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Abstract: The branch of system identification and control theory concerned about robot
manipulators is adaptive control of non-linear multi-input multi-output dynamic systems which
study constitutes a mature and well-founded discipline; nevertheless, there are fundamental
problems open to date, one of them is to obtain a control law that is rich enough to guarantee
its persistent excitation and consequently that the parametric error converges asymptotically
to zero, while the tracking error converges globally asymptotically to zero. An extension of
a globally convergent adaptive scheme control for a robot manipulator in the tracking of
a determined trajectories with no consideration of the interaction with its environment is
proposed, based on the fact that the parameter uncertainty is involved in both the tracking
error and the identification error. The first control task is achieved by a feedback linearization
technique that takes advantage of the structure of manipulator dynamics. The second task is
achieved by a fractional order filtering technique to avoid the joint acceleration and enrich the
regressor matrix in such way that is persistently exciting. Finally, the control law is expressed
as a feedforward compensation and a simple PD controller.

Keywords: Fractional-order, manipulators, composite adaptive control, persistent excitation,
Lyapunov’s direct method

1. INTRODUCTION

One of the major areas of identification in control the-
ory is adaptive control based on the reference model
approach, although its research is profuse and has been
integrated with other techniques to enhance performance,
there are still open fundamental problems about its study.
One of them is intrinsic to its basic task: estimate the
uncertain parameters of the plant ; that is, to guarantee
that the estimate of the parameters converges to the real
value of each one of the physical parameters of the plant
in practice as discussed in Narendra (1994). In order to
achieve this task, adaptive control implements a recur-
sive identification system with an algorithm to minimize
some criterion to some other well-known control strategy,
assuming the certainty equivalence principle, which im-
plication is that the control law considers the parametric

estimates as the nominal values of unknown parameters,
that is, the uncertainty of the parametric estimate is not
considered as reviewed in Sastry and Bodson (1989).

Robot manipulators applications often require full knowl-
edge of the dynamic parameters to design a controller to
perform an accurate tracking of desired trajectories, even
more, if feedback linearization is used by the computed
torque approach. Clearly, it is implicitly assumed that
the dynamics in the computed torque are exact, which
is not the case in reality as mentioned in Lewis et al.
(2003). Then, the performance of such controller may be
significantly worse than expected or even turn into an
unstable system in closed-loop. Besides, as the model of
a n-link articulated manipulator is defined by a set of
n highly nonlinear and coupled second order differential
equations, it is desirable to treat them in more convenient
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way. The simplest methodology is the introduction of the
linear parametrization of robot dynamics to take into
consideration these properties by choosing a new set of
parameters in terms of the dynamics parameters such that
the manipulator model depend linearly on the new set.
Then knowing this vector of parameters is equivalent to
know the physical parameters as no structural uncertainty
is assumed as concluded in Slotine and Li (1989).

Based on the intuition that getting more information
about a problem leads to a faster solution in general, it has
been proved in Duarte and Narendra (1989) that using
all sources of parametric information improved parameter
convergence, therefore, a composite adaptation law, as the
one used in Slotine and Li (1989), extract this information
not only from the tracking errors, but the identification
errors to achieve the parameter adaptation.

The key point in this kind of adaptation law is to use the
identification errors as free parameter without worrying
for the convergence of tracking errors to zero (as it is
already guaranteed by the use of tracking errors), but the
convergence of identification errors to zero and to extract
enough information about the physical parameters to
satisfy the persistent excitation condition by searching
the proper fractional order of the stable filter.

2. MANIPULATOR DYNAMICS AND
IDENTIFICATION ALGORITHM

In this section, the model of the manipulator and the
properties of its parameter matrices are provided for
the controller design. Then, the identification algorithm
for the joint torque is derived, due to fact that the
identification error is used in the composite adaptation
law to be a free parameter and enhanced performance.
Finally, some insights of iso-damping to obtain the proper
fractional order of the stable filter that satisfies the
persistent excitation condition are mentioned.

2.1 Robot manipulator model

The joint-space dynamics of any n degrees-of-freedom
robot manipulator constituted of rigid links connected by
frictionless joints can be written compactly as

M (q) q̈ +C (q, q̇) q̇ + g (q) = τ , (1)

where q, q̇, q̈ ∈ R
n×1 denote the joint positions, velocities

and acceleration vectors, respectively, M ∈ R
n×n denotes

the inertia matrix while C ∈ R
n×n denotes a centripetal-

Coriolis matrix. Further, g, τ ∈ R
n×1 denote the vec-

tors of generalized forces due to gravity and exogenous
torques, respectively.

Basic properties of the manipulator model are revisited
in Spong and Vidyasagar (1989) and presented next for
its use in the later adaptive control design.

Property 1. By expressing explicitly the dependence of
the manipulator model on the dynamic parameters of
each of the individual terms, it can be proved that it
is linear in terms of a new set of unknown parameters
θ∗ ∈ R

p×1, therefore, it is linearly parametrizable in the
form

M (q,θ∗) q̈ +C (q, q̇,θ∗) q̇ + g (q,θ∗) = Y (q, q̇, q̈)θ∗

(2)
where Y (q, q̇, q̈) ∈ R

n×p is the regressor matrix only
dependent on the trajectories.

Property 2. The matrix Ṁ − 2C is skew-symmetric,
therefore, the centripetal-Coriolis matrix is related to the
inertia matrix by the identity

xT

(
Ṁ − 2C

)
x = 0, ∀x ∈ R

n . (3)

Property 3. The inertia matrix M = MT ∈ R
n×n is

symmetric, uniformly positive definite M (q) > 0, ∀q and
bounded above and below by

µ1I ≤ M (q) ≤ µ2I, µ1, µ2 > 0 . (4)

2.2 Identification algorithm

In order to derive an algorithm to estimate those unknown
parameters of property 1, first the model at (1) can be
expressed as

τ = Y (q, q̇, q̈)θ∗ . (5)

Then, realizing the fact that the regressor matrix depends
even on the acceleration, the measurement of signals and
posterior computation could be simplified using the frac-
tional generalization of the technique used in Hsu et al.
(1987) to avoid acceleration, even more, it introduces a
way to guarantee the sufficient richness of the signals
filtered by using the iso-damping property studied in
Chen et al. (2003) which implies that the system will be
more robust to gain variations. Specifically, by selecting
a stable filter of arbitrary order α ∈ (0, 1] and adaptive
gain λf , the overshoot is completely controlled, since the
overshoot depends directly on the order α chosen and once
selected, the overshoots of the closed-loop system remain
almost constant for different values of λf . Finally, the new
regressor matrix is given by

W (q, q̇) = L
−1

{
λf

sα + λf

}
∗ Y (q, q̇, q̈) . (6)

Now, filtering both sides of (5) leads to

y (t) = W (q, q̇)θ∗ , (7)

where y is a new variable called filtered torque. Then, it is
possible to define the identification error as the difference
between the estimate of this new variable and the actual
filtered torque

ei (t) = Wθ (t)− y (t) = Wθ̃ (t) . (8)

where θ (t) is the estimate of the nominal unknown vector
of parameters θ∗. Furthermore, intuitively, it is known
that if the identification error is zero then the estimated
parameters will be exactly the nominal parameters since
these would exactly generate the response of the plant.
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Thus, it is essential to find an update law that minimizes
this error according to some criterion. In this work the
criterion used is the minimization of the integral of the
squared error

J [u (t) , y (t) , t] =

∫ t

0

ei
2 (τ) dτ . (9)

then, it can be proved that the update law of the para-
metric estimates that minimizes the functional in (9), is
the gradient:

θ̇ (t) = −γW T (t) ei (t) . (10)

Once this update law is derived, conditions that guarantee
the asymptotic stability of the identification algorithm
that results from (10) and (8) can be obtained:

θ̇ (t) = −γW T (t)W (t) θ̃ (t) , (11)

since
˙̃
θ (t) = θ̇ (t) and defining A (t) = γW (t)W T (t)

with γ > 0 and A (t) ≥ 0 ∈ R
p×p, ∀t > 0. Then,

equation (11) can be expressed as the time-varying first
order differential equation

˙̃
θ (t) = −A (t) θ̃ (t) . (12)

From linear time-varying system theory, it can be con-
cluded that if the time-varying coefficient can be bounded
above and below by a positive definite constant matrix
over a finite interval, then (12) is asymptotically stable;
this leads to the fundamental definition of persistent ex-
citation of a matrix given in Boyd and Sastry (1986).

Definition 1. A matrix W : [0,∞) → R
n×p is persis-

tently exciting (PE) if there exist α1, α2, δ > 0 such that

α1I ≤

∫ t0+δ

t0

W T (τ)W (τ) dτ ≤ α2I, ∀t0 ≥ 0 , (13)

where I denotes the proper dimension identity matrix.

To resume, if the regressor matrix in the update law
(10) satisfies definition 1 with a proper fractional order
in the stable filter in (6) that avoids the measurement
of joint acceleration, but modifies input signals into
rich-enough regressor signals by setting different only
overshoots or only settling times independently. Then, the
parameter uncertainty converges asymptotically to zero.
This fractional order is not computed explicitly here, as
this paper does not address the algorithm to determine a
value to satisfy this linear matrix inequality, but states
conditions to draw conclusions in the stability of the
identification algorithm.

3. CONTROLLER DESIGN

Given the manipulator model in (1), it is possible to
obtain the transformation that leads to linear closed-loop
dynamics by using the computed torque technique which
is a special application of feedback linearization to the
nonlinear coupled structure of a robot manipulator by
canceling the non-linearities of the manipulator and tak-
ing advantage of property 3 to assure this transformation

is indeed a global diffeomorphism as proven in Gilbert
and Ha (1984). A general computed-torque control law is

τ = M (q)
(
q̈d − 2Λ ˙̃q −Λ2q̃

)
+C (q, q̇) q̇+q (q) , (14)

then the tracking error q̃ = q−qd satisfies the next closed-
loop equation:

¨̃q + 2Λ ˙̃q +Λ2q̃ = 0, Λ ∈ R
n×n > 0 , (15)

therefore q̃ converges to zero exponentially. Clearly, it is
implicitly assumed that the dynamics in the computed
torque at (14) are exact, which is not the case. To deal
with this parametric uncertainty, it is possible to apply
robust control methodologies.

It has been proved in Slotine and Sastry (1983) that
steady-state tracking errors are zero, if a filtered tracking
error is defined as the weighted sum of the position error
and the velocity error

s = ˙̃q +Λq̃, Λ = ΛT > 0 , (16)

this new variable is called virtual velocity. It is clear that
if s = 0 is taken as the sliding surface, then q̃ will tend to
zero as t → ∞. As q̇ will be replaced by s for the design,
also the desired trajectory qd needs to be replaced by the
virtual reference trajectory :

q̇r = q̇d −Λq̃ . (17)

So (16) can be rewritten as s = q̇ − q̇r.

3.1 Control law by Lyapunov stability analysis

The design of the adaptive controller involves obtaining a
control law for the actuator torques, and an update law
for the estimation of the unknown parameters. For this
purpose, the Lyapunov method can be applied consider-
ing the Lyapunov function candidate

V (s, t) =
1

2

[
sTMs+ θ̃TΓ−1θ̃

]
, Γ > 0 . (18)

Taking the derivative with respect to time of (18), the
next equation is obtained:

V̇ (s, t) = sT (Mq̈ −Mq̈r) +
1

2
sTṀs+ θ̇TΓ−1θ̃ . (19)

Then, from (1) and from the definition of s, it follows that
Mq̈ = τ −Cq̇ − g = τ −C (s+ q̇r)− g, which leads to

V̇ = sT

(
τ −Mq̈r −Cq̇r − g +

Ṁ

2
−C

)
s+ θ̇TΓ−1θ̃ ,

but by property 2,

V̇ (s, t) = sT (τ −Mq̈r −Cq̇r − g) + θ̇TΓ−1θ̃ . (20)

Choosing a control law constituted by a precompensation
τ̂ formed by the pair at (1), but using the estimates
of the matrices M and C, and the vector g; and a
simple proportional derivative controller with derivative
gain KD = KT

D > 0:

τ = τ̂ −KDs = M̂q̈ + Ĉq̇ + ĝ −KDs . (21)
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However, it is not feasible to estimate each of the matrices,
but apply property 1 and obtain a linear relationship in
terms of its parameters

M (q) q̈r+C (q, q̇) q̇r+g (q) = Y (q, q̇, qr, q̇r)θ
∗ . (22)

M (q) q̈ +C (q, q̇) q̇ + g (q) = τ̂ = Y (q, q̇)θ . (23)

Finally, substituting (23) in (21), the control law that
determines the torques of the actuators of the robot
manipulator is

τ = Y θ −KDs . (24)

The control law (24) leads to the derivative of the Lya-
punov function (20) resulting in

V̇ (s, t) = sTY θ̃ − sTKDs+ θ̇TΓ−1θ̃ . (25)

3.2 Composite adaptation

A composite adaptation law extract information about
parameters not only from the tracking errors but the
identification errors to achieve the parameter adaptation,
such law is the one proposed in Slotine and Li (1989),
that is

θ̇ = −P (t)
[
Y Ts+W TR (t) ei

]
, (26)

where R = RT > 0 ∈ R
n×n denotes the weighting matrix

on identification information, P = P T > 0 ∈ R
n×n

denotes the gain matrix of the composite gradient algo-
rithm.

Nevertheless, to simplify the analysis, it will be assumed
that P (t) = Γ y R (t) = In×n. Then, substituting (26)
with the previous considerations in (25) leads to

V̇ (s, t) = −sTKDs− ei
TWθ̃ . (27)

Since ei = Wθ̃ ⇒ ei
T = θ̃TW T, then the derivative of

the Lyapunov function becomes

V̇ (s, t) = −sTKDs− ei
Tei < 0, ∀s ̸= 0, ∀ei ̸= 0 .

(28)
This implies that V (s (t) , t) ≤ V (s (0) , 0), therefore, s y

θ̃ are bounded above by the construction of (18). Which
indicates that V (t) will decrement whenever either the
tracking error s or the identification error ei is non-zero.

4. CASE STUDY

Consider a robot manipulator with two degrees of freedom
which position can be described by a vector q of the
measurement of the angles associated with each joint,
and which inputs are given by a vector τ of torques,
applied to the joints of the manipulator. Suppose the
robot manipulator is in the horizontal plane, this situation
implies that g (q) ≡ 0 then a modeling methodology, such
as the one based in Euler Lagrange can be used to derive
the dynamics of this manipulator. Now, after choosing a
proper set of parameters model to apply property 1, the
manipulator model can be written explicitly as in Slotine
and Li (1991), that is:[

M11 M12

M21 M22

] [
q̈1
q̈2

]
+

[
−hq̇2 −h (q̇1 + q̇2)
hq̇1 0

] [
q̇1
q̇2

]
=

[
τ1
τ2

]

where

M11 = θ1 + 2θ3 cos q2 + 2θ4 sin q2
M12 = M21 = θ2 + θ3 cos q2 + θ4 sin q2
M22 = θ2

h = θ3 sin q2 − θ4 cos q2

θ1 = I1 +m1l
2
c1

+ Ie +mel
2
ce

+mel
2
1

θ2 = Ie +mel
2
ce

θ3 = mel1lce cos δe
θ4 = mel1lce sin δe

The physical parameters of the manipulator used in the
simulation are shown in table 1. The manipulator is
initially at rest at (q1(0) = 0, q2(0) = 0), and the desired
trajectories are specified by a vector qd (t) given by:

qd(t) =

[
qd1

qd2

]
=

[
π
6
− π

6
cos(2πt)

π
4
− π

4
cos(2πt)

]
. (29)

Table 1. Physical parameters of the manipulator

Parameter Notation Value

Mass of link 1 m1 1 kg

Length of link 1 l1 1 m

Equivalent mass of link 2 m2 2 kg

Equivalent angle of link 2 δe
π

6
rad

Moment of inertia of link 1 I1 0.12 kg ·m2

Distance to the center of mass of link 1 lc1 0.5 m

Equivalent moment of inertia of link 2 Ie 0.25 kg ·m2

Distance to the center of mass of link 2 lce 0.6 m

In order to design the composite adaptive trajectory
controller, the linear parameterization of the robot model
described in (1) must be obtained first. The components
of the matrix Y ∈ R

2×4 can be written explicitly as

Y11 = q̈r1 Y21 = 0 Y12 = q̈r2 Y22 = q̈r1 + q̈r2

Y13 =− (q̇2q̇r1 + q̇1q̇r2 + q̇2q̇r2) sin q2 + (2q̈r1 + q̈r2) cos q2

Y14 = (q̇2q̇r1 + q̇1q̇r2 + q̇2q̇r2) cos q2 + (2q̈r1 + q̈r2) sin q2

Y23 = q̇1q̇r1 sin q2 + q̈r1 cos q2

Y24 =−q̇1q̇r1 cos q2 + q̈r1 sin q2

While the ideal parameters, after substituting the values
used in simulation (from table 1) are determined to be:

θ∗ = [θ1 θ2 θ3 θ4]
T
= [3.34 0.97 1.0392 0.6]

T
.

This ideal parameters are expected to be the ones that
the identification algorithm estimate as time increases, of
course, this parameters are the set of elements that con-
stitutes the linear parametrization, and not the physical
ones, which can be obtained easily substituting a nominal
structure of the with the physical parameters that are
already know and solving for the unknown ones.
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The matrix gain for the filter in virtual velocity is
Λ = diag{20, 20}. Besides, the reference trajectory

is q̇r = q̇d − Λq̃, so q̈r = q̈d − Λ ˙̃q. The deriva-
tive gain matrix is KD = diag{300, 300}. The weight-
ing matrix on identification information is P (t) ≡
Γ = diag{3.423525, 0.86080156, 0.83288, 0.24402}, where
a metaheuristic algorithm has been used to computed
them. On the other hand, W and e are generated after
applying a filter of arbitrary order as described in (6),
with λf = 120 as base and the variable order α (t) such
that it satisfies the persistent excitation condition at (13).

5. SIMULATION RESULTS

The proposed controller is simulated with all the infor-
mation in the previous section, the results of each of the
estimated parameters are presented in Figures 1-4

Fig. 1. Parameter 1, θ1

Fig. 2. Parameter 2, θ2

Fig. 3. Parameter 3, θ3

Fig. 4. Parameter 4, θ4

As it can be confirmed by the previous figures, each of
the parameters of θ converge to the nominal parameters of
the manipulator, so parameter convergence is guaranteed.
Moreover, both tracking errors converge to zero as shown
in Figures 5-6, so the control objective is achieved too.
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Fig. 5. Tracking error of link 1, q̃1.
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Fig. 6. Tracking error of link 2, q̃2.

6. CONCLUSION

This work proposes an extension of the composite adap-
tive control for robot manipulators, in which the con-
troller is formed by a feedforward compensation and a
simple PD controller, but the regressor matrix is per-
sistently exciting by an adequate fractional order stable
filter to add enough richness to the signal being filtered,
these changes in the reggresor matrix can be done thanks
to the fact that the identification errors are used as free
parameter with an indirect care for the convergence of
tracking errors to zero, since it is already guaranteed by
the use of tracking errors, so identification errors dynam-
ics can be manipulated to extract enough information
about the physical parameters and to converge to zero,
which implies estimating the set of parameters linearly

related to the torque and with prior knowledge of some
physical parameters, determine the unknown ones.
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