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Abstract: Real-time implementation of a sliding mode control scheme based on the unit
vector approach, for a variety of underactuated configurations of a mechatronics kit (rotational,
inertia, and double pendulum) is presented in this work. Details are given to perform
diffeomorphisms leading to the required normal form, based on which design conditions are
cast as linear matrix inequalities, thus improving numerical systematicness of the traditional
methodology. Once the control law is designed, its implementation requires reliable estimates
of the velocities since the different plants under consideration do not measure them; to this end,
Levant’s robust differentiator is employed. Results are provided that show the effectiveness of
the proposal.
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1. INTRODUCTION

Standard sliding mode control is a well-established
methodology characterized by its insensitivity to matched
disturbances and finite-time onset of a reduced-order dy-
namics known as sliding motion (Edwards and Spurgeon,
1998). Among the different 1st-order sliding mode control
schemes we can find robust eigenstructure assignment
(Lee and Yang, 2009), continuous approximations (Flieg-
ner and Smith, 1998), and the unit vector approach (Ryan
and Corless, 1984). The latter methodology is apt for
multi-input multi-output (MIMO) systems provided the
sliding surface s(t) (the manifold to which the system
will be restricted to during sliding motion) is of the same
dimension as the control input u(t), i.e., s ∈ R

m, u ∈ R
m.

Despite this restriction, the unit vector approach has
proved to be an effective control tool for a variety of
applications (Ashari, 2004; Capriotti and Marti-Renom,
2008; Hajkarami et al., 2010). Since this work is real-time
oriented, the referred methodology serves as the starting
point for our proposal.

Control schemes are better tested when applied to under-
actuated systems with rapid dynamics; this is the reason
behind the repeated use of a varieties of pendulums to
illustrate a control law effectiveness. Examples of such
schemes are the inverted pendulum on a cart (Angeli,
2001), the double pendulum also known as the Pendubot
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(Begovich et al., 2002), the 3-link SISO system (Farwig
et al., 1990), the pendulum on an inclined rail (Furuta
et al., 1980), the inertia wheel link (Spong et al., 2001),
and the rotational (also known as Furuta) pendulum
(Furuta et al., 1992). The Mechatronics Kit by Quanser
(Quanser, 2006) allows configuring the plant as a Pen-
dubot, an inertia, or Furuta pendulum. The proposal in
this work is put at test both in simulation and real-time
for all these plants.

Certainly, applying sliding mode control schemes to the
aforementioned plants is not novel: in Izutsu et al. (2008);
Wadi et al. (2018); Xu et al. (2020) they are applied to
the Furuta pendulum; in Hernández (2003); Khalid and
Memon (2014); Sun et al. (2015) the inertia pendulum is
controlled with a variety of sliding mode schemes; they
have also been successfully applied to the Pendubot in
Van Kien et al. (2016); Yoo (2013); Zehar and Ben-
mahammed (2013). However, none of these schemes has
been developed with numerically implementable method-
ologies, i.e., they rely on the designer ability to tune
controller parameters, Lyapunov functions or gains. In
contrast, our proposal is based on linear matrix inequal-
ities (LMIs) (Boyd et al., 1994), which can be solved in
polynomial time by means of efficient algorithms already
implemented in commercially available software (Gahinet
et al., 1995); bounds on the different terms are not needed
as positions (angle) are considered available via encoders
and angular velocities are exactly reproduced in finite
time via Levant’s robust differentiators Levant (2003).
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The paper is organized as follows: since the proposal is
based on the unit vector approach and this requires the
system to be put in a normal form, these preliminaries
are presented in Section 2 along with the Levant’s robust
differentiator which will be later employed to estimate
angular velocities; Section 3 has a first part where the
main theoretical contribution is made, i.e., a novel LMI-
based sliding mode unit vector approach; then, based
on it, specific control laws are developed for each of
the 3 plants under consideration; these control laws are
put at test in Section 4, both in simulation and real-
time implementation; finally, some concluding remarks
are made in Section 5.

2. PRELIMINARIES

This section has three parts: a description of the proce-
dure leading to the normal form of the nonlinear systems
under consideration, the unit vector approach for sliding
mode control based on a reformulation of the normal
form, and the basics on Levant’s robust differentiator.

2.1 Normal form

The nonlinear models of the different underactuated
plants in the mechatronics kit (inertia, double and ro-
tational pendulums) are all 4-state (2 positions and 2
velocities) 1-input systems (Quanser, 2006), i.e.,

ẋ = f(x) + g(x)u, y = h(x), x ∈ R
4, u ∈ R. (1)

The underactuated position of all these plants can be
viewed as an output y = h(x), y ∈ R; in all of these cases,
the relative degree of such output is 2. Thus, a (possibly
local) diffeomorphism z = T (x), T (0) = 0,

z ≡







η1
η2
ξ1
ξ2






=







φ1(x)
φ2(x)
h(x)

Lfh(x)






≡ T (x), (2)

such that (∂φi/∂x)g(x) = 0 for i ∈ {1, 2}, Lfh(x) ≡
(∂h/∂x)f(x), can be found (Khalil, 2014, Section 8.1),
allowing to write (1) as

ż1(t) =A11z1(t) +A12z2(t) + fu(z) (3)

ż2(t) =A21z1(t) +A22z2(t) +B2u(t) + fm(z, u), (4)

where z1 ≡ [η1 η2 ξ1]
T , z2 ≡ ξ2, A11 ∈ R

3×3, A12 ∈ R
3×1,

A21 ∈ R
1×3, A22 ∈ R, B2 ∈ R are arbitrary constant

matrices, and fu(·) : R
4 → R

3, fm(·) : R4 → R, hold
[

fu(z)
fm(z,u)

]

=
∂T

∂x
(f(x)+g(x)u)

∣

∣

∣

∣

x=T−1(z)

−

[

A11 A12

A21 A22

][

z1
z2

]

−

[

0
B2

]

u.

2.2 Unit vector approach

Sliding mode control does not require the specific form
of the nonlinear terms as long as they are bounded;
this is the reason it can also handle time-varying terms
in the same framework. The unit vector approach in
(Edwards and Spurgeon, 1998, Section 3.6) adopts this
point of view for systems of the form (3)-(4), assuming

that ∥fu(z)∥ ≤ k1∥z∥+k2, ∥fm(z, u)∥ ≤ k3∥u∥+α(z), for
some k1, k2, k3 ≥ 0, based on which the following result,
summarizing several sections in the referred work, can be
stated:

Theorem 1. The equilibrium point z = 0 of the closed-
loop system resulting from substitution of u(t) = ul(t) +
unl(t) in (3)-(4) where

ul = Λ−1
(

−S2Ā21z1 − (S2Ā22S
−1
2 − Φ)s(t)

)

, (5)

unl = −ρ(z)Λ−1 P2s(t)

∥P2s(t)∥
, s(t) ̸= 0, (6)

with Ā11 = A11 − A12M , Ā21 = MĀ11 + A21 − A22M ,
Ā22 = MA12 + A22, P2 > 0, P2Φ + ΦTP2 = −1,
s(t) = S2Mz1(t) + S2z2(t), Λ = S2B2, det(Λ) ̸= 0,
k3κ(Λ)∥B

−1
2 ∥ < 1, σ(A11 −A12M) ∈ C

−, and

ρ(z) =
∥S2∥ (∥M∥ (k1∥z∥+ k2) + k3∥ul∥+ α(z)) + γ2

1− k3κ(Λ)∥B
−1
2 ∥

,

for some γ2 > 0, Φ ∈ R, P2 ∈ R, S2 ∈ R, M ∈ R
1×3,

Λ ∈ R, is asymptotically stable. Moreover, the sliding
surface s = 0 is reached in finite-time.

Proof. The proof can be found in (Edwards and Spur-
geon, 1998, Section 3.6).

2.3 Levant’s robust differentiator

Real-time implementation of our proposal has to deal
with the fact that only positions are available via en-
coders; velocities will be obtained via a finite-time con-
vergent Levant’s robust differentiator (Levant, 2003):

Theorem 2. If the parameters λi > 0, i ∈ {0, 1, . . . , o}, in

v̇0 =− λ0 |v0 − f(t)|
o

o+1 sign (v0 − f(t)) + v1

v̇1 =− λ1 |v1 − v0|
o−1

o sign (v1 − v0) + v2
... (7)

v̇o−1 =− λo−1 |vo−1 − vo−2|
1
2 sign (vo−1 − vo−2) + vo

v̇o =− λosign (vo − vo−1) ,

are properly chosen, then vi = f (i)(t), i ∈ {0, 1, . . . , o}, in
the absence of input noises after a finite time of a transient
process.

Proof. The proof can be found in (Levant, 2003, Section
5).

System (7) is an o-th order Levant’s robust differentiator,
o ≥ 1; although it will be employed only to obtain the
first derivative of a state. It is important to notice that
the accuracy of such derivative estimation increases as o
is augmented. To this end, it is advised to choose λ0 > 0
and λi > L, i ∈ {1, 2, . . . , o}, with L > 0 being a Lipschitz
constant for f ′(t).

3. CONTROL LAW DEVELOPMENTS

Theorem 1 summarizes several design conditions in (Ed-
wards and Spurgeon, 1998, Section 3.6), but none of them
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is either LMI-based nor adapted to the specific charac-
teristics of the plants in the mechatronics kit. Figure 1
shows the different parts of our proposal: for each plant,
the control scheme employs a pair of Levant’s robust
differentiators (7) to estimate the system velocities; both
positions and estimated velocities enter the control block
which is split in two parts: on the one hand, an off-line
calculation of the normal form and some gains that are
obtained via novel LMI conditions; on the other hand, an
on-line implementation of the unit vector sliding mode
control based on the different off-line elements.

The following is a novel LMI formulation of the unit
vector approach which also takes into account the fact
that the nonlinear models of the mechatronics kit plants
are known, thus allowing to express some bounds by
simply taking norms of known expressions.

Theorem 3. The equilibrium point z = 0 of the closed-
loop system resulting from substitution of u(t) = ul(t) +
unl(t) in (3)-(4) with

ul = Λ−1
(

−S2Ā21z1 − (S2Ā22S
−1
2 − Φ)s(t)

)

, (8)

unl = −ρ(z)Λ−1 P2s(t)

∥P2s(t)∥
, s(t) ̸= 0, (9)

where the LMIs

P2 > 0, P2Φ+ ΦTP2 < 0, (10)

X1 > 0, A11X1 −A12N +XT
1 A

T
11 −NTAT

12 < 0, (11)

are solved for decision variables P2 ∈ R, X1 ∈ R
3×3,

and N ∈ R
1×3, with M = NX−1

1 , Ā11 = A11 − A12M ,
Ā21 = MĀ11 + A21 − A22M , Ā22 = MA12 + A22,
s(t) = S2Mz1(t) + S2z2(t), S2 = ΛB−1

2 , and

ρ(z)≥

∥S2∥

(

∥M∥∥fu(z)∥+

∥

∥

∥

∥

fm(z,u)−
∂fm
∂u

u

∥

∥

∥

∥

+

∥

∥

∥

∥

∂fm
∂u

∥

∥

∥

∥

ū

)

+γ2

1−

∥

∥

∥

∥

∂fm
∂u

∥

∥

∥

∥

κ(Λ)∥B−1
2 ∥

,

(12)

Fig. 1. Proposed control scheme.

for some γ2 > 0, Φ < 0, Λ ∈ R such that det(Λ) ̸= 0 and
∥∂fm/∂u∥κ(Λ)∥B−1

2 ∥ < 1, is asymptotically stable.

Proof. LMI condition (10) guarantees the expression
P2Φ + ΦTP2 is negative-definite, which is required for
V (s) = sTP2s to be a Lyapunov function establishing
attractiveness of the sliding surface (see (Edwards and
Spurgeon, 1998, Section 3.6.1)); LMI condition (11) guar-
antees a stable sliding motion since it makes the pair
(A11, A12) stable by means of the gain M (see (Bernal
et al., 2022, Section 5.2)). Recall that the systems under
consideration are not uncertain; this means that fu(z)
and fm(z, u) are known and available (up to a finite-time
transient to obtain the velocities by means of the Levant’s
robust differentiator), which means that their norms can
be readily used instead of former bounds k1∥z∥+ k2 and
k3∥u∥ + α(z), respectively, provided some adjustments
are made to avoid an algebraic loop on u for ∥fm(z, u)∥.
This adjustment is as follows: since fm(z, u) = fm(z, u)−
(∂fm/∂u)u + (∂fm/∂u)u, this means that, for a given
bound of the input ∥u∥ ≤ ū, we have:

∥fm(z, u)∥ ≤∥fm(z, u)− (∂fm/∂u)u∥+ ∥(∂fm/∂u)u∥

≤∥fm(z, u)− (∂fm/∂u)u∥+ ∥(∂fm/∂u)∥ū,

which completes the substitution made on (12), thus
concluding the proof. □

Remark 4. Two of the configurations of the mechatronics
kit have a constant value multiplied by the input u in
the last equation of the normal form (4); this implies
that fm(·) depends exclusively on z and therefore, since
∂fm/∂u = 0, ρ(z), in can be used directly

ρ(z) ≥ ∥S2∥ (∥M∥∥fu(z)∥+ ∥fm(z)∥) + γ2. (13)

The specific transformations leading to the normal form
(3)-(4) for each configuration of the mechatronics kit
are now presented. Once this form is obtained, applying
Theorem 3 will be straightforward.

3.1 Inertia pendulum

The inertia pendulum consists of a free arm linked to a
fixed frame by one end, with a DC motor on the other
end; its mathematical model has the form (1) with

f(x)=







x2

gc sin(x1−π)/a
x4

−gc sin(x1−π)/a






, g(x)=







0
−1/a
0

(a+b)/(ab)






, (14)

where x1 and x3 are measured angles (positions), x2 and
x4 their time derivatives (unmeasured angular velocities),
respectively, a = (ml1l

2
c1 + l2rml2 + Il1)/τ , b = Il2/τ ,

c = (ml1lc1 + lrml2/τ , ml1 = 0.2164kg, lr = 0.127m,
lc1 = 0.1173m, ml2 = 0.085kg, Il1 = 2.225 × 10−4kg·m2,
Il2 = 24.9526 × 10−6kg·m2, τ = 0.049443N· m/V, g =
9.804m/s2. The upright position corresponds to x1 =
x2 = 0.

Since x1 is the underactuated position, we adopt y = x1

to find a diffeomorphism (2); thus, ξ1 = h(x) = x1 and
ξ2 = Lfh(x) = x2 follow from the system definitions while
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η1 = φ1(x) = x3 and η2 = φ2(x) = x4/a+ (a+ b)x2/(ab)
are proposed to hold (∂φi/∂x)g(x) = 0 for i ∈ {1, 2}, i.e.,

z = T (x) =







η1
η2
ξ1
ξ2






=











x3

x4

a
+

(a+ b)x2

ab
x1

x2











allows writing the normal form









η̇1
η̇2
ξ̇1
ξ̇2









=

















aη2−
a+b

ab
ξ2

−
cg sin ξ1

ab
ξ2

−
u+cg sin ξ1

a

















. (15)

In order to apply Theorem 3 it is necessary to arrange
(15) in the form (3)-(4), where z1 ≡ [η1 η2 ξ1]

T , z2 ≡ ξ2,
in order to identify terms A11, A12, A21, A22, B2, fu(z),
and fm(z), i.e.,

A11 =

[

0 0.0924393 0
0 0 153774.0
0 0 0

]

, A12 =

[

−184.166
0
1

]

,

A21 = [0 0 77.606] , A22 = 0, B2 = −
1

a

fu(z) =









aη2−
a+b

ab
ξ2

−
cg sin ξ1

ab
ξ2









−A11z1 −A12z2,

fm(z) = −
cg sin ξ1

a
−A21z1 −A22z2.

3.2 Double pendulum

The double pendulum, also known as Pendubot, consists
of two links, where only that at the base is actuated by
means of a DC motor; its model in the form (1) is given
by

f(x) =







x2

f2(x)
x4

f4(x)






, g(x) =







0
δp2
0

−δ(p2 + p3 cosx3)






, (16)

where x1 and x3 are the angular positions of the actu-
ated and underactuated links, respectively, x2 and x4

their corresponding angular velocities, f2(x) = δ(p2 +
p3 cosx3)(p3x

2
2 sinx3−gp5(sinx3 cos(π/2−x1)+sin(π/2−

x1) cosx3))+δp2(p3x
2
4 sinx3+2p3x2x4 sinx3+gp4 sin(π/2−

x1)) + gp5(sinx3 cos(π/2 − x1) + sin(π/2 − x1) cosx3),
f4(x) = −δ(p2 + p3 cosx3)(p3x

2
4 sinx3 + 2p3x2x4 sinx3 +

gp4 sin(π/2 − x1) + gp5 sinx3 cos(π/2 − x1) + sin(π/2 −
x1) cosx3) − δ(p3x

2
2 sinx3 − gp5(sinx3 cos(π/2 − x1) +

sin(π/2−x1) cosx3))(p1+p2+2p3 cosx3), δ = 1/(p2(p1+
p2 + 2p3 cos(x3)) − (p2 + p3 cos(x3))

2), p1 = 0.0761,
p2 = 0.0662, p3 = 0.0316, p4 = 0.9790, p5 = 0.3830
y g = 9.81m/s2. The upright position corresponds to
x1 = x3 = 0.

Taking y = x3 (the underactuated position), a diffeo-
morphism (2) can be found where ξ1 = h(x) = x3 and
ξ2 = Lfh(x) = x4 follow directly from the system defini-
tions, while η1 = φ1(x) = x1 and η2 = φ2(x) = −(p2 +
p3 cosx3)x2−p2x4 are proposed to hold (∂φi/∂x)g(x) = 0
for i ∈ {1, 2}, i.e.,

z = T (x) =







η1
η2
ξ1
ξ2






=







x1

−(p2 + p3 cosx3)x2 − p2x4

x3

x4






.

The transformed system is in the normal form








η̇1
η̇2
ξ̇1
ξ̇2









=







−(η2 + p2ξ2)/(p2 + p3 cos ξ1)
c1
ξ2
c2






, (17)

where c1 = −gp5 sin(η1+ξ1)+(p3 sin ξ1(η2+p2ξ2)
2)/(p2+

p3 cos ξ1)
2 − (p3ξ2 sin ξ1(η2 + p2ξ2))/(p2 + p3 cos ξ1), c2 =

(2up2+2up3 cos ξ1+p23ξ
2
2 sin 2ξ1+2p2p3ξ

2
2 sin ξ1−2gp1p5×

sin(η1+ξ1)+gp3p4 sin(η1+ξ1)+2gp2p4 sin η1−gp3p5 sin η1+
gp3p4 sin(η1−ξ1)−gp3p5 sin(η1+2ξ1)+(2p23 sin 2ξ1)(η2+
p2ξ2)

2)/(p2 + p3 cos
2 ξ1 + (2p1p3 sin ξ1(η2 + p2ξ2)

2)/(p2 +
p3 cos ξ1)

2 + (2p2p3 sin ξ1(η2 + p2ξ2)
2)/(p2 + p3 cos ξ1)

2 −
(2p23ξ2 sin 2ξ1(η2+p2ξ2))/(p2+p3 cos ξ1)−(4p2p3ξ2 sin ξ1×
(η2 + p2ξ2))/(p2 + p3 cos ξ1))

Theorem 3 requires linking the different terms in (3)-(4)
with those in (17); this leads to z1 = [η1 η2 ξ1]

T , z2 = ξ2,
and

A11 =

[

0 10.2249 0
3.7572 0 −3.7572

0 0 0

]

, A12 =

[

0.6769
0
1

]

,

A21 = [132.3551 0 100.1801] , A22 = 0, B2 = −24.2124

fu(z) =







−
η2 + p2ξ2

p2 + p3 cos ξ1
c1
ξ2






−A11z1 −A12z2,

fm(z, u) = c2 −A21z1 −A22z2 −B2u.

3.3 Rotational pendulum

The standard model of the rotational pendulum (also
known as the Furuta pendulum) is:

f(x)=







x2

f2(x)
x4

f4(x)






, g(x)=







0
g2(x)
0

g4(x)






, (18)

where x1 and x3 are the angular positions of the actu-
ated and underactuated links, respectively, x2 and x4

their corresponding angular velocities, f2(x) = (β +
γ)(δx2

4 sinx3 − 2βx2x4 cosx3 sinx3)δ cosx3(βx
2
2 cosx3 ×

sinx3 +σg sinx3)/((β+ γ)β+ δ2) sin2 x3 +(β+ γ)α− δ2,
f4(x) = (β sin2 x3 + α)(βx2

2 cosx3 sinx3 + σg sinx3) −
δ cosx3(δx

2
4 sinx3 − 2βx2x4 cosx3 sinx3)/((β + γ)β +

δ2) sin2 x3 + (β + γ)α − δ2, g2(x) = (β + γ)/((β + γ)β +
δ2) sin2 x3 + (β + γ)α − δ2, g4(x) = −(δ cosx3)/((β +
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γ)β + δ2) sin2 x3 + (β + γ)α − δ2, α = (J0 + m1L
2
0)/Tc,

β = m1l
2
1/Tc, γ = J1/Tc, δ = m1L0l1/Tc, σ = m1l1/Tc,

L0 = 0.068m, J0 = 8.4961 × 10−5, m1 = 0.0239 kg,
l1 = 0.0822, J1 = 1.8281× 10−4, Tc = 0.004941, g = 9.81
m/s2. The upright position corresponds to x1 = x3 = 0.

As before, the underactuated position y = x3 is employed
to define a diffeomorphism of the form (2), e.g.

z = T (x) =







η1
η2
ξ1
x2






=











x1

x2 cos(x3)

β + γ
+

x4

δ
x3

x4











,

based on which the normal form








η̇1
η̇2
ξ̇1
ξ̇2









=







(η2 − ξ2/δ) (β + γ)/ cos ξ1
d1
ξ2
d2






, (19)

is obtained, where d1 = −(sin ξ1(β
3(η2−(ξ2/δ))

2 cos3 ξ1−
β3(η2− (ξ2/δ))

2 cos ξ1−β2gσ−αgγσ−βgγσ−αβ2(η2−
(ξ2/δ))

2×cos ξ1+β2gσ cos2 ξ1−β2γ(η2−(ξ2/δ))
2 cos ξ1−

δ3(η2 − (ξ2/δ))ξ2 cos
2 ξ1 + β2δ(η2 − (ξ2/δ))ξ2 + β2γ(η2 −

(ξ2/δ))
2 × cos3 ξ1 + β2δ2(η2 − (ξ2/δ))

2 cos3 ξ1 − αβgσ −
αβγ(η2−(ξ2/δ))

2 cos ξ1+βgγσ cos2 ξ1+αβδ(η2−(ξ2/δ))ξ2+
αδγ(η2− (ξ2/δ))ξ2+βδγ(η2− (ξ2/δ))ξ2+βδ2gσ cos2 ξ1+
δ2gγσ cos2 ξ1 − β2δ(η2 − (ξ2/δ))ξ2 cos

2 ξ1 + βδ2γ(η2 −
(ξ2/δ))

2 cos3 ξ1−βδγ(η2−(ξ2/δ))ξ2 cos
2 ξ1)/(δ(β+γ)(αβ+

αγ + βγ − β2 cos2 ξ1 − δ2 cos2 ξ1 + β2 − βγ cos2 ξ1)),
d2 = (β2(η2 − (ξ2/δ))

2 sin 2ξ1 − 2δu cos ξ1 − δ2ξ22 sin 2ξ1 −
2β2(η2− (ξ2/δ))

2 cos3 ξ1 sin ξ1+αβ(η2− (ξ2/δ))
2 sin 2ξ1+

2αgσ sin ξ1 + 2βgσ sin3 ξ1 + 4βδ(η2 − (ξ2/δ))ξ2 sin ξ1 −
4βδ(η2− (ξ2/δ))ξ2 sin

3 ξ1)/(2(αβ+αγ+βγ−β2 cos2 ξ1−
δ2 cos2 ξ1 + β2 − βγ cos2 ξ1)).

Identifying the different terms in (19) that allow applying
Theorem 3 we have z1 = [η1 η2 ξ1]

T , z2 = ξ2, and

A11 =

[

0 0.069652 0
0 0 2071.2
0 0 0

]

, A12 =

[

−2.5772
0
1

]

,

A21 = [0 0 76.176] , A22 = 0, B2 = −13.3526

fu(z) =

[

(η2 − ξ2/δ) (β + γ)/ cos ξ1
d1
ξ2

]

−A11z1 −A12z2,

fm(z, u) = d2 −A21z1 −A22z2 −B2u.

4. SIMULATION AND REAL-TIME
IMPLEMENTATIONS

The results of implementing the control laws developed in
the previous section are shown in the sequel. Simulations
do not consider the control magnitude of (8)-(9) as a
limitation; on the other hand, real-time implementations
require taking into account the maximum voltage allowed
for the single DC motor in the Mechatronics Kit, i.e.,
LMI-based gains such as M and γ2 in the discontinuous
term ρ should be tuned as to hold the input constraint
ū. The LMI framework allows for such constraints to

be automatically incorporated in the calculation of the
gains; see (Bernal et al., 2022, Section 5.6.1). Moreover,
since angular velocities are not available in real time,
they should be estimated by means of a Levant’s robust
differentiator; to this end, a 10th-order differentiator has
been employed even if only the first time derivative is
need, since precision gets better as the order increases 1 .

Inertia pendulum: Figure 2 shows the simulation results
of implementing the control law (8)-(9) with A11, A12,
A21, A22, B2, fu(z), fm(z) as defined in Section 3.1,
and Φ = −10, Λ = 1, P2 = 1/20, γ2 = 10, M =
[0.0028 0.0002 11.5182] as deduced from LMIs and rela-
tionships in Theorem 3. The underactuated angle x1 (top)
and its corresponding angular velocity x2 (middle) reach
the desired position of 0 by means of the control law u
(bottom); logarithmic time scale has been employed to
clearly distinguish the signals in the transient. Similarly,

1 Videos of the real-time implementations are avail-

able at https://drive.google.com/drive/folders/

1OqeKnnERvFjCWy59fV6rUbNmHbGHg_AG?usp=drive_link.
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Fig. 2. Inertia pendulum in simulation
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Fig. 3. Inertia pendulum in real-time implementation
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Figure 3 shows the real-time results of implementing
the control law designed for simulation; no adjustments
were required, except for the initial condition being taken
close enough to the reference. Oscillations at the end are
the result of discontinuous control action as well as the
differentiator precision.

Double pendulum (Pendubot): Figure 4 shows the sim-
ulation results of implementing the control law (8)-(9)
with A11, A12, A21, A22, B2, fu(z), fm(z, u) as defined in
Section 3.2, and Φ = −10, Λ = 1, P2 = 1/20, γ2 = 200,
M = [−246.7677 −384.2139 203.0371], ū = 100. Recall
that simulation does not consider any control magnitude
bound (bottom) which clearly exhibits discontinuous be-
haviour; positions of the actuated link x1 (top) and the
underactuated link x3 (middle) are shown. Real-time re-
sults are shown in Figure 5, where the voltage constraints
had to be respected by tuning the controller parameters
γ2 = 20 and M = [−54.8844 −90.1329 52.15139]; again,
oscillations get higher as the control law switches at
higher frequencies.

10
-5

10
0

-1000

0

1000
  

-2

0

2
  

-2

0

2

Fig. 4. Double pendulum in simulation
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Fig. 5. Double pendulum in real-time implementation

Rotational pendulum (Furuta): Figure 6 shows the sim-
ulation results of implementing the control law (8)-(9)
with A11, A12, A21, A22, B2, fu(z), fm(z, u) as defined in
Section 3.3, and Φ = −0.5, Λ = 1, P2 = 1, γ2 = 100,
M = [72.1631 284.4638 187.0222]. The underactuated
angle x3 (top) and its corresponding angular velocity x4

(middle) are driven to 0 by means of the discontinuous
control law u (bottom). For real-time implementation,
the magnitude of the control signal in simulation is unac-
ceptable; therefore, parameters are tuned to new values
γ2 = 20 andM = [0.4159 0.0227 13.0719] as to obtain the
results in Figure 7. For the sake of illustration, some gains
of the Levant’s robust differentiator are given: λ0 = 150,
λ1 = 93, λ2 = 58, λ3 = 36, λ4 = 22 λ5 = 11, λ6 = 8,
λ7 = 5, λ8 = 3, λ9 = 2, λ10 = 1.1.

5. CONCLUSION

A novel LMI-based sliding mode control scheme based on
the unit vector approach and a diffeomorphism leading to
the normal form, has been presented. The proposal has
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Fig. 6. Rotational pendulum in simulation
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Fig. 7. Rotational pendulum in real time
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been successfully put at test in a variety of underactuated
configurations of a mechatronics kit (rotational, inertia,
and double pendulum), both in simulation and real-
time, with enough detail as to reproduce the obtained
results. Future work on more specific sliding mode control
schemes addressed to underactuated systems is under
course.
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