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Abstract: This paper presents a low-cost DSP-based vibration data acquisition system with
a high data storage capacity for fault detection in electric motors. An outer race bearing fault
detection case study for a three-phase induction machine using vibration signals provided by
the DSP-based acquisition system from a test rig is detailed. The fault detection scheme is
performed based on Fast Fourier Transform (FFT) and Discrete Wavelet Transform (DWT).
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1. INTRODUCTION

The electric machines represent the principal source of
movement in the industrial sector (Trigeassou (2011)),
(Toliyat et al. (2013)), (Verde et al. (2013)). The induc-
tion machine (IM) is widely recognized as the workhorse
of the industry (Mujica and Espinoza-Pérez (2014)). This
kind of machine has a top exclusive position in converting
electric to mechanical energy, being responsible for almost
90% of all the energy consumption of the electric motors
in the industry.

Fault detection techniques for three-phase electric ma-
chines have been extensively studied in the last several
years to detect faults early and compensate for their
adverse effects during scheduling maintenance to avoid
unnecessary costs. The fault distribution within machine
subassemblies is reported in many reliable survey papers.
A summary classification identifies four classes: bearing
faults, stator-related faults, rotor-related faults, and other
faults (cooling, connection, terminal boxes, and power
converter faults). Depending on the type and size machine
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bearing fault distribution among all faults varies from
about 40% to about 90% from large to small machines.
Vibration signals are typically used to detect the pres-
ence of mechanical bearing faults. In most situations,
diagnostic methods based on analysis of mechanical fault
signals have proved their effectiveness for single defects
(Immovilli et al. (2009)). Hence, early bearing damage
detection can significantly help reduce the costs that these
downtimes will entail. The reasons for a bearing to fail are
manifold. A well-lubricated and properly installed bearing
under appropriate working conditions will not usually
degrade before the end of its expected lifetime (Zoubek
et al. (2008)).

The electrical stator faults represent a significant percent-
age of IM faults. Included in this category, there are the
coil faults like inter-turn short-circuits and core magnetic
faults (Cruz and Cardoso (2001)). Unfortunately, the IM
can fail due to other mechanisms; for example, squirrel
cage broken rotor bars and rotor end ring short-circuit
faults. These kinds of faults are due to different stress
mechanisms that act on the rotor (Cruz and Cardoso.
(1999)), (Bellini et al. (2008a)), (Bellini et al. (2008b)).
Due to the increment of efficiency and development of
new aero-spacial materials applied to electric isolation in
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electric motors, the machines’ size has been reduced, and
their mechanical stress has increased. This stress produces
bearing damages, eccentricity, and shaft deviation prob-
lems. The most common mechanical faults are inner and
outer race bearing faults, static or dynamic eccentricity
faults, and unbalanced rotor shaft faults.

This paper presents a bearing outer race fault detection
scheme based on FFT and DWT using vibration signals.
This signal is obtained with a low-cost DSP-based data
acquisition system with high storage capacity.

2. BEARING FAULT DETECTION

A fault can be defined as a non-permitted deviation of the
process parameters. There are three kinds of faults types:
abrupt faults, incipient faults and intermittent faults. In
recent years, it has been reported the induction machines
fault distribution is: bearing faults (69%), stator faults
(21%), rotor broken bars or end ring rotor short circuit
faults (7%), shaft and couple faults (3%) (Elbouchikhi
et al. (2016)), (Pacheco-Chérrez et al. (2022)), (Tiwari
and Upadhyay (2021)).

The bearing fault in induction machines is one of the
most common faults in this kind of machine (Bellini et al.
(2008b)). Most of electric machines use balls or rolling
elements in bearings. A bearing consists of two concentric
rings, one called inner race and the other outer race,
both are depicted in the Fig. 1 with a group of rotating
elements located between this concentric rings.

Radial load

down

Outter Race

Rolling ball

Inner Race

Central line

Load zone

Fig. 1. Bearing structure.

Under normal operation conditions with unbalanced loads
and good alignment, this kind of fault can occur. This
fault increases the vibration levels. It is also possible that
the fire appears when small pieces of the bearing reach
the rolling elements between the inner and outer race. An
example of damaged inner and outer races is shown in the
Fig. 2.

The bearing fault can be caused by:

• Pollution or corrosion is produced by erosion caused
by the abrasion of small particles, water, or acid.

Outter Race

damage

Inner Race

damage

Fig. 2. Damaged inner and outer races (Silva and Cardoso.
(2005)).

• Inappropriate lubrication.
• Inappropriate installation.

The bearing fault spectra signatures are described in
(Silva and Cardoso. (2005)). Moreover, the mechanical
characteristic frequency fcar, when the outer race is fixed,
is classified into four types:

• Outer Race fbor (Hz):

fbor =
Nb

2
frotor

[

1−
Db

Dc

cosβ

]

(1)

• Inner Race fbir (Hz):

fbir =
Nb

2
frotor

[

1 +
Db

Dc

cosβ

]

(2)

• Balls fbba (Hz):

fbba =
Dc

2Db

frotor

[

1−

(

Db

Dc

cosβ

)2
]

(3)

• Cage fbca (Hz):

fbca =
frotor

2

[

1−
Db

Dc

cosβ

]

(4)

The rolling element in the bearing is presented in the Fig.
3. Db is the ball diameter, Dc is the pitch diameter, Nb is
the number of rolling elements, β is the ball contact angle
(zero for rollers), and frotor is the induction motor rotor
frequency.

3. FFT AND DWT

The fault signatures from the induction motor vibration
signals are analyzed using the FFT base two with time
decimation and the DWT with three mother wavelets,
Haar, Daubechies, and Coiflet.

The DWT allows a multi-resolution analysis (MRA) of
the vibration signals, as depicted in Fig. 4. The MRA
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Fig. 3. Rolling elements geometry.

consists in creating an approximation component using
scaling function (a lowpass filter l(n)) and detail compo-
nents using wavelet functions (highpass filters h(n)). A
series of approximations of a signal is created, each differ-
ing in resolution by a factor of 2. The detail components
contain the difference between adjacent approximations
(Walker (2008)).

l(n) h(n)

2 2

[ ]X n 0
2

sF Hz
  
 

l(n) h(n)

2 2

l(n) h(n)

2 2

Level 1

DWT 

Coefficients

1( )a n

0
4

sF Hz
  
 

1( )d n

4 2

s sF F
Hz

  
 

2 ( )d n

8 4

s sF F
Hz

  
 

0
8

sF Hz
  
 

2 ( )a n

( )ja n

1
0
2

s

j

F
Hz

  
 

12 2

s s

j j

F F
Hz

  
 

( )jd n

Level 2

DWT 

Coefficients

Level j

DWT 

Coefficients

Fig. 4. Wavelet multi-resolution analysis.

4. VIBRATION DATA ACQUISITION SYSTEM

A low-cost vibration data acquisition system was devel-
oped. The system consists on 3-axis accelerometer (Ana-
log Devices ADXL335) interconnected to a DSP (Mi-
crochip dsPIC30F4011) that runs at 117.9648 Mhz. The
data are stored on a high speed microSD flash memory
unit. The block diagram of the system is depicted in Fig.
5.

All the necessary commands to perform the data manage-
ment in the microSD memory unit were implemented by

ADXL335

3-axis 

accelerometer

CPU

dsPIC30F4011

MICRO-SD

flash memory

Personal

Computer

USB

Transceiver

Fig. 5. Block diagram of the vibration data acquisition
system with high storage capacity.

software in the DSP. The DSP algorithm can manage the
newest high-capacity memory formats like SDHC. This
format supports cards with capacities up to 32 GB. For
simplicity, the present design it was used an 8 GB memory
and is depicted in Fig. (6).

Fig. 6. Vibration data acquisition system with a high data
storage capacity.

The data acquisition system installed on the induction
motor is shown in Fig. (6) and the mounting detail is
shown in the figure(7).

The acquired information is downloaded to a PC using a
high speed USB interface and a Delphi-based software.

The computer program has the following features:

• Download the acquired vibration data.
• Modify the DSP sampling frequency (up to 25 Khz).
• Acquire simultaneously three acceleration signals (X,
Y, and Z-axis), three motor line currents (A, B and
C phase) and shaft angular position of the rotor.

• Store in disk the data for post-processing.

5. CASE STUDY

A group of four bearings, one healthy and three faulty, of
a 1

4
HP 220 V 4 poles three-phase induction motor were

used to perform the experiments.

The three faulty bearings were altered to introduce dif-
ferent outer race faults as follows:

• Bearing with one 1

8
in hole.

• Bearing with two 1

8
in holes.

• Bearing with three 1

8
in holes.

The four bearings were changed for each test in the in-
duction machine rotor shaft (Fig. 8). The vibration signal
given by the accelerometer was acquired using a sampling
frequency Fs = 5 Khz and 8192 samples were taken for
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High data storage 

capacity system

Fig. 7. The vibration data acquisition system mounted on
the induction motor.

each case. The bearing characteristics of the induction
motor are shown in table 1.

Table 1. Three-phase induction motor bearing
parameters.

Parameter Size (mm)

Rolling elements diameter Db 7.30
Pitch diameter Dc 28.5

Number of rolling elements Nb 8

Bearing hole

Fig. 8. Induction machine rotor shaft with a hole in the
outer race bearing.

The vibration signal spectra obtained applying the FFT
to the four case studies (one healthy and three faulty
scenarios) at 1800 RPM are shown in the Fig. 9, the
frequency of the outer race fault is obtained with equation
(1) and it is Fbor = 86.7836 Hz.
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Fig. 9. Vibration signal frequency spectra at 1800 RPM.

In Fig. 10, the vibration signal spectra obtained for the
four case studies at 1500 RPM is presented, the frequency
of the outer race fault is Fbor = 74.38596 Hz.
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Fig. 10. Vibration signal frequency spectra at 1500 RPM.

Fig. 11 shows the vibration signal spectra obtained for
the four case studies at 1200 RPM , the frequency of the
outer race fault is Fbor = 59.5088 Hz.

The RMS values of the level 1 Haar wavelet coefficients
obtained from vibration signal for the four scenarios at
1800 RPM is shown in Table 2, the band number 5 show
the RMS magnitude change due to the bearing fault.
The same results are presented in Tables 3, 4, and 5 for
using Daubechies 4, Daubechies 6, and Coiflet wavelets,
respectively.

An increment in the spectrum magnitudes, obtained
with FFT, was observed as the number of holes in
the bearings was increased. Meanwhile, the best fault
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Fig. 11. Vibration signal frequency spectra at 1200 RPM.

Table 2. RMS values of the Haar wavelet
coefficients at 1800 RPM.

Level Band Healthy 1 hole 2 holes 3 holes

1 1250.0-2500.0 0.0003 0.0009 0.0011 0.0012
2 625.0-1250.0 0.0003 0.0010 0.0018 0.0024
3 312.5-625.0 0.0004 0.0015 0.0037 0.0054
4 156.3-312.5 0.0008 0.0028 0.0071 0.0080

5 78.1-156.3 0.0020 0.0054 0.0113 0.0134

6 39.1-78.1 0.0041 0.0118 0.0119 0.0148
7 19.5-39.1 0.0083 0.0217 0.0048 0.0045
8 9.8-19.5 0.0117 0.0077 0.0058 0.0066
9 4.9-9.8 0.0046 0.0120 0.0027 0.0029
10 2.4-4.9 0.0065 0.0020 0.0025 0.0033
11 1.2-2.4 0.0018 0.0020 0.0013 0.0014
12 0.6-1.2 0.0038 0.0053 0.0008 0.0003
13 0.3-0.6 0.0065 0.0010 0.0040 0.0008

Table 3. RMS values of the Db4 wavelet coef-
ficients at 1800 RPM.

Level Band Healthy 1 hole 2 holes 3 holes

1 1250.0-2500.0 0.0093 0.0416 0.0348 0.0228
2 625.0-1250.0 0.0050 0.0313 0.0205 0.0130
3 312.5-625.0 0.0039 0.0182 0.0130 0.0070
4 156.3-312.5 0.0047 0.0102 0.0080 0.0050

5 78.1-156.3 0.0031 0.0117 0.0052 0.0046

6 39.1-78.1 0.0134 0.0055 0.0041 0.0033
7 19.5-39.1 0.0083 0.0249 0.0042 0.0030
8 9.8-19.5 0.0033 0.0113 0.0119 0.0138
9 4.9-9.8 0.0017 0.0040 0.0129 0.0157
10 2.4-4.9 0.0007 0.0024 0.0068 0.0072
11 1.2-2.4 0.0003 0.0013 0.0034 0.0055
12 0.6-1.2 0.0003 0.0009 0.0013 0.0018
13 0.3-0.6 0.0003 0.0009 0.0009 0.0009

detection with DWT was obtained using the Haar wavelet
for the different mechanical bearing fault case studies.

6. CONCLUSION

According to experimental results, the DSP-based vi-
bration data acquisition system was suitable for imple-

Table 4. RMS values of the Db6 wavelet coef-
ficients at 1800 RPM.

Level Band Healthy 1 hole 2 holes 3 holes

1 1250.0-2500.0 0.0161 0.0323 0.0569 0.0282
2 625.0-1250.0 0.0073 0.0396 0.0272 0.0164
3 312.5-625.0 0.0051 0.0233 0.0195 0.0100
4 156.3-312.5 0.0043 0.0147 0.0124 0.0060

5 78.1-156.3 0.0023 0.0112 0.0075 0.0032

6 39.1-78.1 0.0138 0.0054 0.0045 0.0022
7 19.5-39.1 0.0080 0.0257 0.0041 0.0031
8 9.8-19.5 0.0033 0.0105 0.0115 0.0132
9 4.9-9.8 0.0014 0.0035 0.0137 0.0165
10 2.4-4.9 0.0006 0.0024 0.0064 0.0066
11 1.2-2.4 0.0003 0.0012 0.0033 0.0057
12 0.6-1.2 0.0003 0.0009 0.0012 0.0015
13 0.3-0.6 0.0003 0.0009 0.0009 0.0009

Table 5. RMS values of the Cofilet wavelet
coefficients at 1800 RPM.

Level Band Healthy 1 hole 2 holes 3 holes

1 1250.0-2500.0 0.0175 0.0439 0.0665 0.0220
2 625.0-1250.0 0.0091 0.0427 0.0362 0.0137
3 312.5-625.0 0.0050 0.0263 0.0226 0.0079
4 156.3-312.5 0.0051 0.0150 0.0139 0.0154

5 78.1-156.3 0.0030 0.0127 0.0076 0.0045

6 39.1-78.1 0.0131 0.0059 0.0046 0.0032
7 19.5-39.1 0.0080 0.0244 0.0040 0.0031
8 9.8-19.5 0.0035 0.0112 0.0118 0.0137
9 4.9-9.8 0.0015 0.0039 0.0130 0.0157
10 2.4-4.9 0.0007 0.0024 0.0066 0.0072
11 1.2-2.4 0.0003 0.0013 0.0034 0.0055
12 0.6-1.2 0.0003 0.0009 0.0013 0.0018
13 0.3-0.6 0.0003 0.0009 0.0009 0.0009

menting fault detection schemes in electric motors. A
significant advantage of this system is its capacity to store
a high volume of data for a detailed offline analysis.
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