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Abstract: A high-gain linear observer is proposed for online identification and reconstruction
of a periodic disturbance. It is assumed that the frequency of the periodic disturbance is
known, but its amplitude and phase are unknown. This is not a stringent assumption since
such supposition can be easily characterized for disturbances like cogging torque, or bearing
defects, both well-known problems in the control of electric machines. The observer design is
based on the internal model principle in combination with a high-gain observer. Numerical
results are included to validate the estimation of the periodic disturbance even when another
disturbance of a different frequency is added. The estimated disturbance can be used to design
a controller for reducing the disturbance effect. Alternatively, the estimated disturbance can
be used for fault detection like in the case of gears and bearing faults, or simply to characterize
the cogging torque of a particular machine.
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1. INTRODUCTION

Brushless DC motors are mostly used in servo, actuation,
positioning, and variable speed applications, where pre-
cise motion control and reliable functioning are important
for the satisfactory operation of industrial processes. In
such a setting, it is common to find all types of distur-
bances and undesired vibrations of different natures.

There are several examples in the literature regarding
torque load estimators for electric motors, as in Ramı́rez
et al. (2013) where a Generalized Proportional Integral
Observer (GPIO) is proposed for the induction motor to
compensate the external disturbances, or more recently
the work by Alonge et al. (2017) where an active dis-
turbance rejection control is proposed for linear induc-
tion motors. Another example is the work by Zhu and
Li (2019) based on neural networks for electric power-
trains. Still, very few works focus on the reconstruction
of disturbances for the BLDC motor. Some of the few
examples in this topic is the work by Deenadayalan and
Ilango (2011) based on Sliding Mode Observers (SMO),
where the position and velocity are estimated by using
an adaptive gain SMO. Also, the article by Shao et al.
(2015), where the load torque is estimated using an SMO
based on a linear model of the BLDC motor. Only the
⋆ Axel Alejandro Coronado Andrade thanks CONAHCYT for
support through scholarship CVU:856213.

works by de la Guerra et al. (2018) and de la Guerra and
Alvarez-Icaza (2020) deal with the case of a trapezoidal
BLDC, where a GPIO is proposed to compensate variable
lumped disturbances, such as load torque and friction
terms.

However, in the mentioned works the load torque is
estimated or compensated as a whole. In this article,
the objective is to estimate and isolate the periodic
disturbances that affect the motor shaft. One way to
classify these periodic perturbations is by their source.
When the periodic perturbation is of internal nature, i.e.
it depends on the angular position and/or velocity, it is
called a self-excited vibration. A mechanical defect in a
rotating system can be interpreted as the presence of
a periodic angular perturbation. Examples of this type
of disturbance are the cogging torque and the periodic
disturbance detected in the case of gears and bearing
faults (Bourdon et al., 2014). These types of disturbances
are related to machine design and/or operation (Niewiara
et al., 2020) and cannot be avoided.

On the other hand, if the perturbation is originated
by an external source it is said to be an independent
vibration (Alsogkier and Bohn, 2012). Examples of these
types of disturbances are the vibrations generated by an
inverter (Niewiara et al., 2020).
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In the following lines, a summary of some of the works
proposed in the literature to identify or reject periodic dis-
turbances is presented. In Alsogkier and Bohn (2017) a re-
jection notch filter is proposed to reject a disturbance for
Linear Time-Invariant Systems (LTI). In Cortés-Romero
et al. (2014) a GPI observer is proposed to identify a
periodic disturbance in a DC motor experimental plat-
form. In Yilmaz and Basturk (2019) an output feedback
controller is proposed for LTI systems with unknown
periodic disturbances. In Niewiara et al. (2020), an appli-
cation of the extended Kalman filter (EKF) for estimation
and attenuation of periodic disturbance in a permanent
magnet synchronous motor (PMSM) drive is presented.
In Beltran-Carbajal et al. (2021) it is presented an active
vibration control technique for direct-current electric mo-
tors subjected to harmonic mechanical load torque where
vibrating torque disturbances are actively suppressed by
the control voltage input.

In several articles, the disturbance models are based
on Fourier series, e.g. in Chu et al. (2016), where a
reduced-order nonlinear observer is designed to estimate
the cogging torque for a Permanent Magnet Direct Cur-
rent (PMDC) driver. In the mentioned design it is as-
sumed that the angular speed ω ̸= 0 and that ω2 is
bounded. With a different approach, in Reyna et al.
(2018) a Fourier Series Controller is proposed to reduce
the torque ripple for PMSM and BLDC drivers. In this
context, it is important to mention the work by Ruder-
man et al. (2012) where an observer-based drive control
can efficiently reject the harmonic torque disturbances.
The design is based on the state-space torque harmonics
representation and a Luenberger observer using the first
two harmonics.

In this article, we address the problem of isolating and
identifying a periodic disturbance in a BLDC motor. The
design is based on the internal model principle and a
harmonics representation, as proposed in Ruderman et al.
(2012), but incorporating a linear time-varying observer.
The goal of this design is to reconstruct the disturbance
even in the presence of another periodic disturbance.

The estimated disturbance can be used to design a condi-
tion monitoring technique to identify vibration features
in the case of bearing faults (Zarei et al., 2014). Al-
ternatively, the estimated disturbance can be employed
for the characterization of the cogging torque in BLDC
motors. Moreover, as mentioned in Fico et al. (2019), the
cogging torque monitoring can be used to detect stator
demagnetization, because due to the missing magnet, the
distribution of the cogging torque around a revolution is
uneven, and its magnitude increases.

The paper is organized as follows, Section 2 recalls the
mathematical model of the BLDC motor and the dis-
turbance model. Section 3 presents the observer design.
Section 4 includes a numerical validation of the observer.
Finally, Section 5 includes the conclusions of this work.

2. PRELIMINARIES

2.1 Brushless DC motor mathematical model

In a BLDC motor, with Y-configuration, the windings
are connected to a central point and power is applied to
the remaining end of each winding. This means that the
stator windings phases are balanced, which implies that
the stator currents satisfy the following expression

i1 + i2 + ... + im = 0 , (1)

with m the number of stator phases. The motor has Ns

stator slots and Np rotor poles. It is assumed that stator
windings are identical, i.e. the resistance and inductance
parameters are the same for each phase.

The mathematical model of a balanced m-phases brush-
less DC motor as described by Chiasson (2005) is

D
di

dt
= keωE(θ) −Ri + u (2a)

dθ

dt
= ω (2b)

J
dω

dt
= −kmE

T (θ)i + τp(t) + δ(t) (2c)

where i ∈ R
m is the vector of stator currents, u ∈ R

m

is the vector of voltage inputs, ω ∈ R is the angular
velocity, ke ∈ R the back electromotive force constant,
km ∈ R the torque constant, R ∈ R

m×m is a diagonal
matrix accounting for the winding resistances, τp(t) ∈ R

is the periodic part of the load torque, δ(t) represents
the unmodeled external disturbances, J ∈ R is the rotor
inertia, and D ∈ R

3×3 is the inductance matrix is defined
as

D =

[

L + M 0 0
0 L + M 0
0 0 L + M

]

, (3)

with L ∈ R the stator phase inductance an M ∈ R

the mutual inductance between stator phases. The back–
electromotive force vector is defined as
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with e(θ) given by
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, (5)

where e
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and e
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are defined using (5)

with the respective phase displacement.
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2.2 Disturbance model

It would be assumed that there is an independent periodic
disturbance defined as

τp(t) =

N
∑

n=1

(an cos(ω0t) + bn sin(ω0t)) (6)

which is a Fourier series without constant term, with
0 < N < ∞ an, bn the Fourier coefficients, and ω0

a known frequency. The constant term will be omitted
since the DC-bias can be attributed to the Coulomb
friction and therefore it is not a part of the periodic
disturbance (Ruderman et al., 2012).

This kind of perturbation is not related to the control
system variables, as opposed to the self-excited vibration
perturbations which are commonly position-dependent.
However, the next result can be applied to the self-excited
perturbation with minimal changes.

3. OBSERVER DESIGN

This section presents the observer for the perturbation.
To design this observer, the next assumptions are made.

Assumption 1. The time constant of the mechanical sub-
system is much larger than the time constant of the
electrical subsystem, i.e. only equation (2c) is considered
for the observer design.

Assumption 2. The stator current vector i, angular po-
sition θ, and angular velocity ω are measured. Also, the
input torque is defined as

τe = −kmE
T (θ)i

Taking into account the above assumptions, and defining
the speed estimation error

ω̃ = ω − ω̂,

the observer proposed to estimate the motor speed and
external periodic disturbance is defined as

˙̂ω = τe/J + τ̂p/J + K2ω̃ (7a)

˙̂τp = −ω0â1 sin(ω0t) + ω0b̂1 cos(ω0t) + JK1ω̃ (7b)

˙̂a1 = −
J

ω0
sin(ω0t)K0ω̃ (7c)

˙̂
b1 =

J

ω0
cos(ω0t)K0ω̃ (7d)

The first two equations are based on the motor and
perturbations models. On the other hand, the last two
equations estimate the Fourier coefficients that can be
used to obtain the reconstructed external disturbance, τ̂r,
with two Fourier terms as

τ̂r = â1 cos(ω0t) + b̂1 sin(ω0t) . (8)

Alternatively, with these two coefficients, it is possible to
calculate the amplitude and phase of the reconstructed
signal,

τ̂c = Â cos(ω0t + φ̂) , (9)

using the expressions,

Â =

√

â21 + b̂21 (10a)

φ̂ = atan2(b̂1, â1) . (10b)

3.1 Error dynamics

To obtain the estimation error dynamics it is necessary
to derive some auxiliary expressions first. With respect to
the periodic perturbation, the first time-derivative is

τ̇p = −ω0a1 sin(ω0t) + ω0b1 cos(ω0t) . (11)

Therefore, from the estimation speed error definition, the
estimation error dynamics can be written as

˙̃ω = ω̇ − ˙̂ω (12)

Substituting equations (2c) and (7) in the last expression
it is obtained

˙̃ω = −τ̃p/J −K2ω̃ + δ(t)/J , (13)

where τ̃p = τp − τ̂p. Therefore the dynamics of τ̃p is

˙̃τp = τ̇p − ˙̂τp , (14)

Substituting (11) and (7b) in the last expression it is
obtained

˙̃τp = −ω0 sin(ω0t)ã1 + ω0 cos(ω0t)b̃1 − JK1ω̃ , (15)

where ã1 = a1−â1 and b̃1 = b1−b̂1. The second derivative
of (15) can be written as

¨̃τp = −ω0 sin(ω0t)(− ˙̂a1) − ω2
0 cos(ω0t)ã1 (16)

+ ω0 cos(ω0t)(−
˙̂
b1) − ω2

0 sin(ω0t)b̃1 − JK1
˙̃ω .

By taking two time-derivatives of (13) and subtitut-
ing (15)–(16) one obtains

ω̃(3) + K2
¨̃ω+K1

˙̃ω + K0ω̃ = (17)

−
1

J

(

ω2
0 cos(ω0t)ã1 + ω2

0 sin(ω0t)b̃1 − δ̈(t)
)

.

In turn, the Fourier coefficients estimation dynamics are
governed by

˙̃a1 =
J

ω0
sin(ω0t)K0ω̃ (18)

˙̃
b1 = −

J

ω0
cos(ω0t)K0ω̃ . (19)

The error dynamics is completely described by the vector
x ∈ R

n, where n is the dimension of the state space (in
the present case n = 5), such that

x =
[

ω̃ ˙̃ω ¨̃ω ã1 b̃1
]T

. (20)

Care should be taken since the closed-loop estimation
error dynamics given by (17)–(19) represents a linear
time-varying system, for which asymptotic stability is not
easily obtained, i.e. by computing its eigenvalues, but by
some other techniques such as Floquet theory (Rugh Wil-
son, 1993) and Averaging (Khalil, 2002). In our case,
we are aiming only for the ultimate boundedness of the
estimation errors, not asymptotic convergence.
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Notice also that if the second time derivative of the
unknown perturbation δ(t) is zero, e.g. for constant or
ramp disturbances, the error dynamics analysis could be
simplified.

4. SIMULATION

In this section, a numerical validation of the observer
is presented. Simulations were performed in Simulink-
Matlab using the parameters of the Anaheim BLDC BLY-
344S-240V motor, which can be found in Table 1.

Fig. 1. Block diagram of FOC controller and perturbation
observer

The Field Oriented Control technique (FOC) was used
to control currents and speed of the motor and the
space vector modulation technique was used for inverter
switching as shown in Figure 1. The sampling time of
the observer was Ts = 0.025 [ms]. It was also assumed
that continuous measurement of the angular position and
currents was available.

Table 1. BLDC motor parameters.

Parameter Value

Rated Voltage 240 [V]
Rated Torque 2.1 [Nm]
Rated Power 600 [W]
Resistance 1.2 [Ω]
Inductance 0.00475 [mH]
Electric constant 0.3455 [V/rad/s]
Mechanical constant 0.3811 [Nm/A]
Inertia 0.0002618 [kgm2]
Viscous friction coefficient 0.000095 [Nm s]

Simulations were conducted with three different periodic
load torque signals while the rotor was spinning at a
constant speed of 80 [rad/s], using the gain settings
K0 = 2.1 × 103,K1 = 1.47 × 106,K2 = 3.43 × 108.

4.1 Two periodic disturbances

In the first simulation, the load torque is given by the
expression

τp = 0.1 sin(w1t) + 0.05 sin(w2t) , (21)

where w1 = 2π ·60 is the known frequency of the periodic
signal of interest and w2 = 2π · 6 is the frequency of
another periodic signal that is not necessarily known.

Figure (2a) shows the velocity estimated by the observer,
Figure (2b) displays the periodic disturbance, τp, the
estimated periodic disturbance, τ̂p, and the reconstructed
periodic disturbance, τ̂r. It must be noted that the recons-
tructed disturbance recovers only the signal of interest
while the estimated disturbance estimates the sum of all
the vibrations. Lastly, figure (2c) shows the estimated

Fourier coefficients â1 and b̂1 used to calculate τ̂r.

(a) Angular velocity, ω (–), ω̂ (–)

(b) Periodic disturbance, τp (–), τ̂p (–), τ̂r (–)

(c) Fourier coefficients, â1 (–), b̂1 (–)

Fig. 2. Simulation results obtained by adding two periodi-
cal signals with different frequencies.

4.2 External periodic disturbance

In this simulation the load torque is given by

τp = 0.1 sin(ω1t) . (22)

This signal represents an external periodic disturbance
and a high-frequency example.
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Figure (3a) shows the the periodic disturbance, τp and
the reconstructed periodic disturbance, τ̂r. Figure (3b)

shows the estimated Fourier coefficients â1 and b̂1 used
to calculate τ̂r. Using equations (10) with the estimated

Fourier coefficients â1 and b̂1 it is obtained

Â =

√

â21 + b̂21 = 0.1

φ̂ = atan2(b̂1, â1) =
π

2
,

therefore

τc = 0.1 cos
(

ω1t +
π

2

)

= 0.1 sin(ω1t) .

In this manner, it is possible to reconstruct the signal of
interest by recovering the phase and amplitude which are
the most commonly unknown signal characteristics.

(a) Periodic disturbance, τp (–), τ̂r (–)

(b) Fourier coefficients, â1 (–), b̂1 (–)

Fig. 3. Simulation results example 60 [Hz] signal.

4.3 Internal periodic disturbance

In the last simulation, the load torque is not a function
of time but a function of angular position and is given by
the expression,

τp = 0.1 sin(Ncθ) , (24)

where Nc = 8 is the minimum common multiple of
the number of poles and slots. This signal represents
the cogging torque which is an undesirable disturbance
that produces speed ripple. This disturbance is especially
prominent at lower speeds, with the symptom of jerkiness
as mentioned in Chu et al. (2016). To implement this
example, it is necessary to use the rotor’s angular position
to generate the external periodic disturbance.

Figure (4a) shows the periodic disturbance, τp and the
reconstructed periodic disturbance, τ̂r. Figure (4b) shows

the estimated Fourier coefficients a1 and b1 used to
calculate τ̂r. In this case, the reconstructed disturbance
has a negative coefficient, which may be mathematically
sound but not realistic.

(a) Periodic disturbance, τp (–), τ̂r (–)

(b) Fourier coefficients, â1 (–), b̂1 (–)

Fig. 4. Simulation results for example with cogging
torque.

4.4 Discussion

As a metric for the error between the periodic disturbance
τp and the estimation τ̂r, the root mean square error
(RMSE) expressed by equation (25) was used.

RMSE =

√

∑N

i=1(xi − x̂i)

N
. (25)

The RMSE for the previous cases is presented in Table 2.

Table 2. RMS error values.

Case 1 0.005770

Case 2 0.005089

Case 3 0.004631

The three cases presented in the simulations show that
the proposed observer:

• can reconstruct the disturbance of interest even in
the presence of other unknown periodic disturbances,

• it works for low and high frequencies,
• it can reconstruct internal and external disturbances,
• τ̂r and τc can reconstruct the disturbance without

introducing delays in contrast with the schemes
based on low pass filters.
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Therefore, the proposed observer can detect and isolate
the periodic disturbance without introducing delays.

5. CONCLUSION

The proposed observer can identify and isolate periodic
disturbances of known frequency even when a vibration
of unknown frequency is added. The design is simple
and easy to tune. The numerical validation shows that
it can reconstruct periodic disturbances of high and low
frequency and internal and external nature.

The future work includes the experimental validation
of the proposed observer and the closed loop stability
analysis. It will also include the use of this observer in
a fault diagnosis scheme for BLDC motors.
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