after the change in the nonlinear parameter ω ha-
ppens, and how the chaotic behaviour is reconstructed by
the observer itself. In general, it can be seen how the error
effectively tends to zero, as shown in Fig. 5,6 and 7.

Moreover, it was also considered, as an extension, that
also the parameter b is unknown under the same circum-
stances. In this case, the extended system is now:









C
0D

α
t x1

C
0D

α
t x2

C
0D

α
t ω

C
0D

α
t b









=







−bx1 − cx2

−(1 + b)λx1 − (1 + c)λx2 + λx3
1 + I(ω, t)

0
0






.

(21)

In this case, design parameters were chosen as h = 0.05 s,
Qi = 10−5I4×4, Ri = 0.1, d = 10−5, P0 = 10I4×4.
Results are shown in Fig. 8 and 9, where it can be seen
how there is state convergence, while the reconstructed
parameters tend to a vicinity of the actual values.

5. CONCLUSIONS

A fractional-order extended Kalman filter for a fractional-
order Muscular Blood Vessel (MBV) model was presented
in this work. It was shown how, using only measurements
from the change in arterial blood pressure, it can recon-
struct the change in the inner radius of the vessel along
with a linear and a nonlinear parameter of the model.
However, it is still to be described the observability of
the remaining parameters for the nonlinear model of the
MBV, as well as the analytical stability properties of
the proposed method. Nevertheless, this application is
expected to aid with a better prediction and description
of non desired dynamics in the MBV.
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Fig. 3. Observer results for state x2. In solid line it
is presented the state x2, while in red dashed line
corresponds to the reconstructed state x̂2.
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Fig. 4. Observer results for time-varying parameter ω. In
solid line it is presented the value of ω, while in red
dashed line corresponds to the reconstructed value
for ω̂.
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Griffith, T. and Edwards, D.H. (1994). Fractal analysis
of role of smooth muscle ca2+ fluxes in genesis of
chaotic arterial pressure oscillations. American Journal
of Physiology-Heart and Circulatory Physiology, 266(5),
H1801–H1811.

Lin, C.J., Yang, S.K., and Yau, H.T. (2012). Chaos
suppression control of a coronary artery system with
uncertainties by using variable structure control. Com-
puters & Mathematics with Applications, 64(5), 988–
995. doi:https://doi.org/10.1016/ j.camwa.2012.03.007.
URL https://www.sciencedirect.com/
science/article/pii/ S089812211200212X.
Advanced Technologies in Computer, Consumer
and Control.

Magin, R.L. (2010). Fractional calculus models of com-
plex dynamics in biological tissues. Computers &
Mathematics with Applications, 59(5), 1586–1593. doi:
https://doi.org/10.1016/j.camwa.2009.08.039. Frac-
tional Differentiation and Its Applications.

Mendes, E.M., Salgado, G.H., and Aguirre, L.A. (2019).
Numerical solution of caputo fractional differential
equations with infinity memory effect at initial condi-
tion. Communications in Nonlinear Science and Nu-
merical Simulation, 69, 237–247.

N’Doye, I., Laleg-Kirati, T.M., Darouach, M., and
Voos, H. (2017). H∞ Adaptive observer for
nonlinear fractional-order systems. International
Journal of Adaptive Control and Signal Process-
ing, 31(3), 314–331. doi:10.1002/acs.2699. URL
http://doi.wiley.com/10.1002/acs.2699.

N’Doye, I., Zasadzinski, M., Darouach, M., and Radhy,
N.E. (2009). Observer-based control for fractional-
order continuous-time systems. Proceedings of the
IEEE Conference on Decision and Control, (1), 1932–

1937. doi:10.1109/CDC.2009.5400443.
Rihan, F.A. (2013). Numerical modeling of fractional-
order biological systems. In Abstract and Applied
Analysis, volume 2013. Hindawi.

Sabatier, J., Aoun, M., Oustaloup, A., Grégoire, G.,
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