
Distributed Dynamic Consensus Algorithm

for Attitude Estimation

Osberto A. Betanzos-Ramı́rez ∗

J. Fermi Guerrero-Castellanos ∗ Sylvain Durand ∗∗

Lizeth Torres ∗∗∗

∗ Faculty of Electronic, Autonomous University of Puebla (BUAP),
Ciudad universitaria, Puebla 72570, Mexico
(e-mail: fermi.guerrero@correo.buap.mx,
osberto.betanzos@alumno.buap.mx).

∗∗ ICube Laboratory, INSA Strasbourg, Strasbourg University, CNRS
UMR 7357, Strasbourg, France.

∗∗∗ Engineering Institute, Autonomous University of Mexico (UNAM),
Circuito Escolar, Ciudad universitaria, Mexico D.F. 04510, Mexico.

Abstract: This paper proposes a new dynamic consensus algorithm for the attitude estimation
of a rigid body using n Measurement Units (MUs) spatially distributed on the body. The MUs
are considered as agents in a sensor network, which is modeled using graph theory. It is assumed
that the nth MU shares attitude information only with its neighbor agents. Then, a dynamic
consensus algorithm is developed to obtain an average quaternion that describes the general
attitude of the rigid body. The objective is to get a more accurate and reliable estimation
of the attitude, further providing a fault-tolerant system in the event of failure sensors. This
new dynamic consensus algorithm is validated in simulation using three MUs in the network.
Results show a better precision and demonstrate that the proposed algorithm provides a good
estimation of attitude even in the scenario of possible failure of any of the sensors.
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1. INTRODUCTION

Attitude estimation has been of great interest in the past
few decades (Guerrero-Castellanos et al., 2013), due to
the wide range of applications in various fields of engineer-
ing such as: robotics, ships, spacecraft, biomechanics, etc.
However, in some of these applications the accuracy and
reliability are of great importance because of the nature
of its application (Betanzos-Ramirez et al., 2021).

Since attitude estimation is an issue very important,
this has been carried on with inertial sensors (three-
axis gyro and three-axis accelerometer) and three axis
magnetometers, these sensors form a sensor suite typically
called IMU (Inertial Measurement Unit) or MIMU (Mag-
netic and Inertial Measurement Unit). In this paper, we
use MU (Measurement Unit) to refer accelerometer and
magnetometer like a sensor suit. Normally deterministic
attitude estimators like TRIAD, SVD, ect. are carry out
with vectors observations typically obtained from the MU
and this is placed so that its reference system is matched
with the reference system of the rigid body, therefore the
attitude of the rigid body will be given directly by the
orientation measured by the MU. In order to improve
the accuracy for attitude estimation some algorithms

that fuse or averaging the quaternion attitude has been
propose such as in (Markley et al., 2007) the authors
propose an algorithm based on the minimization of a
weighted sum of the Frobenius norm, in (Challis, 2020)
the author mentions another form to average quaternion,
this consists of an arithmetic average, that is to say, a
sum of n quaternions divided by n.

Sensor network is another concept that make possible
to obtain measurements of a sensor array and fuse in-
formation that each node generates in order to reach
an agreement (Kia et al., 2018). The concept of net-
work sensor has been utilized widely in control systems
for consensus theory (Olfati-Saber and Shamma, 2006),
where the communication between each node of the sensor
network is given by a communication graph and each node
is capable of develop local computations (Kia et al., 2018).

This paper is organized as follows. In section 2, a mathe-
matical background for distributed attitude parameter-
ization is provided and the statement problem is pre-
sented. Section 3, introduces the dynamic consensus al-
gorithm design. The simulation results are presented in
section 4. Finally section 5 presents the conclusions.
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2. MATHEMATICAL BACKGROUND

2.1 Unit Quaternions

Consider the following, right-handed coordinate frames
(see Fig. 1): the inertial coordinate frame, Ef =

[ef1 , e
f
2 , e

f
3 ], located at some fixed point in space, the body

coordinate frame, Eb = [eb1, e
b
2, e

b
3], located at the center

of mass of the rigid body, and, the coordinate frame of the
MU i denoted Emui = [emui

1 , emui

2 , emui

3 ] which is located
in the body. It is assumed that the origin of Eb coincides
with the origin of Emui . The rotation of a reference frame
to another can be represented by the rotation matrix
R ∈ SO(3) = {R ∈ R

3×3 : RTR = I, detR = 1}.

Fig. 1. Relationship between Eb, Ef and Emui reference
systems.

The n-dimensional unit sphere embedded in R
n+1 is

denoted as S
n = {x ∈ R

n+1 : xTx = 1}. Members of
SO(3) are often parameterized in terms of a rotation
β ∈ R about a fixed axis e ∈ S

2 by the map U : R ×
S
2 → SO(3) defined as:

U(β, e) := I + sin(β)[e×] + (1− cos(β))[e×]2 (1)

where [ξ×] is the skew symmetric matrix defined by:

[ξ×] =

(

0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0

)

Hence, a unit quaternion, Q ∈ S
3, is defined as:

Q :=

(

cos β
2

e sin β
2

)

=

(

q0
q

)

∈ S
3 (2)

where q = [q1, q2, q3]
T ∈ R

3 and q0 ∈ R are known as the
vector and scalar parts of the quaternion respectively. The

inverse unit quaternion is given by Q−1 := [q0,−qT ]T ,
and the quaternion product is defined by (Markley et al.,
2007):

Q1 ⊙Q2 :=

(

q10 −q T
1

q1 I3q10 + [q×
1 ]

)(

q20
q2

)

(3)

Q1 ⊗Q2 :=

(

q10 −q T
1

q1 I3q10 − [q×
1 ]

)(

q20
q2

)

(4)

It follows of these definitions that:

Q1 ⊗Q2 = Q2 ⊙Q1 (5)

The attitude error is used to quantify the mismatch
between two attitudes. IfQ and Q̂ define the true attitude
quaternion and the estimated one, respectively, then
attitude error is given by:

Qe := Q⊙ Q̂−1 = [qe0 , q
T
e ]T (6)

In the case that the true quaternion and the estimated
one coincide, the quaternion error becomes:

Qe = [±1,0T ]T (7)

where 0 is a vector of zeros.

2.2 Attitude Measurement Models

Let us consider the representation of a unit vector xj

with respect to Ef , Eb, and Emui which is denoted by
rj , bj , and bmui

j , respectively. The vectors rj are called
the “reference vectors”, and in general, are known quite
accurately. The vectors bmui

j are known as “observation
vectors” and are obtained from the ith measurement unit
(in our case, magnetometers and accelerometers).

These vector representations are linked up through the
vector rotation using quaternions. Vectors bmui

j , bj and
rj can be written as quaternions as follows:

Q
(

bmui

j

)

= [0, (bmui

j )T ]T Q (bj) = [0, bTj ]
T

Q (rj) = [0, rTj ]
T

(8)

Then, these quaternions are related by the rotation
quaternions Qb, Q

mui

b , and Qmui
as follows:

Q (bj) = (Qb)
−1 ⊙Q (rj)⊙Qb (9)

Q
(

bmui

j

)

= (Qmui

b )−1 ⊙Q (bj)⊙Qmui

b (10)

and, as a consequence:

Q
(

bmui

j

)

= (Qmui

b )−1 ⊙
[

(Qb)
−1 ⊙Q (rj)⊙Qb

]

⊙Qmui

b

= (Qmui
)−1 ⊙Q (rj)⊙Qmui

(11)

whereQmui
= Qb⊙Qmui

b . Note thatQmui

b is quite known
by design. Then, if Qmui

is estimated, it is possible to
know Qb, i.e., the attitude of Eb with respect to Ef by
simple quaternion multiplication, that is:

Qb = Qmui
⊙ (Qmui

b )−1 (12)

Moreover, from (11) it is easy to prove that:

Qmui
⊙Q

(

bmui

j

)

= Q (rj)⊙Qmui

Q
(

bmui

j

)

⊗Qmui
= Q (rj)⊙Qmui

(13)
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Then using the definition of quaternion product (3) and
(4), one obtains the following relation:
(

0 −(bmui

j − rj)
T

bmui

j − rj −[(bmui

j + rj)
×]

)

Qmui
= Hi

jQmui
= 0

(14)
Hi

j ∈ R
4×4 is called the observation matrix and one

can see that (14) is a well-structured linear system of
equations.

2.3 Graph Theory

The interaction of a multi-agent system can be repre-
sented by graphs properties. A graph is formally repre-
sented by the set G = {V, E} consisting of a set of vertices
(or nodes) V = 1, . . . , n and edges E ∈ V × V . Each node
represents an agent. If there is an edge (i, l) between nodes
i and l, with 1 ≤ i ≤ n and 1 ≤ l ≤ n, then i and l are
called adjacent, i.e., E = {(i, l) ∈ V × V : i, l adjacent}.
An entry of the adjacency matrix A is defined by ail = 1
if i and l are adjacent and ail = 0 otherwise. Note that
the diagonal elements of the adjacency matrix are all zero
for a graph without any loop (as in the present paper). G
is called undirected if (i, l) ∈ E ⇔ (l, i) ∈ E . A path from
i to l is a sequence of distinct nodes, starting from i and
ending with l, such that each pair of consecutive nodes is
adjacent. If there is a path from i to l, then i and l are
called connected. If all pairs of nodes in G are connected,
then G is called connected. The distance d(i, l) between
two nodes is the number of edges of the shortest path from
i to l. The diameter d of G is the maximum distance d(i, l)
over all pairs of nodes. The degree (or valency) matrix
D of G is a diagonal matrix whose diagonal elements
di are equal to the cardinality of node i’s neighbor set
Ni = {l ∈ V : (i, l) ∈ E}. Let Mi = Ni ∪ {i} denote the
set of inclusive neighbors of node i. The Laplacian matrix
L of G is defined as L = D−A. For undirected graphs, L
is symmetric and positive semi-definite, i.e. L = LT ≥ 0.
The row sums of L are zero.

2.4 Problem Statement

According to (9)-(10), the goal of the attitude estimation
process is to estimate the attitude of Eb with respect
to Ef , i.e. quaternion Qb. This process will be carried
out via the estimation of quaternion Qmui

, which maps
the observation vectors into the known reference vectors.
That is, given the observation vectors bmui

j and the

reference vectors rj , with j ∈ {1, 2 · · ·m} the number
of reference vectors, and i ∈ {1, 2 · · ·n} the number
of measurement units (denoted hereafter agents), the
objective is to find Qmui

in each agent i such that:

Hi
jQmui

= 0 (15)

Once the attitude quaternion Qmui
is estimated in each

agent, we will propose an algorithm that averages these
quaternions dynamically in the Eb frame.

3. DESIGN OF THE DYNAMIC CONSENSUS
ALGORITHM

Consider a set of n agents, each one conformed by a
measurement unit (MU). One assumes that each agent
is capable of providing a unit quaternion of attitude,
i.e. Q̂mui

with i ∈ {1, 2 · · ·n}. Then, in this section one
explains how this quaternion is estimated. After that, the
dynamic average in the Eb frame will be exposed.

From (14), the observation matrix for the ith agent in
function of m pair vectors [bmui

j , rj ] with j ∈ {1, 2, ...,m}
is written as follows:

Hi
m =













0 −(bmui

1 − r1)
T

bmui

1 − r1 −[(bmui

1 + r1)
×]

...
0 −(bmui

m − rm)T

bmui

m − rm −[(bmui

m + rm) ×]













∈ R
4m×4

(16)
such that:

Hi
mQmui

=







ϕT
1 (t)
...

ϕT
4m(t)






Qmui

= 0 (17)

Quaternion Qmui
can be obtained by a deterministic

method. In (Guerrero-Castellanos et al., 2013) a deter-
ministic attitude estimator which we coin here as “Learn-
ing Quaternion Sequence” (LQS) is reported and its im-
plementation with others deterministic attitude estima-
tors are reported in (Betanzos-Ramirez et al., 2021). LQS
is key in the distributed dynamic consensus for attitude
estimation proposed here and then it is briefly presented.
Consider a matrix observation Hi

m(t) in the instant t and
an initial quaternion denoted Q0

ps. Then, a estimation of
the attitude of the ith agent is given by

Q̂mui
=

[

4m
∏

κ=1

(

I4 −
γϕκ(t)ϕ

T
κ (t)

α+ ϕT
κ (t)ϕκ(t)

)

]

Q0
ps (18)

where α ≥ 0 and 0 < γ < 2. Once (18) is performed, one
enforces the quaternion norm

Q̂mui
=

Q4m
ps

∥

∥Q4m
ps

∥

∥

(19)

Remark 3.1. Note that (18) represents an iterative al-
gorithm to be performed for each instant t. Then, for
t = 0 the initial quaternion Q0

ps in (18) can be chosen

arbitrarily. In the sequel, for all t > 0, Q0
ps will be

obtained from the output of the dynamic consensus. In
the present collaborative framework, Q0

ps it can be chosen
as:

Q0
ps =

{

arbitrary unit quaternion, for t = 0

Q̄i, for t > 0
(20)

Remark 3.2. Quaternion Q̂mui
represents the attitude

estimation of the Emui frame. This attitude can be
represented in the Eb frame by means of (12), that is:

Q̂bi = Q̂mui
⊙ (Qmui

b )−1 (21)
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It is deserving to be noted that Qmui

b are known.

Each agent is formed by a MU whose sensors account
with their own noise characteristic. As a consequence, the
quaternion estimated by each agent will be different in
term of reliability. The idea is to take each estimated
quaternion Q̂b1 , Q̂b2 , ..., Q̂bn and perform a distributed
dynamic consensus (average) in the Eb frame.

Let us define the following state vectors Q̄ = [Q̄T
1 , . . . , Q̄

T
n ]

T

and Υ = [(Q̂b1)
T , (Q̂b2)

T , . . . , (Q̂bn)
T ]T . Thus, we pro-

pose the following Dynamic Consensus Algorithm (DCA):

˙̄Qi(t) =
∑

l∈Ni

ail

(

Q̄l(t)−Q̄i(t)
)

+
∑

l∈Mi

ail

(

Q̂bl(t)−Q̄i(t)
)

(22)
where ail are elements of the adjacency matrix A of
the sensor network, Ni and Mi are the set of neighbors
and the set of inclusive neighbors of node i, respectively,
as already defined in subsection 2.3. Then, one has the
following results.

Proposition 3.1. The distributive algorithm in (22) gives
a consensus filter with the following collective dynamics:

˙̄Q = −ΞQ̄+BΥ (23)

where Ξ = (I4n +D+ L) and B = I4n +A, with D and
L the degree and Laplacian matrices respectively, I4n is
the identity matrix.

Proof 3.1. The proof follows from the definition of graph
Laplacian reviewed in subsection 2.3. For further details,
see (Olfati-Saber and Shamma, 2006).

Proposition 3.2. The consensus filter described in (23) is
a distributed stable low-pass filter with transfer function
given by:

H(s) = (sI4n + Ξ)−1B (24)

Proof 3.2. Applying Gersgorin theorem to matrix Ξ guar-
antees that all poles of H(s) are strictly negative. Then
the filter is stable. Furthermore, H(s) is a proper MIMO
transfer function, which means that it is a low-pass filter
(Olfati-Saber and Shamma, 2006).

Figure 2 depicts a schema of the proposed approach.
This configuration offers certain advantages, such as fault
tolerance if any of the sensors associated with each MU
fails, resulting in a fault-tolerant attitude estimator.

3.1 Fault-Tolerant Robustness

For simulations purpose, the reference attitude (true
attitude) and the sensor measurement on each MU will
be generated by the following system:

ω̇ = J−1 (−ω × Jω + Γ) (25)

Q̇b(t) =
1

2

(

−qT

q0I3 + [q×]

)

ω (26)

When solving the dynamic equation (25), an angular ve-

locity ω expressed in the Eb reference system is obtained,
with respect to Γ ∈ R

3 which is the vector of input

Fig. 2. Block diagram of an agent in the sensor network.
⊙ represents the quaternion product.

Fig. 3. Communication graph between each MUi.

torque for each axis of the rigid body. J represents the
rigid body’s inertia matrix. Then ω is an input signal
for the kinematic equation (26), that gives a quaternion

expressed in the Eb reference system when it is solved, i.e.
Qb, with q and q0 its vector and scalar parts. Both ω and
Qb are taken as reference (true) signals for the simulation
process.

Now consider the following unit reference vectors writ-
ten as quaternions: Q(r1) = [0; 0; 0; 1] (gravitational
acceleration) and Q(r2) = [0; 0.337; 0; 0.348] (earth’s

magnetic field), which are described in the Ef reference
system, these new quaternions can be mapped to the
Emui reference system through the equation (11). It is
worthy to note that Qmui

b is defined by the designer and
Qb is given by the system (26), therefore it is possible
to obtain the quaternions Q (bmui

1 ) and Q (bmui

2 ). So the
simulated measurements for ith accelerometer and ith
magnetometer can be taken from vector part of Q (bmui

1 )
and Q (bmui

2 ) respectively. Next LQS algorithm and dy-
namic consensus can be executed like in Figure 2.

Finally in order to obtain the mismatch between Q̂mui

and Qb (reference/true quaternion) and between Q̄i and
Qb, equation (6) is applied to these quaternions. Next the
inverse cosine of the scalar part of the quaternion Qe is
calculated, i.e., βe = arccos qe0 .
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It is important to highlight that the LQS algorithm makes
use of well-known reference vectors rj and observation
vectors bmui

j , as defined in the observation matrix Hi
m in

(16). However, for each agent this matrix is function of
data that are sensed. If any of the sensors fail in MU i,
the matrix changes with a pair vector [bmui

j , rj ] that falls.

Obviously, in a practical application it will be necessary
to develop a fault detection algorithm in order to identify
the sensor that has failed and make the necessary changes.
This is not considered here.

4. SIMULATIONS RESULTS

Since one is interested in distributed attitude estimation,
a simulation was developed making use of three agents, so,
the algorithms described in the block diagram of Figure
2 are simulated, with a graph communication given by
Figure 3, where each node accounts with one MU with its
own noise characteristics. First, two observation vectors
are available, gravitational and magnetic vectors, which
are obtained from Q (bmui

1 ) and Q (bmui

2 ), i.e. bmui

1 , bmui

2 ,
respectively, for i ∈ {1, 2, 3}. Then, the matrix Hi

m of the
LQS algorithm, previously defined in its general form in
(16), takes the form:

Hi
m =







0 −(bmui

1 − rmui

1 ) T

bmui

1 − rmui

1 −[(bmui

1 + rmui

1 ) ×]
0 −(bmui

2 − rmui

2 ) T

bmui

2 − rmui

2 −[(bmui

2 + rmui

2 ) ×]






∈ R8×4

(27)
Remind that LQS algorithm is developed for each node,
this block provides Qmui

, i.e., attitude of the MU with
respect to inertial frame. So, a transformation is required
in order to obtain Q̂b which parameterizes the attitude of
the rigid body. Each node, represented in Figures 3 and
2, runs the dynamic consensus algorithm (22).

Table 1 shows the quaternion Qmui

b associated to each

node of the network that relates the Emui and Eb refer-
ence systems through a rotation. The resulting allocation
of each MU over the rigid body can be translated to Fig-
ure 1, where the origin of Eb and Emui reference systems
are coincident, but their components are not aligned.

Table 1. Rotation applied to each MU with
respect to Eb reference system.

Q
mui

b
associated to each MU

i Q
mui

b
Euler angles

1 [0.3827; 0.9239; 0; 0]T φ = 135o, θ = 0o, ψ = 0o

2 [0.3827; 0; 0.9239; 0]T φ = 0o, θ = 135o, ψ = 0o

3 [0.3827; 0; 0; 0.9239]T φ = 0o, θ = 0o, ψ = 135o

Euler angles will be depicted and analysed since they
are more intuitive. However, the algorithm is quaternion-
based. The dynamic consensus algorithm is simulated to-
gether with the LQS algorithm in order to obtain a single
estimate of the attitude of the rigid body. The initial
condition for t = 0 are: Q̄0 = [0.933; 0.25; 0.25;−0.06699]
and Q0

ps = [1; 0; 0; 0]. Figure 4 shows the result obtained

from this simulation, where the continuous lines represent
the Euler angles obtained from reference Qb, and the
dashed lines the Euler angles obtained from the dynamic
consensus algorithm. In this case, a torque in axis yaw of
rigid body is applied.

Fig. 4. Comparison between Euler angles from reference
and Euler angles from dynamic consensus.

If the gravitational vector fails, in any of the nodes, the
matrix (16) could be modified at that node. This matrix
becomes:

Hi
m =

(

0 −(bmui

2 − rmui

2 ) T

bmui

2 − rmui

2 −[(bmui

2 + rmui

2 ) ×]

)

∈ R4×4

(28)

When the magnetic vector fails, the matrix (16) becomes:

Hi
m =

(

0 −(bmui

1 − rmui

1 ) T

bmui

1 − rmui

1 −[(bmui

1 + rmui

1 ) ×]

)

∈ R4×4

(29)

As mentioned before, the mismatch between Qb and
Q̂i and Q̄i is βe = arccos qe0 , in order to analyze
this mismatch the ISE index defined in (30) was used
(Guerrero-Castellanos et al., 2021).

ISE =

∫ T

0

x̃2(t)dt (30)

Therefore, the ISE criterion was applied to angle βe as
follows,

ISEβe
=

∫ T

0

β̃2
e (t)dt (31)

Table 2. Sensor operation during the simula-
tion process of Figure 5

scene time (s) MU1 MU2 MU3 MU

– – b1 b2 b1 b2 b1 b2 b1 b2

1 0− 200 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2 200− 400 ✓ X ✓ ✓ ✓ ✓ ✓ ✓

3 400− 500 X ✓ X ✓ ✓ ✓ X ✓

4 500− 700 ✓ ✓ ✓ X X ✓ ✓ ✓

5 700− 900 X ✓ ✓ X ✓ X ✓ X

6 900− 1100 X ✓ ✓ X X ✓ ✓ ✓

7 1100− 1300 ✓ ✓ X X X ✓ X ✓

8 1300− 1500 X X X X ✓ ✓ ✓ ✓

Table 2 shows the operation of sensors for the sensor net-
work, where MU1, MU2 and MU3 are nodes or agents of
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Fig. 5. ISE index of the quaternion error when a sensor
failure occurs

the network and MU is independent of the sensor network.
For this case b1 and b2 represent the vector observations
obtained from accelerometer and magnetometer respec-
tively, a ✓ indicates that the correspond sensor is working
correctly, X represent the case of failure of any sensor.

Fig. 6. Time evolution of the scalar part of Qb, Q̂MU and
Q̄i

Figure 5, shows the results of simulation associated to
Table 2. Figure 6 shows the behavior of q0(t) for the Qb

(true attitude), Q̂MU (single measurement unit) and for
Q̄i (average quaternion), these behaviors are related with
simulation of Figure 5.

5. CONCLUSION

The paper presents a dynamic consensus algorithm for
distributed attitude estimation. Attitude estimation is
fundamental in many applications, such as robotics,
biomedical engineering, and aerospace. In most of them,
knowing an accurate value of the attitude is critical.
Performing a distributed estimation and developing the
dynamic consensus algorithm ensures a more precise at-
titude estimation. Furthermore, with the proposed ap-
proach, the system remains robust in the event of any
sensor failure. Simulation results were presented. In the
future, real-time experiments will be performed.
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