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Abstract: This paper proposes a proportional-integral-retarded (PIR) controller for a syn-
chronous boost converter to ensure its reliable operation during voltage regulation. The PIR
controller is based on the addition of a time-delay as a design parameter. In this approach,
we analyze the spectral properties of the closed-loop system and establish a tuning rule that
optimizes its dynamic response, thus maximizing the exponential decay rate for the system’s
solutions. Inspired by the application field of renewable energy systems such as photovoltaic
and fuel-cell systems, we validate the significance of our results via numerical simulations and
show that incorporating delays as design parameters improves relative stability margins.
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1. INTRODUCTION

Decarbonizing the power sector is of major importance
for mitigating global warming in the coming decade. To
achieve this, emerging technologies such as electric vehicle
charging stations (LaMonaca and Ryan, 2022), renewable
energy systems (Tan and Mohamad-Saleh, 2023), and fuel
cell-based propulsion systems (Issi and Kaplan, 2022) are
being integrated into the electrical network. However, due
to intermittency in power production, these applications
must incorporate step-up DC/DC converters to regulate
the output voltage. In this regard, control algorithms are
essential to maintain the system’s stability while achieving
specific performance levels during energy interruptions, as
shown in Fig. 1.

Fig. 1. Basic flow of a power supply and management
scheme involving power generation, conversion, stor-
age, management, and distribution.

Proportional-integral-derivative (PID) controllers are wi-
dely used in power electronics to maintain system’s sta-
bility. These controllers provide a flexible framework for
adjusting the controller gains to achieve specific ob-
jectives, such as improved stability margins and dis-
turbance rejection capabilities, (Dı́az-Rodŕıguez et al.,
2019). Various graphical tuning techniques are available
to obtain controllers that ensure stability and desirable
closed-loop characteristics. One such technique is the
D−decomposition method, which has been recently ap-
plied in power electronic systems, using a PI controller to
enhance gain and phase margins, reduce overshoot, and
improve robustness against model uncertainties (Najdek
and Nalepa, 2021). Interestingly, the derivative part of
the PID controller has been disregarded in this context.
The main reason for neglecting the derivative action is its
sensitivity to high-frequency measurement noise, which is
common in power electronic systems. As a result, the fo-
cus has been on either using PI controllers exclusively, or
incorporating low-pass filters while keeping D controllers
(Hägglund, 2013) to obtain reasonable control perfor-
mance in noisy environments. Although controllers that
include a derivative action offer desirable dynamic fea-
tures, their practical implementation is often discouraged.
Consequently, there is a need to search for fast closed-loop
dynamic responses without relying on derivative terms.

However, it is important to note that achieving an optimal
response may not be recommended in the presence of
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Fig. 2. D-decomposition of the space of the space of
parameters for a boost converter in closed-loop with
a PI controller. The figure shows the decomposition
of the (kp, ki)−space associated with the controller
design parameters. The maximum exponential decay
rate that the system can achieved is marked with a
⋆ symbol.

non-minimum phase zeros. Consider, for instance, a syn-
chronous boost converter with a PI controller. In Fig. 2,
the stable region in the (kp, ki) parameter space is rep-
resented by the blue-filled D-shaped region. Observe that
searching for faster dynamic responses reduces the size
of the stable region. Moreover, attempting to attain an
optimal response, as indicated with a ⋆ symbol, introduces
an additional unstable zero, resulting in poor converter
performance. Therefore, careful consideration is necessary
when choosing control strategies for systems with non-
minimum phase zeros, as optimizing the response can
come at the cost of stability and system performance
(Moreno-Negrete et al., 2021).

On the other hand, recent studies highlight the potential
of modified PID controller structures that include inten-
tional delays to increase stability margins and achieve
optimal responses without introducing undesired unsta-
ble zeros or amplifying measurement noise (Hernández-
Gallardo et al., 2023; Hernández-Dı́ez et al., 2020;
Michiels et al., 2023). As suggested in (Ramirez et al.,
2015), a traditional PID controller can be replaced by
a proportional-integral-retarded (PIR) controller, which
has shown promise in power systems as demonstrated
in (Moreno-Negrete et al., 2022) and (Ramı́rez, 2023).
These findings emphasize the potential of delay-based
controllers and demonstrate their capacity not only to
provide stability in power electronic systems, but also to
maintain a balance between performance and robustness.
This balance remains an open challenge in the field.

To address the design challenge described above, we
propose employing a widely studied class of converters,
specifically a synchronous boost converter in closed-loop

Fig. 3. Synchronous boost DC-DC converter, step-up
ratio 48V-120V.

with a PIR controller. Recent studies have highlighted
PIR controllers’ capabilities to optimize the speed of
response. However, the boost converter model presents
an unstable zero, making it challenging to derive analytic
formulas for the PIR controller parameters. Therefore,
this paper presents a systematic approach to overcome
this problem by utilizing spectral analysis (Ramı́rez et al.,
2015; Villafuerte et al., 2012). Our focus lies in obtaining
tuning formulas that can be computed with a finite num-
ber of operations. To the best of the authors’ knowledge,
no comparable findings in the existing literature specif-
ically address non-minimum phase systems. By develop-
ing computationally efficient tuning formulas, our work
provides a valuable solution to the PIR design problem,
effectively addressing the challenges introduced by the
presence of unstable zeros in the boost converter model.

The rest of the paper is organized as follows: Section 2
introduces mathematical descriptions and definitions re-
lated to the proposed controller. These provide a foun-
dation for understanding the controller’s operation. In
Section 3, motivated by previous research findings, we
present the γ-stability approach for tuning the PIR con-
troller parameters. Section 4 utilizes the tuning formulas
obtained in Section 3 to testify the results over various
case studies. Concluding remarks are discussed in Sec-
tion 5.

2. PRELIMINARIES

The synchronous boost converter depicted in Fig.3 is a
variant of the conventional boost DC-DC converter that
incorporates two synchronized on-off switching devices
instead of diodes to improve the efficiency with low
power dissipation of MOSFET’s, and performance of the
converter (Dobkin et al., 2014). The converter consists of
a power supply source, E, switching components M1 and
M2, passive elements L,C, and a load resistance R.

In this note, we consider the widely recognized state-space
averaging technique introduced by Middlebrook and Cuk
(1976) to derive an average model for the boost converter.
After applying standard simplifications, we obtain the
transfer function that relates the output voltage to the
duty cycle as
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Gvd(s) := β · (1− zs)ω2
o

s2 + ωo

Q
s+ ω2

o

, (1)

where the DC gain β > 0, the natural frequency of the
system ωo > 0, the unstable zero 1/z > 0 and, the quality
factor of the converter Q > 0 are defined by

β :=
E

(1−D)2
, ωo :=

(1−D)√
LC

,

z :=
L

(1−D)2R
, Q := (1−D)R

√
C

L
.

(2)

We next adopt a control strategy using a PIR controller
to address the challenges with the derivative action in
electronic converters. The PIR controller given by

U(s) := kpẼ(s) +
ki
s
Ẽ(s)− kre

−hsẼ(s), (3)

replaces the pure derivative action in a PID controller
by using an artificial delay as a design parameter. Here,
h > 0 is the delay, (kp, ki, kr) ∈ R

3 are the proportional,

integral, and retarded gains, respectively, and Ẽ(s) is the
error signal. Taking into account the proposed control,
the closed-loop transfer function can be expressed as

H(s) =

(
kps+ ki − krse

−hs
)
N(s)

sD(s) + (kps+ ki − krse−hs)N(s)
, (4)

where N(s) andD(s) are, respectively, the numerator and
denominator of the system in (1). Hence, the closed-loop
characteristic function ∆ reads

∆(s, kr, h) := P0(s) + P1(s)kre
−sh, (5)

where

P0(s) := s3 + s2
(
ωo

Q
− βω2

okpz

)

+ s
(
ω2
o + (kp − kiz)βω

2
o

)
+ βkiωo,

P1(s) := βω2
o

(
zs2 − s

)
.

Assumption 1. The polynomials N(s) and D(s) do not
have roots in common.

Remark 1. Observe that if Assumption 1 is not fulfilled,
this implies the existence of a polynomial factor R(s)

with deg(R(s)) ≥ 1, such that N(s) = R(s)Ñ(s) and

D(s) = R(s)Ñ(s). Under such a situation, choosing R(s)
to be of the highest possible degree, the analysis can be
pursued if R(s) is a Hurwitz polynomial, otherwise, the
system will remain unstable independently of the control
action.

Considering Assumption 1, this study focuses on optimiz-
ing system performance by analyzing (5) using frequency-
domain analysis. Specifically, we rely on the graphical
D−decomposition method to propose a practical tuning
methodology for the parameters of the PIR controller
considering unstable zeros.

Before proceeding further, we introduce the following
useful definitions:

Definition 2. (Stability crossing boundaries). A collection
of points (h, kr) is a stability crossing boundary if, for any

point on the boundary, there exists an ω ∈ R, such that
the characteristic equation satisfies

∆(jω, kr, h) = P0(jω) + P1(jω)kre
−jωh = 0. (6)

Definition 3. (Crossing points). Let S be the collection
of all the stability crossing boundaries, then any point
(h, kr) ∈ S is a crossing point.

Definition 4. (Frequency crossing set). The frequency cro-
ssing set Ω ⊂ R, is the set of all ω such that, there exists
at least a pair (h, kr) ∈ R+ × R for which

∆(jω, kr, h) = 0.

The reader is referred to (Villafuerte et al., 2012; Bhat-
tacharyya and Keel, 1995; Gu et al., 2003; Michiels and
Niculescu, 2014) for additional related literature.

3. MAIN RESULTS

In order to derive our main results, let us consider the
change of variable s → s − γ into ∆ in (5). Then, the
shifted characteristic equation reads

∆̂(s, γ, kr, h) = P0(s, γ) + P1(s, γ)kre
−hsehγ = 0. (7)

Remark 2. For convenience, in (7), we have adopted the
notations P0(s, γ) := P0(s− γ) and P1(s, γ) := P1(s− γ).

Note that investigating the γ-stability of ∆ is equivalent
to investigating the stability of ∆̂. Therefore, in what
follows, we first search for the crossing points (h, kr).

Proposition 5. Let (kp, ki) be chosen a priori. Then, for
a fixed γ > 0 and ω ∈ Ω \ {0} the corresponding crossing
points are given by

h(ω, γ)=
1

ω

(
∠P1(jω, γ)− ∠P0(jω, γ)+

π

2
(4m+ λ+ 1)

)
,

(8)

kr(ω, γ)= λe−γh

∣∣∣∣
P0(jω, γ)

P1(jω, γ)

∣∣∣∣ , (9)

where, m = 0,±1,±2, . . ., and λ = ±1. Furthermore, for
any h > 0, the exponentially decaying curve

kr(0, γ) = −e−γhP0(0, γ)

P1(0, γ)
. (10)

is also a crossing point.

Proof. Let γ and ω be fixed values. Then, (8) and (9) are
obtained using the module and argument on both sides
of (7). Finally, (10) follows from (7) by setting s = 0. ✷

3.1 Explanatory example

The relationship between kr(ω, γ), h(ω, γ), and kr(0, γ)
can be visually analyzed in the (h, kr) plane, which
depends on the frequencies ω and the decay rate γ. Fig. 4
shows three scenarios with graphical representations. In
the first scenario, a fixed pair of gains is used: kp = 0.001
and ki = 2.93. By examining the graph, we can observe
how different frequency sets impact the values of kr and
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(a) (b) (c)

Fig. 4. Stability regions associated with the boost converter in closed-loop with a PIR controller for different gain
values. (a) kp = 0.001, ki = 2.93. Maximum decay rate γ⋆ = 3970.72. (b) kp = 0.01, ki = 5. Maximum decay rate
γ⋆ = 4950.76. (c)kp = 0.1, ki = 15. Maximum decay rate γ⋆ = 9397.63.

h. In the second scenario, the gains are increased to kp =
0.01 and ki = 5, while the third case further increments
the gains to kp = 0.1 and ki = 15. Analyzing these cases
provides insights into how adjusting these parameters
influences the system’s behavior. As the decay rate γ
increases, the regions of γ-stability in the (h, kr)−space
gradually shrink and eventually collapse into a single
point. Fig. 4 shows these collapse points with a ⋆ symbol,
which corresponds to the maximum exponential decay
rate, γ⋆, that the system can achieve. In addition, this
point is characterized by a triple real root assignment
(Oaxaca-Adams and Villafuerte-Segura, 2023; Villafuerte
et al., 2012; Ramirez et al., 2015).

Proposition 6. If γ⋆ exists, the stability domain collapses
for γ⋆ such that

γ⋆ ∈ {γi > 0 : A(γi) = 0} (11)

where

A(γ) := a8γ
8 + a7γ

7 + a6γ
6 + a5γ

5

+ a4γ
4 + a3γ

3 + a2γ
2 + a1γ + a0,

(12)

with coefficients ai, i = 0, . . . , 8, given in Appendix A.

Proof. The existence of three roots at −γ⋆ implies that
∆̂ = ∂∆̂/∂s = ∂2∆̂/∂s2 = 0 at s = 0. From these
conditions we obtain that

kre
γh = −P0(s, γ)

P1(s, γ)

∣∣∣∣∣
s=0

, (13)

hkre
γh = − ∂

∂s

(
P0(s, γ)

P1(s, γ)

)∣∣∣∣∣
s=0

, (14)

h2kre
γh = − ∂2

∂s2

(
P0(s, γ)

P1(s, γ)

)∣∣∣∣∣
s=0

. (15)

After some algebraic manipulations, one can eliminate the
explicit dependence of (13)-(15) on h and kr to finally
obtain the polynomial A(γ) in (12), the roots of which
qualifies as the maximum exponential decay rate. ✷

Corollary 7. The maximum exponential decay rate of the
closed-loop system is achieved in the (h, kr)−plane with

h =
−b4γ

⋆4 − b3γ
⋆3

+ b2γ
⋆2 − b1γ

⋆ − b0
−c4γ⋆5 + c3γ⋆4 + c2γ⋆3 + c1γ⋆2 + c0γ⋆

,

kr = −−γ⋆3

+ d2γ
⋆2 − d1γ

⋆ + d0

eγ⋆h⋆

(
βγ⋆2zω2

o + βγ⋆ω2
o

) ,
(16)

where γ⋆ is obtained from (11) and the coefficients bi,
i = 0, 4, ci, i = 0, 4, di, i = 0, 2, are given in Appendix A.

Proof. By obtaining the solutions of the polynomial
A(γ) and using the stability boundaries associated with

the characteristic function ∆̂, we select a suitable solution
for γ⋆. Then, both equations in (16) follow straightfor-
wardly from (13)-(14). ✷

4. NUMERICAL EXAMPLES

To illustrate the effectiveness of the proposed results,
we present several numerical examples considering the
electrical specifications for the proposed converter sum-
marized in Table 1. Numerical simulations are conducted
using PLECS/PLEXIM as shown in Fig. 5.

Remark 3. We note that the synchronous boost converter
can operate bidirectionally. Nevertheless, for the purpose
of this analysis, we focus exclusively on its direct opera-
tion to explore the equations and parameters associated
with unidirectional DC-DC.

Table 1. Parameters of the converter.

Parameter Symbol Value

Switching frequency fs 150kHz
Voltage input E 48V
Duty cycle D 0.6

Power P 100W
Inductor L 2.7648mH
Capacitor C 1.66µF
Resistance R 144Ω
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Fig. 5. System and controller benchmark simulation in
PLECS.

With Remark 3 in mind, we next investigate two spe-
cific behaviors during a simulation period of 50 ms; we
note that no parasitic elements in the components are
considered in all cases and a saturation block of 0-1V
is incorporated at the output of the controller to restrict
the control signal within the predefined range. Firstly, the
convergence of the system’s state towards its reference
is observed when the converter initiates with the con-
troller set to zero initial conditions for all three proposed
controller configurations and a PI controller tuned with
kp = 0.001, ki = 2.93 which is selected to avoid introduc-
ing additional unstable zeros. Secondly, considering the
desired output voltage X2 = E/(1−D) = 120V, we make
step increments inX2 from its nominal value by varying E
every 10 ms, reaching 100V, 40V, 70V, and subsequently
settling at 48V after 40 ms, as depicted in Fig. 6. These
step changes aim to emulate the dynamic response of the
system to potential fluctuations commonly encountered in
renewable energy sources such as solar panels or fuel-cell
stacks (Ramirez, 2022).

Fig. 6. Voltage-output response comparison with a PI and
PIR controllers.

Then, in Fig. 7, we show how the system performs in
different scenarios. In the first experiment, we compare
the performance of the system subject to a PI controller
with the same kp and ki values used in the PIR controller.
We observe slower settling times and oscillations in the
output response. We also obtain faster convergence times
to the reference during the startup phase and reduced
overshoots and undershoots in cases 2 and 3. In Case 3,

Fig. 7. Comparative evolution of voltage output x2(t),
inductor current x1(t), and control signal over time
with a PI and PIR controllers.

with gains kp = 0.1 and ki = 15, we note a faster response
compared to the first two cases. It is worthy of mention
that the control signal remains within a bounded region.
We conclude this section by noting that our study does
not account for high-frequency transitions, and therefore,
we have not considered a minimum switching frequency.

5. CONCLUSIONS

We present a method to ensure the exponential stability
of a PIR controller when controlling a synchronous boost
converter model with unstable zeros. Through spectral
methods, we conduct a stability analysis and derive an
analytical tuning formula for the PIR controller parame-
ters based on the maximum exponential decay rate that
the closed-loop system can achieve. Numerical results
demonstrate that the PIR controller improves stability
margins without introducing noise amplification issues.
Future research directions include the experimental ver-
ification of the findings and further formalization of the
developments.

The present analysis revolves around a regulation problem
in DC-DC converters. However, in the context of DC-
AC and AC-DC converters, additional challenges arise
due to direct and alternating current conversion. One of
these challenges requires solving a tracking problem and
one possibility to address this problem involves a change
of coordinates using well-known DQ transformations.
In the DQ-coordinate frame, tracking problems can be
understood as regulation problems, rendering our results
applicable in this case.

Appendix A. COEFFICIENTS

In this section, we provide the following list of equations
used in Proposition 6 and Corollary 7
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a0 := Q2β2k2i ω
4
o ,

a1 := 4βω4
oki

(
βkiz −

1

2
βkp −

1

2

)
Q2,

a2 := 6βω3
okiQ

(
2

3
+ zωo

(
βkiz −

4

3
βkp −

2

3

)
Q

)
,

a3 := 4
((
−2 + z2 (βkiz − 3βkp − 1)ω2

o

)
Q+ 2zωo

)
βω2

okiQ,

a4 := ω2
o

(
−1 +

(
2 +

(
1 + z2k2i β

2 + 2ki
(
−4β2kp − β

)
z

+2βkp) z
2ω2

o − 18βkiz + 2βkp
)
Q2

+6

(
kiz +

kp
3

)
βωozQ

)
,

a5 := 2
((
z2kpβ (βkiz − 1)ω2

o + 7βkiz − βkp − 2
)
zωoQ

2

+
(
−1− z2 (βkiz + βkp − 1)ω2

o

)
Q+ zωo

)
ωo,

a6 := 2
((
1 + 2

(
βkiz

3 − z2
)
ω2
o

)
Q2 − 2zωoQ

)
,

a7 := 4Q2z, a8 = Q2z2.
(A.1)

b0 := βkiω
2
oQ, b1 = 2Qβkizω

2,

b2 :=
(
−zω2

o(βkiz − 1)Q+ ωo

)
, b3 = 2Q, b4 = Qz.

c0 := βkiω
2
o , c1 = Qβkizω

2
o +Qω2

o (−1 + (kiz − kp)β) ,

c2 := Qω2
o (−1 + (kiz − kp)β) z −Qβkpzω

2
o + ωo,

c3 := −Qβkpzω
2
o + ωoz −Q, c4 = Qz,

d2 =
ωo

Q
− βkpzω

2
o ,

d1 :=
(
−βkizω

2
o + βkpω

2
o + ω2

o

)
,

d0 := βkiω
2
o .

(A.2)
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