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(e-mail: afloresperez@comunidad.unam.mx).

∗∗ Instituto Tecnológico Autónomo de México (e-mail:
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Abstract: Quorum sensing (QS) is a self organization process in bacteria colonies where
certain collective action is performed blue when a population density threshold is reached.
Some medically relevant behaviors of bacteria are known to be described by QS dynamics
such as virulence or antibiotics resistance. Estimation of states and parameters in QS model
is important to address such medical issues but difficult in scenarios where measurements are
limited and internal activation delay times are considered. In this paper an exteded Kalman
filter is applied to estimate two unknown states and a nonlinear parameter of a time delay QS
(TDQS) system. To the author’s knowledge this is the first extended Kalman filter applied to
estimate state variables of QS in its delayed version. In this work it is shown how, by measuring
only one of the states of the TDQS, the rest of the variables can be estimated, as well one
nonlinear parameter.

Keywords: QS System, Time-delay systems, Extended Kalman Filter.

1. INTRODUCTION

Quorum sensing (QS) is a collective behavior shown by
several classes of bacteria in which each member of a
colony performs a cooperative agreement by sensing cer-
tain cell-to-cell signaling molecules called autoinducers
whose concentration depends on the population density
(Miller and Bassler (2001); Waters and Bassler (2005)).
QS mechanism was proposed in the early 1970s to ex-
plain the bioluminescence phenomena in marine bacteria
species Vibrio fischeri (Nealson et al. (1970)) and has
been used to explain some other important social bacte-
rial behavior such as symbiosis, competence, virulence,
motility, sporulation, biofilm formation, and antibiotic
production and resistance (Miller and Bassler (2001);
McClean et al. (1997); Nadell et al. (2008)).

The QS mathematical modeling has been addressed from
different approaches along the last decades. These models
have taken into account autoinduction or bacterial density
thresholds, as well as up- and down-regulated populations
by autoinducers, see Pérez-Velázquez et al. (2016). These
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models have focused on cellular-intracellular autoinducer
interactions or, on the other hand, cell response to QS
dynamics. In Harris-Heredia (2019), a QS model is pro-
posed which gathers such a these ingredients as well as
not only activation features but also deactivation ones
by means of an on-and-off switch functional. To do so,
they consider a generalised Gierer-Meinhardt dynamics
with saturation, and perform a desingularization method
in order to capture biological relevant dynamical aspects.

Like in many other biological systems, time delays are
specially expected in QS since it involves several tran-
scription factors playing key roles on the gene network
dynamics, which may take several minutes to promote
expression of genes as well as correspondent mRNA; see,
for instance, Chen et al. (2020); Monk (2020); Jiang et al.
(2020) and references therein. Although stability changes
due to time delays for systems in nature are well known
(Hutchinson et al. (1948)) their effects in QS model have
remain partially unveiled. For instance, in Chen et al.
(2019) it was demonstrated that time delay is a prereq-
uisite to elicit oscillations in QS system whose amplitude
and period are strongly related with the time delay length.
This last behavior is a strong indicative that time delay
is a bifurcation parameter whose variation affects stabil-
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ity of QS mechanism (Flores Pérez and Breña-Medina
(2020)).

Until now, to the best of the author’s knowledge, pa-
rameters estimation and variables measurements in QS
have been done only by performing experimental data
fitting (Ward et al. (2001)) with no considerations of
delay times at all. Moreover, it has been recognized that
several limitations exist on reaching satisfactory results.
For instance, measurements can be taken only on certain
time lapses of experiments, test conditions are difficult to
reproduce and best parameters estimation require exten-
sive experimental information (Ward et al. (2001)).

To address this problem, variable structure dynamical
estimators have been designed to “reconstruct” missing
states and/or parameters from available measurements
in linear and nonlinear time delay systems with an im-
portant variety of successful applications but many open
problems to face (Karafyllis et al. (2016),Richard (2003)).
For instance, to deal with state/parameter estimation for
nonlinear systems with constant time delays in states,
in Marquez-Martinez et al. (2000) and Batmani and
Khaloozadeh (2014) some change of coordinates is sought
in order to transform the nonlinear time delay system
into a linear-like model for which linear design tools ac-
complish the construction of a stable observer. However,
as in other control problems, such adequate transforma-
tions are difficult to find. A control systems approach
is addressed in Raff and Allgower (2006) and Hugues-
Salas and Shore (2010) where an extended Kalman filter
(EKF) based observer is designed. The basic idea here
is to introduce appropriate gains in a modified Riccati
equation as proposed in Reif et al. (1998) to compensate
constant time delays influences to reach local stability of
the observation error dynamics.

Contribution. Upon applying the existing EKF observer
reported in Raff and Allgower (2006) and Hugues-Salas
and Shore (2010) , we solved the problem of estimating
one nonlinear parameter, which is related to the carrying
capacity of the environment, and two out of three internal
nonlinear states in a time delayed version of the QS model
developed in Harris-Heredia (2019). To the best of the
authors’ knowledge, this is the first effort where EKF
is used to realize parameters and states estimation of
nonlinear time delay QS (TDQS) model.

This remaining manuscript is organized as follows: a sum-
mary of the particular models QS and TDQS addressed in
this work are given in Section 2. The EKF based observer
for general time delay nonlinear dynamics reported in Raff
and Allgower (2006) and Hugues-Salas and Shore (2010)
is summarized in Section 3, where its application to the
TDQS model is also explained. Numerical results and
discussion are detailed in Section 4. Finally, conclusions
can be found in Section 5.

2. QUORUM SENSING NONLINEAR MODEL.

2.1 Non-delayed Quorum Sensing dynamics.

Bacteria conforming a population can be subdivided in
two classes, motile and static, which correspond to sub-
populations up- and down-regulated by autoinducers, re-
spectively. Such categories are defined by the cell receptor
responses to the autoinducers: if expression of certain
particular gene is promoted, cell is classified as motile,
otherwise, cell is static. Motile and static bacteria interact
within a single compartment acting as activator or in-
hibitor, respectively, limited by the environment capacity
and regulated by autoinducers production. This features
are captured in the following model, which has been
rescaled and desingularized in order to obtain dimension-
less parameters as well as analize possible singular states
in phase space,

ẇ (t) = dv (t) (u (t) + v (t))− cw (t) v (t) , (1a)

v̇ (t) = w (t) v (t)u2 (t) + aϵv (t)− v2 (t) , (1b)

u̇ (t) =
w (t)u2 (t)

1 +Ku2 (t)
+ av (t)− bu (t) v (t) , (1c)

where w (t) is the autoinducers concentration, v (t) cor-
responds to the density of static bacteria and u (t) to
the density of motile bacteria, all of these variables are
measured in datum per length (see Harris-Heredia (2019)
for further details). Dimensionless constants a and aϵ
capture category bacteria changes since motile and static
can either switch or remain in their class. Parameter b
is the decaying rate of the whole bacteria population, c
and d describe the the decaying and production rate of
autoinducers, respectively. Notice that factor in (1c) given
by the function

u2(t)

1 +Ku2(t)

comes from an auto-catalytic Hill functional, see Santillán
(2014); which models the carrying capacity and may grow
monotonically until certain limit defined by the value of
K parameter is reached, which represents the saturation
capacity of the environment and characterizes resources
availability, for instance.

Finally, the parameters set values taken into account for
simulations were a = 3/70, ϵ = 1/10, b = 1.4, c = 0.16,
d = 98/1875 and K = 49/1125 as it has been shown that
these values give rise to coexistence of subpopulations
expressed by self-sustained oscillations (Harris-Heredia
(2019)).

2.2 Time Delay Quorum Sensing model.

In order to capture delay effects on the QS dynamics to
generate the TDQS model, we proposed that autoinducers
concentration are produced by the entire population, but
activation response from each subpopulation is delayed.
As has been addressed earlier, factor of transcription in a
gene network may take several minutes in comparison to
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the time scale interaction of bacteria and autoinducers.
In so doing, a modified QS model with a delay for
w(t), which model the delayed response to autoinducers
concentration from bacteria subpopulation, in the u(t)
and v(t) dynamics is

ẇ = dv (t) (u (t) + v (t))− cw (t) v (t) ,

v̇ = w (t− τ) v (t)u2 (t) + aϵv (t)− v2 (t) ,

u̇ =
w (t− τ)u2 (t)

1 +Ku2 (t)
+ av (t)− bu (t) v (t) , (2)

where τ = 52s is the time delay. Such value was de-
termined by a previous bifurcation study of the TDQS
system stability and it is known that it allows coexistence
of population classes which is expressed by oscillations
(Flores Pérez and Breña-Medina (2020)). In this work,
states v(t), w(t) and K parameter will be estimated for
the TDQS given in (2) in two scenarios: K constant and
periodic time-dependent K(t) ≥ 0, which may model
periodical lack of resources.

3. ROBUST NONLINEAR OBSERVER OF THE
TDQS SYSTEM.

3.1 Extended Kalman filter for general nonlinear time
delay systems.

Consider the following nonlinear time delay system

ẋ (t) = f(x (t) ,x (t− τ)),

x (t) = ψ (t) , t ∈ [−τ, 0],

y (t) = Cx (t) , (3)

where x ∈ R
n is the state, x(t−τ) is the delayed state with

τ > 0 the time delay, C ∈ R
m×n is a constant matrix,

y(t) ∈ R
m is the measured output and ψ (t) ∈ R

n, t ∈
[−τ, 0] is the continuous initial value function vector. The
following system is proposed to reconstruct missing states
and parameters from available output

˙̂x (t) = f(x̂ (t) , x̂ (t− τ)) + L(t) (y(t)−Cx̂ (t)) ,

x̂ (t) = ξ (t) , t ∈ [−τ, 0], (4)

where x̂(t) (x̂(t−τ)) is the state estimate of x (t) (x(t−τ))
and ξ(t) is the initial condition function vector that has
the same dimension as ψ(t). By following the procedures
of the extended Kalman filter based estimators, take the
following Taylor series expansion

f (x (t) ,x (t− τ))− f (x̂ (t) , x̂ (t− τ)) =

A (t) (x (t)− x̂ (t)) +Aτ (t) (x (t− τ)− x̂ (t− τ)) + . . .

ϕ (x (t) ,x (t− τ) , x̂ (t) , x̂ (t− τ)) ,

where, according to Raff and Allgower (2006), a lineariza-
tion term in the time delay is considered since

A (t)
∆
=

[

∂f(x (t) ,x (t− τ))

∂x (t)

]∣

∣

∣

∣ x (t) = x̂ (t)
x (t− τ) = x̂ (t− τ)

,

Aτ (t)
∆
=

[

∂f(x (t)x (t− τ))

∂x (t− τ)

]∣

∣

∣

∣ x (t) = x̂ (t)
x (t− τ) = x̂ (t− τ)

(5)

and ϕ(·) encompasses the higher order terms. The ob-
server gain matrix L(t) is computed as

L (t) = P (t)CR−1, (6)

with R ∈ ℜm×m a positive definite constant matrix and
P(t) is the solution of the modified Riccati matrix

Ṗ (t) = (A (t)− L (t)C)P (t) +P (t)
(

AT (t)− βI
)

+Q+ γAτ (t)A
T

τ
(t) , (7)

where β and γ positive constants andQ ∈ R
n×n,Q a con-

stant positive definite matrix. In addition, the following
assumptions are in order.

Assumptions

(i) There exist constants δ, ρ > 0 such that

δI ≤ P (t) ≤ ρI.

(ii) There exist constants µ, ν > 0 such that

∥ϕ (x (t) ,x (t− τ) , x̂ (t) , x̂ (t− τ)) ∥ ≤

µ||x (t)− x̂ (t) ||2 + ν||x (t− τ)− x̂ (t− τ) ||2.

The following lemma demonstrated formally in Hugues-
Salas and Shore (2010) establishes the observer for a
general nonlinear time delay system.

Lemma 1. (Hugues-Salas and Shore (2010)) Consider the
nonlinear time-delay system (3) and its proposed observer
given in (4)-(7). Let the assumptions (i) and (ii) hold.
Then the system (4)-(7) is a local observer of (3), i.e. the
reconstruction error x(t)− x̂(t) is locally stable.

Remark 1. Modified Riccati equation (7) differs from the
classical equation by the introduction of two terms, βI
and γAτA

T

τ
. According to Reif et al. (1998), β gives to the

observer a prescribed degree of stability which can be used
to compensate the influence of noise in the measurements.
Delay jacobian term in the Taylor expansion was pointed
out by Raff and Allgower (2006). To compensate this
term, γ is introduced in order to reduce its action in
the error dynamics. This combination allows to generate
a robust observer which deals with noise and nonlinear
delay terms. Regarding global stability, it depends on the
unboundedness of matrix P, but given assumption (i),
only local stability can be achieved (for further details
see Hugues-Salas and Shore (2010)).

3.2 Application of the robust observer to TDQS model.

Even though that our model considers up- and down-
regulated bacteria sub-populations, we may be able to
measure one of such a sub-populations by means of
key solution features of our system. In this work it is
supposed that only u(t) is measurable, and w(t), v(t),
and parameter K(t) are unknown. For the sake of ob-
servation, the augmented state vector and delayed state
vector are defined by x(t)T = (w(t), v(t), u(t), K(t)),
and x(t − τ)T = (w(t− τ), v(t), u(t), K(t)), respec-

tively. x̂(t) =
(

ŵ(t), v̂(t), û(t), K̂(t)
)T

and x̂(t − τ) =
(

ŵ(t− τ), v̂(t), û(t), K̂(t)
)T

. The augmented system is
given by (3) with
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f(x (t) ,x (t− τ)) =













d (u (t) + v (t))− cw (t)
w (t− τ) v (t)u2 (t) + aϵv (t)− v2 (t)
w (t− τ)u2 (t)

1 +K(t)u2 (t)
+ av (t)− bu (t) v (t)

K̇(t)













where last row corresponds to K̇(t) = 0 when K constant.
f(x̂(t), x̂(t− τ))) is obtained by substituting x(t) → x̂(t)
x(t− τ) → x̂(t− τ).

As it was previously mentioned, only u(t) is measurable,
then output function of system (3) is given by y (t) =
Cx (t) = (0 0 1 0)x (t), and the observer has the form
(4)-(7) with numerical gains and initial conditions given
in the following section.

4. NUMERICAL RESULTS AND DISCUSSION

4.1 Open loop TDQS system behavior.

Time evolution of states w (t), v (t), u (t) when K is
constant and time varying for the TDQS system are de-
picted in Fig. 1. Time varying K(t) represents a possible
periodic lack of resources and is given in the simulation
by K(t) = 49/1125 + 0.04 sin(0.005t). Initial state in the

system was (w (t) , v (t) , u (t))
T

= (3/10, 0.1, 0.1) , t ∈
[−τ, 0], τ = 52, for both cases. It is important to notice
that oscillatory responses match with the results given
in Chen et al. (2019) and Zhang et al. (2016) where non
vanishing periodic solutions were related with the time
delay introduction. Notice how dynamics of the TDQS
system is not so affected by introduction of the time
dependent K(t) and only slight differences appear in the
behavior of the states.
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u(t)

t[s]

500 1000 1500 2000
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0.050

K(t)

t[s]

Fig. 1. Dynamic behavior of the TDQS system states with
a constant value K (blue dotted line) and with a
time-varying K(t) (solid orange line).

4.2 States and parameter estimation of TDQS.

As it was stated before, it was supposed that only u(t) is
measurable and estimation of the robust observer (4)-(7)

was applied to reconstruct w(t), v(t) and K constant in
first place. Tuning parameters were γ = 100, β = 10−4,
Q = 100I, R = R = 1. Numerical results are shown in
Fig. 2 and 3 where it can be seen that, even when only
one state is measured, all other states and the unknown
constant parameter K were successfully reconstructed.

w(t)

w
 (t)

500 1000 1500 2000
t(s)

0.10

0.15

0.20
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0.30

v(t)

v
(t)

500 1000 1500 2000
t(s)

-0.1
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0.2

0.3

0.4

0.5

0.6

u(t)

u
(t)

500 1000 1500 2000
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1.5

2.0

2.5

K(t)

K

(t)

500 1000 1500 2000
t(s)

-0.3

-0.2

-0.1

Fig. 2. Real states w(t), v(t) and real constant parameter

K (blue line) and their estimations ŵ(t), v̂(t), K̂(t)
(orange dotted line) reconstructed with observer (4)-
(7). u(t) matches with û(t), ∀t ≥ 0 since it was the
measured state.
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Fig. 3. Observer error results between real and estimated
quantities for K constant.

In Fig. 4 and 5 the results for the state reconstruction
of w (t), v (t) and the time-varying parameter K(t) are
shown. Is noticeable that also the states and the param-
eter are estimated after ≈ 500 s.

In order to show that Assumption (i) is fulfilled, in Fig. 6
the maximum and minimum eigenvalues of the matrix
P(t) solution of the modified Riccati equation (7) are
depicted. Notice that the matrix remains positive definite
and bounded, so local stability of the estimation error is
achieved.

As the term 1 + K̂(t)û2(t) could cause a singularity, in
Fig. 7 the value of this term is shown. It can be seen
that during the observation process it does not become
null. Nevertheless, as the observer is designed such that
K remains constant, it still can catch the nonmeasurable
states, as well K̂ remains close to the actual values of the
parameter K.
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Fig. 4. Real states w(t), v(t) and real time varying
parameter K(t) (blue line) and their estimations

ŵ(t), v̂(t), K̂(t) (orange dotted line) reconstructed
with observer (4)-(7). u(t) matches with û(t), ∀t ≥ 0
since it was the measured state.
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Fig. 5. Observer error results between real and estimated
variables with time-varying K(t).
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Fig. 6. Boundedness test of matrix P(t) through time, in
logarithmic scale, shown as the value of its minimum
and maximum eigenvalues for the case of a time-
varying parameter K(t).

5. CONCLUSIONS

Quorum sensing is an organization process by which
bacteria colonies manifest collective behaviors. Many
processes such as symbiosis, competence, virulence, motil-
ity, sporulation, biofilm formation, antibiotic production
and resistance are known to behave upon QS regulatory
mechanisms. Hence, QS dynamics is relevant to be re-
constructed in scenarios where measurements are limited
and characteristic activation delay times are taken into

500 1000 1500 2000

-1.0

-0.5

0.5

1.0

1.5

2.0

Fig. 7. Evaluation of the term 1+K̂(t)û2(t) through time,
considering possible singularities. In blue it is shown
the value of K(t), and in dotted red line the value of
0, that lead to the singularity.

account. In this work we showed how a TDQS model
exhibit oscillations predicted in the literature, and how,
by measuring only the density of motile bacteria, the au-
toinducer concentration and the density of static bacteria
can be estimated. Estimation of a nonlinear parameter
related with availability of resources in the environment
was also possible. These results were obtained by applying
an extended Kalman filter, which is robust to noise as
well as nonlinear delay terms.

The conditions for estimation error stability are discussed
in the context established by previous works, and numer-
ical results were presented to show how such stability
is achieved. Future work involves the explicit analyti-
cal stability for changes in the delay term, as well as
explore a wider number of parameter reconstruction for
experimental data, considering noisy measurements. As
future work, observers can be applied to estimate states
in models which describe important diseases in order to
propose better control and therapy schemes.
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Marcos A. González-Olvera wants to thank UACM for its
financial support through project UACM-CCyT-PI-2022-
13. VFBM thanks the financial support by Asociación
Mexicana de Cultura A.C.

REFERENCES

Batmani, Y. and Khaloozadeh, H. (2014). On the design
of observer for nonlinear time-delay systems. Asian
Journal of Control, 16(4), 1191–1201.

Chen, M., Liu, H., and Yan, F. (2019). Oscillatory
dynamics mechanism induced by protein synthesis time
delay in quorum-sensing system. Physical Review E,
99(6).

Chen, M., Ji, J., Liu, H., and Yan, F. (2020). Periodic
Oscillations in the Quorum-Sensing System with Time
Delay. International Journal of Bifurcation and Chaos,
30(9). doi:10.1142/S0218127420501278.

Congreso Nacional de Control Automático 2022,

12-14 de Octubre, 2022. Tuxtla Gutiérrez, México.

Copyright© AMCA, ISSN: 2594-2492316
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