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Abstract: This work compares two novel strategies that address formation control with
collision avoidance for a group of second-order agents. The first control strategy is based
on the Backstepping approach (B), while the second is based on the Nested Saturation
methodology (NS). Both approaches utilize the Repulsive Vector Fields (RVFs) approach for
avoiding collisions. Two numerical simulations are carried out to compare the performance of
both approaches. For the first numerical simulation, the simplest case of collision avoidance is
considered, that is, the interchange of the position of two agents. On the other hand, for the
second numerical simulation, the formation with collision avoidance for a group of nine agents
is considered.
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1. INTRODUCTION

Multi-agent systems have a broad avenue for specific
research areas (Draganjac et al., 2016; Guanghua et al.,
2013; Madridano et al., 2021; Yan and Ma, 2019). From
the Automatic Control and Robotics point of view, one
of the simplest ways to picture the problem is to imagine
a set of n agents wandering in some space. It is natural
to imagine that the user wants them to move towards
a specific goal. It is also natural to desire that, in their
motion, the agents do not collide amongst themselves.
This is a very rough manner of introducing the problem
under study in the current paper.

This problem has been thoroughly treated over the years
by many authors. Perhaps the seminal contribution is the
one reported in (Khatib, 1985). However, several difficul-
ties of Khatib’s approach were put forward in a series of
papers (Flores-Resendiz et al., 2015; Flores-Resendiz and
Aranda-Bricaire, 2020; Hernández-Mart́ınez and Aranda-
Bricaire, 2011; Hernandez-Martinez and Aranda-Bricaire,
2013). In those papers, the problem of first-order agents
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was wholly solved using the novel technique of repulsive
(not necessarily) integrable vector fields.

The passing from first-form first-order systems to second-
order ones is not trivial. For a straightforward reason:
second-order systems possess inertia. Therefore, even if
the control algorithm foresees a collision, sometimes it
is impossible to avoid such an event. This is the subject
matter of this paper. Some examples of collision avoidance
for second-order agents are reported in (Dang et al.,
2019; Huang et al., 2019; Liu et al., 2022; Park and Yoo,
2021; Parra-Maŕın et al., 2023; Yasin et al., 2020), where
different methodologies, approaches, and algorithms were
proposed.

The authors have proposed some algorithms that prevent
possible collisions and act in advance to avoid such an
event. We compare a couple of strategies, both relying
on the aforementioned repulsive vector fields. Both algo-
rithms are compared through numeral simulations and a
performance index.
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2. PRELIMINARIES

Consider N = {R1, . . . , Rn} as a set of n agents with
second-order dynamics

żi = vi, v̇i = ui, i = 1, . . . , n,

where zi = [xi yi]
⊤

∈ R
2 is the position in the plane

of the i-th agent while vi = [vxi
vyi

]
⊤

∈ R
2 and ui =

[uxi
uyi

]
⊤
∈ R

2 represent the velocities and accelerations
along the X and Y axis, respectively. In matrix form, one
has

ż = v, v̇ = u, (1)

where z =
[

z
⊤
1 . . . z⊤n

]⊤
∈ R

2n and u =
[

u
⊤
1 . . . u⊤

n

]⊤
∈

R
2n.

Definition 1. (Formation graph). A formation graph G
(Godsil and Royle (2001); Ren and Beard (2008)), relates
the communication among the agents and it is composed
by three elements:

(1) A set of vertices N . Each vertex simulates an agent
in the system.

(2) A set of edges E = {(Rj , Ri) ∈ N × N, j ̸= i}. In
this case, agent Ri receives information from Rj .

(3) A set of labels C = {cji ∈ R
2 | (Rj , Ri) ∈ N ×

N, j ̸= i}, where cji =
[

cjix cjiy
]⊤

∈ R
2 is a vector

that specifies the relative position between agents Rj

and Ri.

Definition 2. (Laplacian matrix). Given a formation graph
G, the Laplacian matrix of G (Godsil and Royle, 2001;
Ren and Beard, 2008) is defined as L(G) = ∆ − Ad

where ∆ = diag{n1, . . . , nn} is the degree matrix with
ni = card{Ni}, and Ni ⊂ N is a subset composed by
those agents that are detected by Ri. Matrix Ad is the
adjacency matrix of G given by

aij =

{

1 if (Rj , Ri) ∈ E,
0 otherwise.

The desired position of each agent, in a formation graph
G, is defined as

z
∗
i =

1

ni

∑

j∈Ni

(zj + cji), i = 1, . . . , n. (2)

Furthermore, let us define the position error as z̃i = zi −
z
∗
i ; hence, in matrix form, one has

z̃ =
(

∆−1L ⊗ I2
)

z−
(

∆−1 ⊗ I2
)

c, (3)

where ⊗ denotes the Kronecker product, and I2 is the
identity matrix, while

c =















∑

j∈N1

cj1

...
∑

j∈Nn

cjn















(4)

is a vector that contains the formation vectors.

Definition 3. (Linear saturation (Teel, 1992)). Given two
positive constants M1, M2 with M1 ≤ M2, a function

σ : R → R is said to be a linear saturation for (M1,M2) if
it is a continuous, non-decreasing function satisfying the
following:

(1) xσ(x) > 0, for all x ̸= 0;
(2) σ(x) = x when |x| ≤M1;
(3) |σ(x)| ≤M2, for all x ∈ R.

Definition 4. Let Φr be the set of the saturating functions
which is composed of all the real functions which satisfy
the following conditions

(1) ϕ(x) = 0 ⇔ x = 0;
(2) −r ≤ ϕ(x) ≤ r for some r > 0;
(3) xϕ(x) > 0, ∀x ̸= 0;

(4) 0 < ∂φ(x)
∂x

< M̄1 <∞.

Then, it is said ϕr(·) is a saturating function parameter-
ized by r.

2.1 Repulsive Vector Fields

The collision avoidance algorithm is based on the RVFs
approach. This technique considers that there exists an
unstable focus centered on the position of any other agent
or obstacle. The main idea is to activate the RVFs when
agents are near enough to each other and deactivate them
when they are far enough. Concretely, the RVF is defined
as

βi = −ϵ
∑

j∈Mi

ψij(dij)

[

(xj − xi)− (yj − yi)
(xj − xi) + (yj − yi)

]

, (5)

where ϵ > 0 scales the RVF; Mi is a set composed of all
those agents that are at risk of collision with agent Ri,
i.e.,

Mi = {Rj ∈ N | ∥zi − zj∥ ≤ D} , i = 1, .., n,

D is the sensing distance; ψij(·) is a smooth distance-
based switching function which satisfies ψij(dij) = 1 for
dij < d and ψij(dij) = 0 for dij > D; and dij = ∥zi − zj∥
is the distance between Ri and Rj .

3. CONTROL ALGORITHMS

This Section presents two control strategies that solve the
formation control with collision avoidance for a group of
second-order agents. The former is based on the Back-
stepping approach (B), while the second one is based on
the nested saturation methodology (NS). It is said that
there are no collisions among agents if the agents remain
at some minimum predefined distance d from each other,
that is, ∥zi(t)− zj(t)∥ ≥ d, ∀t ≥ 0, i ̸= j.

3.1 Backstepping approach with RVFs

This control law was developed starting from a solu-
tion to the collision avoidance problem regarding first-
order agents. Then, an additional backstepping stage was
designed to apply the control strategy to second-order
agents. Input-to-state property is utilized to prove con-
vergence to agents to the desired formation while they
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keep a minimum distance among them. This result was
previously reported in (Flores-Resendiz et al., 2023).

Under this approach, the proposed control law is

u = −λµϕ(z̃) + ϵ

(

(

λΩ+ Ω̇
)

⊗ F

)

z

−

(

µ

(

∂ϕ(z̃)

∂z̃

)T
(

∆−1L(G)⊗ I2
)

+λI2n−ϵ (Ω⊗ F )

)

v,

(6)

where the matrix Ω, which depends on the distance
between every pair of agents and models the conflicts
among agents, is described by

Ω =



















n
∑

j=1,j ̸=i

ψ(d1j) . . . −ψ(din)

...
. . .

...

−ψ(dn1) . . .

n
∑

j=1,j ̸=i

ψ(dnj)



















. (7)

As it can be seen, because of the design process, the RVFs
are embedded into the control law. Furthermore,

F =

[

1 −1
1 1

]

, (8)

is the matrix which provides the unstable focus behaviour
and
(

∂ϕ(z̃)

∂z̃

)T

= diag

{

(

∂ϕ(z̃1)

∂z̃1

)T

, . . . ,

(

∂ϕ(z̃n)

∂z̃n

)T
}

.

(9)
Finally, µ, λ and ϵ are positive constants; ϕ(·) is a
saturation function (Definition 4) and I2n is the identity
matrix of dimension 2n.

3.2 Nested saturation approach with RVFs

This control law was designed employing the nested satu-
ration approach (developed by (Teel, 1992)) to accomplish
formation control while RVFs are added to avoid collisions
among the agents. Based on those mentioned above and in
the work of (Aranda-Bricaire and González-Sierra, 2023),
the control law is given by

u = −σ2

(

η
(

∆−1L ⊗ I2
)

v + σ1(ηz̃+ v)
)

+ β, (10)

where β =
[

β⊤
1 . . . β⊤

n

]⊤
∈ R

2n is the RVF given in
(5), σk(·), for k = 1, 2, is a column vector where each
element is a linear saturation function (Definition 3). It
is worth mentioning that each element of vector σk(·)
is bounded from above by Mk, with Mk as a constant
satisfying 2M1 < M2 and η = 1[s−1] as a constant that
allows us to add the position error with the velocity. In
(Aranda-Bricaire and González-Sierra, 2023). it is proven
that in the control law (10) in closed-loop with the system
(1), the agents reach the desired geometric pattern and
avoid collisions among them.

Remark 5. The control law presented in (10) differs from
the one presented in (Aranda-Bricaire and González-
Sierra, 2023). The main difference is that the RVFs
are continuous in (10) while in (Aranda-Bricaire and
González-Sierra, 2023) are discontinuous.

4. NUMERICAL SIMULATIONS

Two numerical simulations were carried out to compare
the performance of both approaches. For the first numer-
ical simulation, the simplest case of collision avoidance is
considered, i.e., the interchange of the position of two
agents. On the other hand, for the second numerical
simulation, the formation with collision avoidance for a
group of nine agents is considered.

4.1 Two agents

For the first numerical simulation, two agents with a
radius of 0.2[m] have to exchange their position. The

initial positions of the agents are z1(0) = [3 0]
⊤

and

z2(0) = [−3 0]
⊤
, while the formation vectors are given by

c21 = [−4 0]
⊤
and c12 = −c21. The sensing distance is set

to D = 1[m] and the safety distance is set to d = 0.5[m]
while the function ψij(dij) is defined as

ψij(dij) =
1

1 + ea(dij−b)
, (11)

where b = (D + d)/2 and a = 22. Table 1 presents the
parameters for the control strategies given in (6) and (10).

Table 1. Parameters for the first numerical
simulation.

Parameter Backstepping (B) Nested
saturation (NS)

ϵ 1 10

µ 1 -

λ 1 -

M1 - 1.5

M2 - 3.1

Figure 1 illustrates the trajectory in the plane comparison
between the B and the NS approach. Note that both
methodologies accomplish the formation control with
collision avoidance; however, when using the B approach,
the performance is smoother than when utilizing the
NS approach. Furthermore, Fig. 2 depicts the distance
between the agents, where it is worth pointing out that
the distance between them is always greater than the
safety distance.

The RMS values are calculated over a suitable receding-
horizon time interval of finite length, i.e.

urms(t) =

(

1

∆T

∫ t

t−∆T

∥u(τ)∥2dτ

)

1

2

,

z̃rms(t) =

(

1

∆T

∫ t

t−∆T

∥z̃(τ)∥2dτ

)

1

2

,
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-3 -2 -1 0 1 2 3

-2

-1

0

1

2

Fig. 1. Trajectory in the plane of the agents by using the
B and NS approach.

0 5 10 15 20
0

2

4

6

Fig. 2. Distance between the agents by using the B and
NS approach.

where ∆T = 2 is a time window width for the correspond-
ing signal evaluation. Based on the above mentioned, the
RMS control inputs and the RMS position errors are
shown in Fig. 3(a) and 3(b), respectively. From Fig. 3(a),
one can note that the control inputs have a similar perfor-
mance. The NS has a greater peak, while the B presents
two peaks of almost the same magnitude. Furthermore,
the B converges to zero before the NS approach. This
means that the agents reach their position faster with
the B approach. On the other hand, from Fig. 3(b), it is
evident that when using the NS, an over peak appears
when the RVFs are turned on, while the performance is
smoother for the B approach.

4.2 Nine agents

For this numerical simulation, nine agents have to reach
the formation illustrated in Fig. 4. The initial positions

are z1(0) = [−15 0]
⊤
, z2(0) = [10 10]

⊤
, z3(0) = [−5 5]

⊤
,

z4(0) = [−5 −5]
⊤
, z5(0) = [5 −5]

⊤
, z6(0) = [−10 10]

⊤
,

z7(0) = [15 5]
⊤
, z8(0) = [15 −10]

⊤
and z9(0) = [5 5]

⊤
,

all with zero velocity. Furthermore, the formation vectors

0 5 10 15 20
0

1

2

3

4

5

(a) RMS control inputs by using the B and NS approach.

0 5 10 15 20
0

2

4

6

8

(b) RMS position error by using the B and NS approach.

Fig. 3. RMS control inputs and RMS position error.

Fig. 4. Desired formation.

are given by c91 = ℓ [3 0]
⊤
, c62 = ℓ [−1.5 −3]

⊤
, c73 =

ℓ [1.5 −3]
⊤
, c84 = ℓ [−3 3]

⊤
, c15 = c73, c86 = ℓ [−4.5 0]

⊤
,

c87 = −c86, c58 = ℓ [−3 −3]
⊤
, c78 = c86, c68 = −c86 and

c49 = ℓ [1.5 3]
⊤
which are parameterized by a scale factor

ℓ = 1.3[m]. The sensing distance is set to D = 2.8[m] and
the safety distance is set to d = 2[m] while the function
ψij(dij) is defined as in (11) with a = 10. Table 2 presents
the parameters for the control strategies given in (6) and
(10).

Figure 5 depicts the trajectory in the plane of the nine
agents by applying the B approach (Fig. 5(a)) and the
NS methodology (Fig. 5(b)). Note that when using the
NS, the agents move far away from their initial positions,
while with the B, they are near their initial conditions.
Nevertheless, with both approaches, the agents achieve
the desired formation.
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Table 2. Parameters for the second numerical
simulation.

Parameter Backstepping (B) Nested
saturation (NS)

ϵ 0.6 10

µ 1 -

λ 1 -

M1 - 1.5

M2 - 4

-10 0 10

-10

-5

0

5

10

(a) Trajectory in the plane of the agents by using the B approach.

0 20 40

-40

-30

-20

-10

0

10

(b) Trajectory in the plane of the agents by using the NS approach.

Fig. 5. Trajectory in the plane of the agents by using the
B and NS approach.

Figure 6 illustrates the distance between agents with both
methodologies. It is worth mentioning that such distances
are always greater than the safety distance; thus, there is
no collision among the agents.

Finally, Fig. 7 presents the RMS control input (Fig. 7(a))
and the RMS position error (Fig. 7(b)). Specifically, from
Fig. 7(a), it is clear that the NS approach uses more
energy than the B methodology. Furthermore, from Fig.
7(b), one can note that the RMS position error is less
than when using the B approach.

5. CONCLUSIONS AND OUTLOOKS

Two current control strategies for comparing the forma-
tion control with collision avoidance for a second-order

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

(a) Distance among the agents by using the B approach.

(b) Distance among the agents by using the NS approach.

Fig. 6. Distance among the agents utilizing the two
approaches.

0 10 20 30 40 50
0

2

4

6

8

10

(a) RMS control inputs by using the B and NS approach.

0 10 20 30 40 50
0

5

10

15

20

(b) RMS position error by using the B and NS approach.

Fig. 7. RMS control inputs and RMS position error.
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multi-agent system are presented to evaluate their per-
formance. For the first comparison, the interchange of
the position of two agents is evaluated by calculating
the RMS value of the control inputs and the position
error. From the control inputs, the behavior is quite
similar; however, the agents’ motion is smoother with the
B approach. The formation with collision avoidance for
nine agents was tested for the second comparison. The
RMS values show that the B approach requires less energy
than the NS approach to reach the desired formation.
Although both strategies accomplish the formation with
collision avoidance, based on those mentioned earlier, the
B methodology presents a better performance concern-
ing the NS approach. On the other hand, it is worth
mentioning that under the NS approach, the RVFs are
applied only regarding relative positions between agents,
while in the B approach, because of the design process,
relative velocities are taken into account, which increases
the complexity of the control law.
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