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Abstract: In this work, a search methods strategy based on optimization algorithms is proposed for the kinetic 

modelling of a dark fermentation process using tequila stillage substrate for hydrogen production. Kinetic 

model based on the ADM1 approach is fitted to the experimental data to evaluate the dynamic behaviour of the 

metabolites produced and consumed during the mixed-culture fermentation. This batch fermentative process is 

based on mass balance analysis and correlated kinetic expressions following a Monod type dependence. In 

previous works, batch experiments were performed using different substrates to characterize the metabolic 

transformations involved in hydrogen production. Where, a kinetic model was developed and fitted to the 

obtained temporal profiles using Matlab and Excel solvers, allowing a satisfactory description of the metabolic 

pathways leading to hydrogen production. The aim of this research is to show the efficacy of the proposed 

optimization strategy to find the kinetic parameters of the model that will allow predictions on the behaviour 

of hydrogen production. 
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1. INTRODUCTION 

Biohydrogen production through Dark Fermentation 

(DF) processes from several organic substrates is sustainable 

because it presents a higher production, the recovery of high-

added value by-products from carbohydrate-rich wastes and 

economic viability. Besides the conventional acetate and butyrate 

hydrogen-producing pathways, hydrogen production from 

lactate has been attracted more interest than at first expected. 

Lactic acid bacteria (LAB), the lactate producers par excellence, 

play an important role in the bioconversion of lactate into 

hydrogen, albeit there has been a matter of discussion on their 

function and effects upon the overall hydrogen production 

process efficiency. Since lactate-producing pathways result in a 

zero-hydrogen balance, the accumulation of lactate in the culture 

broth, which frequently occurs during acidogenesis, appears to 

be at first sight adverse for hydrogen production. Substrate 

consumption, excretion of bacteriocins and pH over acidification 

have been reported as the mechanisms promoted by the activity 

of LAB impairing hydrogen production (Noike et al., 

2002). At this point it should be noted that under certain 

environmental conditions tipping the balance in favour of 

hydrogen production, the activity of LAB can be exploited 

for pH regulation, substrate hydrolysis, biomass retention, 

oxygen depletion and substrate detoxification (García-

Depraect, León-Becerril, 2018). Such operational 

advantages seem to hing on the cross-feeding of lactate 

between LAB and lactate-consuming, hydrogen-producing 

bacteria through lactate-type fermentation. It has been 

shown that in batch experiments using complex substrates, 

the lactate-type fermentation consists of a primary 

fermentation in which reducing equivalents derived from 

carbohydrates are channeled mainly to lactate, acetate and 

biomass, and a secondary fermentation where the lactate 

and acetate produced are metabolyzed mainly in hydrogen 

and butyrate. However, notwithstanding that biohydrogen 

production from lactate has been ascertained as pivotal in 

several DF systems treating real complex substrates 

(including tequila vinasses (TV) (García-Depraect, León-
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Becerril, 2018), cheese whey (Asunis et al., 2019), sugarcane 

vinasse (Fuess et al., 2018), among others), it is still a very poorly 

understood process. In Blanco et al. (2019), a kinetic model for 

dark fermentative biohydrogen production from synthetic cheese 

whey was fitted to the temporal profiles of total carbohydrates, 

lactate, acetate, butyrate, biomass and hydrogen gas. The relative 

average error indicated a satisfactory agreement between the 

measured and simulated values. The maximum biomass 

production was underestimated and the production of butyrate 

and hydrogen was overestimates. Despite of those fit errors, the 

kinetic model fulfilled its objective of providing insight into the 

predominant metabolic pathways involved in the mixed-culture 

fermentation of cheese whey. In Couto et al. (2020), a model 

based on ADM1 was proposed to describe sugarcane vinasse 

fermentation to produce hydrogen. The model was calibrated 

with data of the sugarcane vinasse processing at an initial 

concentration of 30kg·COD·m3. The modelled soluble 

components that varies inside reactor are sugar, glycerol, 

butyrate, acetate, lactate and hydrogen. The model was cross 

validated in order to verify if it is adequate to describe this 

process under different conditions. The method was effective to 

find the minimal value of the objective function for the free 

parameters. However, the model did not present a good fit for all 

experimental data. Therefore, it is expected that the developed 

kinetic model would exhibit a limited predictive power for 

experiments performed under different conditions. In order to 

optimize the lactate-driven DF processes, this study aims to 

develop an optimization strategy to identify a mathematical 

model that describes the batch hydrogen production process 

through the lactate-type pathway. 

2. METHODOLOGY 

Batch experiments were carried in a reactor with a 

working volume of 2 L. The fermentations were carried out in 

triplicate at 35 ± 1 °C. For start-up, the stirred tank reactor was 

filled with 10% v/v activated inoculum and 90% v/v tequila 

vinasse. The operational pH was fixed at 6.5 until the beginning 

of the acceleration phase in reference to the H2 production. The 

pH was then shifted to 5.8 where it was kept constant thereafter. 

The stirring speed was maintained at 500 rpm. The biogas 

produced was measured using the µFlow biogas meter. Gas 

samples were collected to analyze the biogas composition using 

gas chromatography. Liquid samples were taken regularly for 

further analyses. Such fermentations successfully exhibited the 

lactate-type pathway, and were thoroughly characterized for 

hydrogen production, biomass growth, consumption of sugars, as 

well as the metabolic profile through time (García-Depraect, 

León-Becerril, 2018). The purpose of the model is to predict and 

explain the batch fermentative hydrogen production process via 

the lactate-type fermentation. The model network structure is 

presented in Fig. 1, which describes the consumption of 

carbohydrates, production of hydrogen and biomass, and 

accumulation of major soluble metabolic intermediates, i.e. 

lactate, acetate and butyrate. It is assumed that biomass growth 

only relies on the consumption of carbohydrates. 

Experimental data formerly obtained from García-

Depraect, León-Becerril (2018) is used to model kinetic 

parameters.  

 

Fig. 1. Model network structure for hydrogen production 

via the lactate-type fermentation.  

3. MATHEMATICAL MODELING 

The mathematical model based on the ADM1 approach 

(Blanco et al., 2019) is developed following the model 

network structure presented in Fig. 1. The state variables 

are carbohydrates (X1) and the fermentation products in the 

experiments: biomass (X2), lactate (X3), acetate (X4), 

butyrate (X5) and biohydrogen (X6). All state variables are 

expressed in terms of g of COD per liter of reaction volume. 

The biomass is quantified as VSS and is assumed to 

represent the total microbial consortium, capable of 

conducting all of the metabolic pathways proposed in the 

model. The carbohydrate concentration is converted in 

terms of COD considering that lactose is the only 

carbohydrate present in the tequila stillage substrate. The 

nonlinear mathematical model is described by six 

differential equations where the consumption rates follow 

Monod-type kinetics. The model parameters are described 

in Table 1. 

𝑑𝑋1𝑑𝑡 = −𝑋2 ⋅ 𝐼 ⋅ 𝑘𝐶 ⋅ 𝑋1𝑋1+𝐾𝑆𝐶    (1) 

𝑑𝑋2𝑑𝑡 = −𝑌 ⋅ (𝑑𝑋1𝑑𝑡 ) − 𝑘𝑑 ⋅  𝑋2   (2) 

𝑑𝑋3𝑑𝑡 = −(1 − 𝑌) ⋅ 𝑓𝐶−𝐴(𝑑𝑋1𝑑𝑡 ) − 𝑋2 ⋅ 𝐼 ⋅ 𝑘𝐿 ⋅ 𝑋3𝑋3+𝐾𝑆𝐿 (3) 

𝑑𝑋4𝑑𝑡 = −(1 − 𝑌) ⋅ 𝑓𝐶−𝐴(𝑑𝑋1𝑑𝑡 ) − 𝑓𝐿−𝐴 ⋅ 𝑋2 ⋅ 𝐼 ⋅ 𝑘𝐿 ⋅ 𝑋3𝑋3+𝐾𝑆𝐿(4) 

𝑑𝑋5𝑑𝑡 = 𝑓𝐿−𝐵 ⋅ 𝑋2 ⋅ 𝐼 ⋅ 𝑘𝐿 ⋅ 𝑋3𝑋3+𝐾𝑆𝐿   (5) 

𝑑𝑋6𝑑𝑡 = −(1 − 𝑌) ⋅ 𝑓𝐶−𝐻(𝑑𝑋1𝑑𝑡 ) + 𝑓𝐿−𝐻 ⋅ 𝑋2 ⋅ 𝐼 ⋅ 𝑘𝐿 ⋅ 𝑋3𝑋3+𝐾𝑆𝐿(6) 
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where I is an empirical function to model low-pH inhibition 

proposed by IWA (Batstone et al. 2002), as described in (7). 

𝐼 = { 𝑒(−3⋅( 𝑝𝐻−𝑝𝐻𝑈𝐿𝑝𝐻𝑈𝐿−𝑝𝐻𝐿𝐿)2),   𝑖𝑓 𝑝𝐻<𝑝𝐻𝑈𝐿 
1,                            𝑖𝑓 𝑝𝐻 > 𝑝𝐻𝑈𝐿

}  (7) 

in which 𝑝𝐻𝑈𝐿 is the upper limit for pH inhibition, above which 

microorganisms are not inhibited, and pHLL is the lower limit for 

pH inhibition, at which the microorganisms are completely 

inhibited. As mentioned before, pH was maintained at 5.8 during 

the hydrogen production phase. Nevertheless, variations around 

the pH setpoint are considered due to lag time in the control 

devices in order to evaluate effects of pH variations on microbial 

metabolism. It is assumed that the production rates of hydrogen 

and butyrate follow a Monod-type dependence on the 

concentration of lactate only, considering that acetate is not the 

limiting substrate in that reaction.  

4. OPTIMIZATION STRATEGY 

The nonlinear model is composed of four kinetic parameters and 

eight stoichiometric coefficients. Due to the high nonlinearity of 

the system, search methods strategy based on optimization 

algorithms is implemented to find optimal values. Three methods 

are proposed: Genetic Algorithm -Trust Region Algorithm (GA-

RA), Simplex Search Method (SSM) and Pattern Search 

algorithm (PSA) (Kochenderfer, Wheeler, 2019). The objective 

of the optimization strategy is to minimize the cost function 

composed of the Mean Squared Errors (MSE) of the measured 

and simulated state values along the simulation time horizon. The 

optimization strategy is implemented in Matlab ™ and the 

flowchart is shown in Table 2. 

Table 1. Model parameters 

 

Table 2. Optimization algorithms 

GA-RA 

1. Establishment of the objective function and 

initial conditions 

2. Creation of the initial population 

3. Evaluation of each individual 

4. If the stopping criterion is satisfied → End and 

then execute the TR algorithm 

a. Find the quadratic subproblem 

b. Set the initial parameters  

c. Find the unconstrained minimum of 

the subproblem 

d. Obtain the newton step ẟk 

e. Compute xk+1 = xk+ ẟk 

f. Evaluate gradient 

g. If gradient < Ɛ     →   Stop 

h. If gradient > Ɛ, repeat step c 

5. If the stopping criterion is not satisfied create a 

new population using reproduction, 

combination and mutation and repeat step 3. 

SSM 

1. Establishment of the objective function and initial 

conditions 

2. Make the initial table 

3. Select locally the column with the minimum 

negative value of the objective row 

4. Select globally the minimum 

5. Update variables 

6. Select locally the row with the minimum ratio 

7. Select globally the minimum 

8. Update values 

9. Update the pivot row 

10. Update the remaining constraint rows 

11. Update the objective row 

12. If the stopping criterion is satisfied →  End 
13. If the stopping criterion is not satisfied repeat step 3 

PSA 

1. Establishment of the objective function and 

initial conditions 

2. Set mesh parameters and iterations 

3. Set the starting point 

4. Construct pattern vectors and mesh points 

5. Calculate objective function 

6. If the stopping criterion is satisfied →  End 

7. If the stopping criterion is not satisfied but the 

poll is successful, then, expand mesh size and 

repeat step 3. 

8. If the poll is not successful, then, contract mesh 

size and repeat step 3. 

Variable Meaning Unit 

         𝑌 Biom ass yield on carbohydrates g COD g COD−1 

        𝐾𝑑  Fi rst - order  biom ass decay coef f icient  ℎ
−1 

𝐾𝑐  M axim um  carbohydrate consum pt ion 

rate 

g  COD g COD−1 h−1 

        𝐾𝑆𝐶  Hal f - saturat ion constant  for  

carbohydrate consum pt ion 

g COD h−1 

        𝐾𝑆𝐿  Hal f - saturat ion constant  for  lactate 

uptake 

g COD h−1 

        𝐾𝐿 M axim um  lactate uptake rate g  COD g COD−1 h−1 

         𝐼  Low- pH inhibi t ion funct ion pH 

      𝑓𝑙𝑏  Butyrate stoichiom et r ic coef f icient  g  COD g COD−1 h−1 

     𝑓𝑐𝑎  Acetate stoichiom et r ic coef f icient  g  COD g COD−1 h−1 

     𝑓𝑐ℎ  Hydrogen stoichiom etr ic coef f icient  g  COD g COD−1 h−1 

     𝑓𝑙𝑎  Acetate stoichiom et r ic coef f icient  g  COD g COD−1 h−1 

     𝑓𝑙ℎ  Hydrogen stoichiom etr ic coef f icient   g  COD g COD−1 h−1 

     𝑓𝑐𝑙  carbohydrates stoichiom et r ic coef f icient  g  COD g COD−1 h−1 
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5. RESULTS 

Each searching algorithm is implemented separately 

without restrictions and the stopping criterion is the minimum 

value of the objective function. The developed algorithms are 

programmed to iteratively compute successive approximations to 

the solution of the problem. Initial values for the model 

parameters were selected real and positives in a neighborhood 

close to the estimated values. The algorithms convergence, 

iterations number and the minimum function value is displayed 

in Fig. 2. Where the GA-RA algorithm converged to the 

minimum function value of 31.13 after 470 iterations, the SSM 

converged to the minimum function value of 8.85 after 810 

iterations and the PSA converged to the minimum function value 

of 22.14 after 798 iterations. In order to know the algorithms 

efficiency, a MSE comparison of each variable state is presented 

in Table 3. The best fit found by the SSM algorithm is presented 

in Figures 3 to 8. As can be seen, a satisfactory agreement 

between the measured and simulated values was obtained, as 

indicated by the MSE reported. Despite the uncertainties 

introduced by measurement errors, unmeasured disturbances and 

the undefined mixed-culture fermentation of a complex substrate, 

lactate and acetate consumption leading to the production of 

butyrate and hydrogen, the SSM algorithm is efficient to fit the 

model to measured values with a minimum estimation error. 

 

Fig 2.  Objective function minimization 

 

Fig 3. Carbohydrates 

 

Fig 4. Lactate 

 

Fig 5. Acetate 
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Fig 6. Biomass 

 

Fig 7. Butyrate 

Fig 8. Hydrogen production 

Table 3. Model parameters 

Variable 
MSE 

GA-RA SSM PSA 

X1 2.2131 0.6706 11.8235 

X2 0.0095 0.0091 0.1160 

X3 0.3307 0.1646 1.1858 

X4 0.3031 0.2564 0.2902 

X5 1.0786 0.7512 1.1020 

X6 3.3517 1.4401 2.2794 

The mathematical model presented an inferior fit 

for the carbohydrates, butyrate and hydrogen production. 

The carbohydrates were underestimated, which can be 

attributed to the model limitations to estimate slow 

consumption at the beginning of the fermentation. Butyrate 

and hydrogen production were overestimated during the 

first fifty hours due to a relationship with the carbohydrates 

behaviour.  In addition, the reduced mathematical model 

does not represent the variety of bacteria or the lag times of 

the process. However, the estimation strategy results are 

acceptable for a good approximation of the real data that 

will allow predictions about the behaviour of hydrogen 

production. The mathematical model could be further 

extended and improved by adding experimentally measured 

stoichiometric parameters. In addition, this model could be 

useful for optimal control design to maximize the hydrogen 

production in presence of disturbances. 

6. CONCLUSIONS 

In this work a nonlinear kinetic model for a dark 

fermentation process fits the data measured in a batch 

process using the search methods strategy. The measured 

data correspond to carbohydrates, biomass, lactate, acetate, 

butyrate and hydrogen production. Three search methods 

based on optimization algorithms are implemented to find 

the kinetic and stoichiometric parameters of the model. An 

objective function is constructed with mean squared error 

of the measured and the simulated states, the algorithms 

goal is to minimize this objective function. The algorithms 

convergence, iterations number and the minimum function 

value were analyzed, where the SSM had the best 

convergence with a minimum function value of 8.85 after 

810 iterations. The fitted model delivers a satisfactory 

description of the hydrogen production process, providing 
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understanding into the main transformation pathways leading to 

hydrogen production. As future work, a robust model 

representing bacterial communities capable of producing 

hydrogen from lactate and acetate may be suitable to optimal 

control implementation for long-term hydrogen production in a 

continuous system. 
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