
Harvesting optimal policy in three species

food chain model as an optimal control

problem with path constraints ⋆

Karla L. Cortez
∗
Julio E. Soĺıs–Daun
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Abstract: In this paper, we address the issue of harvesting prey and intermediate predators in
a tritrophic food chain. Our approach is based on a model that characterizes the interactions
among the three species. We assume that the intermediate predator has alternative food sources
(it is a generalist), while the top predator relies solely on the intermediate predator (it is
a specialist). This model has been previously explored in the literature, but representing
the harvesting effort as a scalar control variable. In this study, we treat it as a vector
variable, offering a more comprehensive representation, particularly relevant for terrestrial
species hunting. Our primary objective is to determine optimal harvesting policies that ensure
the persistence of all three species. To achieve this, we formulate the problem as an optimal
control problem with a finite horizon and path constraints. We present a numerical example
solved using ICLOCS2.
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1. INTRODUCTION

This study is based on the model proposed in Dawed
and Kebedow (2021), where a tritrophic food chain is
analyzed. The chain consists of a prey, an intermedi-
ate predator and a top predator, the latter depending
solely on the intermediate predator while the intermediate
predator has alternative food sources and, as well as the
prey, it is harvested.

There are many works in the literature exploring harvest-
prey-predator models considering different type of in-
teractions between the species as in Rojas-Palma and
González-Olivares (2012) and Chen et al. (2013). In the
context of tritrophic chains, some examples can be found
in Upadhyay and Raw (2011); Chen et al. (2013); Panja
and Mondal (2015); Blé et al. (2018); Dawed et al. (2020),
to mention just a few. In these papers, the dynamics
describing the system and conditions for subsistence of
the three species are analyzed. In other works, optimal
control techniques are used to determine optimal harvest-
ing policies, usually considering infinite horizon and rate
discount, as in Fleming and Rishel (1975), Mortoja et al.
(2020) and Dawed and Kebedow (2021).

In the last reference, the authors consider the harvesting
effort as a scalar control variable acting on the dynamics
of both, prey and intermediate predator. In a first step,
⋆ This work was supported by UAM-PEAPDI 2023: “Poĺıticas de
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considering this control variable as a constant parameter
and transforming the system into one with dimensionless
variables, they determine conditions for the existence and
stability of certain equilibrium points for each Holling
functional response. Of particular interest are the equi-
librium points where persistence occurs, i.e., where the
three species can coexist. In a second stage, they analyze
the maximum sustainable yield, the bionomic equilibrium
and solve an optimal control problem with infinite horizon
and discount rate to determine the optimal harvest policy.

The previous model is particularly useful for situations
when the harvesting of a species affects the other, as usu-
ally occurs in fishery (commonly known as non-selective
fishery). However, it does not consider different efforts
for harvesting each species. In this work, we deal with
a situation in which the interaction between the species
is like in the previous model, but we consider a vector
control variable since it allows us to deal with the efforts
to harvest the prey and the intermediate predator sepa-
rately, as is the case in some terrestrial hunting practices.

We pose the problem of finding an optimal harvesting
policy as a finite horizon optimal control problem with
path constraints. The choice of a finite horizon is rooted
in the need for more effective planning, as it allows for
adaptation to potential variations in parameters caused
by unforeseen events. The inclusion of path constraints
serves the purpose of ensuring that the population of each
species remains above a defined threshold, safeguarding
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them from the risk of extinction. To the best of our
knowledge, this is a new approach.

The paper is organized as follows: in the next section,
we introduce the dynamics describing the interaction
between the three species, as well as a simplified version
that considers dimensionless variables. In section 3, we
state the optimal control problem of interest and some
well-known necessary optimality conditions taken from
Vinter (2000). In section 4, we solve numerically an
illustrative example using ICLOCS2, the Imperial College
of London optimal control solver, and use the necessary
conditions of the previous section to partially validate our
results. We finish with some conclusions and future work.

2. THE MODEL

The dynamics of the tritrophic chain under study is de-
scribed with the next model which is a slight modification
of the one proposed in Dawed and Kebedow (2021)

Ẋ = rxX(1−X/Kx)− ϕx(X)Y − νxExX (1)

Ẏ = ryY (1− Y/Ky) + cxyϕx(X)Y

−ϕy(Y )Z − νyEyY (2)

Ż =−rzZ + cyzϕy(Y )Z, (3)

The variables and parameters appearing in the model are:

• X, Y and Z represent, respectively, the density of
prey, intermediate predator and top predator in the
ecosystem. They are usually measured in g/m2 or,
sometimes in individuals/m2.

• Kx and Ky are, respectively, prey and intermediate
predator carrying capacity, i.e., the maximum pop-
ulation density that the ecosystem can sustainably
support over an extended period of time.

• rx (resp. ry) represents the annual growth rate of
the prey (resp.intermediate predator) while rz is the
annual reduction rate of the top predator due to
other factors.

• ϕx(X)Y (resp. ϕy(Y )Z) is the Holling response of
the intermediate predator (resp. top predator) to the
prey (resp. intermediate predator). In predator-prey
interactions, the Holling response is a fundamental
aspect of the dynamics. It refers to how the preda-
tor’s consumption rate varies in response to changes
in prey density or availability.
There are various functional forms of Holling re-

sponse, encompassing the Holling Type I, II, III, and
IV functional responses, each describing a distinct
pattern of predator-prey interaction. A detailed de-
scription of each type can be found, for example, in
Dawed et al. (2020).

• cxy (resp. cyz) is the conversion proportion of
prey (resp. intermediate predator) biomass into in-
termediate predator (resp. top predator) biomass,
cxy, cyz ∈ (0, 1).

Fig. 1. Diagram created using Canva.com. The trophic
chain shown in the diagram illustrates the relation-
ship described by the model presented here. Trees
(Prey) provide the leaves that deer consume. Deer
(Intermediate Predators) feed on the leaves of trees
as their primary food source but can adapt their diet
to the resources available, also consuming grass and
other herbs. Pumas (Top Predators) primarily prey
on deer for their food. Additionally, both trees and
deer are subject to exploitation by human activity.

• The control variables representing the harvesting
efforts for the prey and the intermediate predator
are denoted by Ex and Ey, respectively.

• νx and νy stand for the harvesting success coefficients
(known as catchability coefficients in fishery) of the
prey and intermediate predator, respectively.

2.1 Equilibrium points

As in the original formulation (with scalar control), it is
easy to see that the system has the following equilibria:

• E0 = (0, 0, 0). The eigenvalues of its linealized
Jacobian matrix are λ1 = rx−νxEx, λ2 = ry −νyEy

and λ3 = −rz, i.e., a simultaneous extinction could
occur if νxEx ≥ rx and νyEy ≥ ry, which means that
the prey and the intermediate predator are harvested
more than their natural growth rate.

• Ep = (X∗, 0, 0). This point indicates that the prey
can survive alone. It is straightforward to see that

X∗ = Kx(rx−νxEx)
rx

which has physical meaning only
if νxEx < rx and is asymptotically stable if νyEy >
ry + cxyϕx(X

∗). That indicates the system could
be driven to this point if the prey is harvested less
than its growth rate but the intermediate predator is
harvested more than its growth rate, leading it and
the top predator to extinction.

• Ei = (0, Y ∗, 0). This point indicates that the inter-
mediate predator can survive alone. It is easy to

verify that Y ∗ =
Ky(ry−νyEy)

ry
which has physical

meaning only if νyEy < ry and is asymptotically
stable if rx < νxEx + ϕ′

x(0)Y
∗ and cyzϕy(Y

∗) < rz.
To clarify, this situation can occur if the prey’s
growth rate is not sufficient to offset the harvesting
and the attacks of the intermediate predator and,
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on the other hand, the top predator cannot obtain
enough resources.

Conditions for the existence and stability of equilibria of
the form Epi = (X̂, Ŷ , 0), Eit = (0, Ȳ , Z̄) and Epit =
(X∗, Y ∗, Z∗) obtained in Dawed and Kebedow (2021)
for each Holling functional type can be easily translated
into this formulation. However, their interpretation is
not as clear as for the previous three, although, we can
say that a necessary condition for the existence of a
persistence equilibrium is for rz/cyz to be less than the
attack rate of the top predator, otherwise this would be
driven to extinction regardless of how much the efforts
are moderated.

2.2 Profit and costs

We consider the cost of harvesting every species to be
proportional to the harvesting effort, which means the
total cost can be expressed as:

CT = CxEx + CyEy, (4)

where Cx, Cy denote the harvesting cost per unit effort
for population X and Y respectively.

We also assume that the income from the harvesting of
each population is proportional to the harvesting yield,
then, the total income can be written as

IT = PxνxExX + PyνyEyY, (5)

where Px and Py represent the unit biomass prices for
populations X and Y , respectively, and νxEx, νyEy rep-
resent the harvesting yield functions. The profit function
is then given by

P = IT −CT = (PxνxX−Cx)Ex+(PyνyY −Cy)Ey. (6)

2.3 Normalized model

For the sake of simplicity and comparison, we continue
our analysis with a simplified version of the previous
model. This simplification is achieved by considering the
dimensionless variables

τ = rxt, x = X/KX , y = Y/KY and z = rY Z/(rXKY ),

(see Dawed et al. (2020) and Dawed and Kebedow (2021))
here, τ represents a rescaling of time, considering the
prey’s growth rate, x and y represent, respectively, the
proportion of the prey’s carrying capacity and the pro-
portion of the intermediate predator’s carrying capacity
that are occupied. Providing an interpretation for z is
somewhat more complex; however, it is evident that there
is a direct proportionality between z and Z and, actually,
z = 0 would imply the extinction of the top predator.

Now, set the parameters

κ =
Ky

cxyKx

, ϵ =
ry
rx

, β = cyzϵ, γ =
rz
rx

,

the “normalized” Holling functions

φx(x) = cxyϕx(X)/rx and φy(y) = ϕy(Y )/Y

and the control variables

ux = νxEx/rx, uy = νyEy/rx.

Then, the scaled version of system (1)-(3) is:

dx

dτ
= x(1− x)− κφx(x)y − uxx (7)

dy

dτ
= ϵy(1− y) + φx(x)y − φy(y)z − uyy (8)

dz

dτ
=−γz + βφy(y)z (9)

With this reformulation, we can work with inherently con-
tinuous variables and also reduce the number of param-
eters simplifying the analysis. However, it is important
to emphasize that interpreting both the variables and
parameters in the new model is not as straightforward
as in the original. It is also worth noting that, under this
framework, one unit of time τ corresponds to a period of
1/rx years, for example, if rx = 0.4 we have τ = 2.5 years
whereas for smaller growth rates, like rx = 0.05, τ = 20
years. The ideal values for x and y are 1 since it would
mean there are as much prey and intermediate predator
density as the ecosystem can support.

In the next section we pose an optimal control problem in
terms of this dimensionless model to determine an optimal
harvesting policy that allows the persistence of all species.

3. OPTIMAL CONTROL

3.1 Statement of the problem

Most papers that use optimal control techniques to de-
termine optimal harvesting policies consider a cost func-
tional of the form:

∫ ∞

0

eδt [(pxx− θx)ux + (pyy − θy)uy] dt,

where δ is the discount rate of the net revenue, px =

PxrxKx, py = PyryKx and θx = rxCx

νx

θy =
rxCy

νy

(see, e.g.

Rojas-Palma and González-Olivares (2012); Tchepmo-
Djomegni et al. (2019); Dawed and Kebedow (2021).

Here, we propose a finite horizon problem since we are
interested in finding short-term policies that allow peri-
odic replanning that considers changes in the parameters.
We express the persistence condition as path constraints.
Then, the optimal control problem at hand is:

(P ) =



























Max

∫ T

0

[(pxx− θx)ux + (pyy − θy)uy] dt

s.t. (7)− (9)
(ux(t), uy(t)) ∈ U [0, T ]− a.e.
(x(0), y(0), z(0)) = (x0, y0, z0),
(x(t), y(t), z(t)) ≥ (xm, ym, zm), ∀t,

where U = [0, uxM ] × [0, uyM ] and the last inequality
is componentwise. Note that uxM represents the maxi-
mum harvesting effort Ex that can be made, multiplied
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by νx/rx. Similarly, uyM corresponds to the maximum
possible value of Ey multiplied by νy/rx.

We solve an illustrative example using the Imperial Col-
lege of London Optimal Control Software (ICLOCS2) to
interface the interior point optimizer (IPOPT). We con-
sider parameters similar to those in Dawed and Kebedow
(2021) and Holling functional responses of type II. To
partially validate our results, we use necessary optimality
conditions derived in Vinter (2000).

To do so, first, observe that the problem can be reformu-
lated in Mayer form as:

(PM ) =



























Min −w(T )
s.t. (7)− (9)

ẇ = P (s, u),
u(t) ∈ U, [0, T ]− a.e.
s(0) = s0,
gi(s) ≤ 0, i = 1, 2, 3, ∀t ∈ [0, T ] .

where s = (x, y, z, w), u = (ux, uy) denote the state and
the control, respectively,

P (s, u) = (pxx− θx)ux + (pyy − θy)uy, (10)

U = [0, uxM ]× [0, uyM ] is the control set, the initial con-
ditions are s(0) = (x0, y0, z0, 0) and the path constraints
are given by

g1(s) = xm − x(t) ≤ 0, g2(s) = ym − y(t) ≤ 0,

g3(s) = zm − z(t) ≤ 0

For a state function s : [0, T ] → R
4, we say that the

constraint gi is active at t0 ∈ [0, T ] if gi(s(t0)) = 0.

Remark 3.1.1. If the third constraint is active in a
nontrivial interval [t0, t1] ⊂ [0, T ], called boundary inter-
val, this would imply not only ż = 0 but also ẏ = 0,
i.e., y ≡ y∗, as a consequence, if uy is also constant in
that interval, then x ≡ x∗, which means that (x∗, y∗, zm)
are the coordinates of a persistence equilibrium point epit
(corresponding to Epit) in which the system will remain
throughout the interval.

Another implication of the previous observation is that if
ym < y∗, then the second and third constraints cannot
be simultaneously active within a nontrivial interval, as
having y ≡ ym would result in ż < 0.

3.2 Necessary Conditions

To state the theorem mentioned in this section, we
employ the following standard notation: C(I,Rn) and
W 1,1(I,Rn) denote sets of continuous and absolutely con-
tinuous functions, respectively, defined on I and taking
values in R

n. Additionally, C⊕(I,Rn) represents the ele-
ments of the dual space C∗(I,Rn) that assign nonnegative
values to nonnegative-valued functions, while supp{µ}
signifies the support of a measure µ.

The Hamiltonian function for this problem is given by:

H(s, q, u) = qx(x(1− x)− κφx(x)y − uxx)

+ qy(ϵy(1− y) + φx(x)y − φy(y)z − uyy)

+ qz(−γz + βφy(y)z)

+ qw(pxx− θx)ux + (pyy − θy)uy

By Vinter (2000)[Theorem 9.5.1], if (s̄, ū) is an optimal
solution for (PM ) then there exists p ∈ W 1,1

(

[0, T ] , R4
)

,
λ ≥ 0, µi ∈ C⊕ (0, T ), (i = 1, 2, 3) satisfying:

i) Nontriviality condition: (p, {µi}
3
i=1 , λ) ̸= 0

ii) Costate equation: −ṗ = Hs(s̄(t), q(t), ū(t))
iii) Transversality condition: q(1) = (0, 0, 0, λ)
iv) Maximum condition:

H(s̄(t), q(t), ū(t)) = max
u∈U

H(s̄(t), q(t), u)

v) For i = 1, 2, 3, we have supp {µi} ⊂ Ii(s̄)
vi) There exists a constant r such that

H(s̄(t), q(t), ū(t)) = r − a.e.

where

q(t) :=























p(t)−

∫

[0,t)

3
∑

i=1

eiµi(dζ) if t ∈ [0, T )

p(1)−

∫

[0,T ]

3
∑

i=1

eiµi(dζ) if t = T

ei is the i-th element of the canonical base of R4 and

Ii(s̄) = {t ∈ [0, T ] | gi(s̄(t)) = 0}

Since the controls appear linearly in the Hamiltonian,
by condition iv) we know that the optimal control will
be either, bang-bang or singular. Then, by conditions ii)
and iii), we have that qw ≡ λ, therefore, the switching
functions are given by

Q1(s̄(t), q(t), ū(t)) = x(λpx − qx)− λθx
Q2(s̄(t), q(t), ū(t)) = y(λpy − qy)− λθy

Regarding normality, (i.e. λ = 1), an essential condition
to avoid loosing information from the cost functional, it
becomes apparent that if none of the state constraints are
active, the previous conditions hold in normal form.

4. NUMERICAL SOLUTION

To illustrate this approach we are going to consider a
Holling functional response of type II which is, as far as we
know, the most studied type in the literature. This Holling
response is characterized by a decelerating intake rate,
which follows from the assumption that the consumer is
limited by its capacity to process food.

We use the following parameters: κ = 0.15, ϵ = 0.5, β =
0.3, γ = 0.04. This choice was made because in Dawed
and Kebedow (2021), these values were also selected for
the case where both Holling responses were type II. It
is worth recalling that that paper discussed non-selective
harvesting.

Congreso Nacional de Control Automático 2023,

25-27 de Octubre, 2023. Acapulco, Guerrero, México.

41 Copyright© AMCA, ISSN: 2594-2492



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Optimal controls

u
x

u
y

Fig. 2. Optimal controls are bang-bang. They are dif-
ferent in a nontrivial interval. Recall, here the τ
units of time are r−1

x then, for this initial conditions,
the calculations suggest that harvesting of the prey
should commence at approximately 1.45τ and con-
tinue thereafter with maximum effort. Meanwhile,
harvesting of the intermediate predator should com-
mence at 1.6τ and also continue with maximum effort
until the end of the time horizon.

For the cost functional, we choose the values px = py =
5 and θx = 1.5, θy = 2 to make sure the profit is
nonnegative, otherwise, the harvest would result in a loss.
We also assume U = [0, 1]

2
, as for the minimum values

defining the path constraints, we take xm = 0.15 and,
taking into account that for these parameters any y <
0.22 would drive z → 0 (a scenario we aim to prevent),
we consider ym = 0.2 and zm = 0.1. For the necessary
conditions to provide useful information, (see e.g. Vinter
(2000)) we need to prevent path constraints from being
active at t = 0, then, we choose s(0) = (0.2, 0.4, 0.3, 0) and
a time horizon of T = 2. The problem is implemented by
(ICLOCS2), using the large-scale nonlinear optimization
solver Ipopt and an error tolerance of 10−9. With these
parameters, we obtain a normal solution in 7.3335 CPU
time and a maximum profit of 0.6451.

As shown in Figure 2, the computed optimal controls
are bang-bang and they are different in a nontrivial
interval, a situation which is not possible with the original
formulation in Dawed and Kebedow (2021). Based on
the computed solution, the initiation of prey harvesting
should occur earlier. It is worth noting that the duration
of the interval where the control policies differ increases
in proportion to the disparity in effort costs.

The computed optimal states are illustrated in Figure 3.
It is evident that the difference between the initial and
final values is minimal. In fact, there is a slight increment
in the stock of the harvested species. However, the value of
z has decreased. We must keep in mind that in Dawed and
Kebedow (2021), a scalar control and a different optimal
control problem were considered. However, in relation
to a possible comparison with that work concerning the
impact of harvesting on the species population, we can
observe in Figure 3 of the said paper that, when utilizing
the one-dimensional control h = 0.3 with the same
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1
Optimal state trajectories

x
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Fig. 3. Optimal states do not approach the boundary
constraint. For the prey, we observe the following
population dynamics: it initially constituted 20% of
Kx, increased to 52% before the onset of harvesting,
and ultimately settled at 40% by the end of the ana-
lyzed period. As intermediate predator’s population
started at 40% of Ky, rose to 60% before harvesting
began, and concluded at 45%. Top predator’s popula-
tion remained quite stable, with only a slight decline
being observed.
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Adjoint Variables

q
x

q
y

q
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Fig. 4. Costates are continuous as a result of the con-
straints not being activated. We also observe that
all of them converge to zero, as expected due to the
transversality condition and qx and qy, both exhibit
a peak when the harvesting begins.

parameters and initial conditions, the values of x stabilize
around 0.7, while those of y and z exhibit cyclic behavior.
It is also noteworthy that in that case, the time horizon is
much larger than the one we are considering here. Figure
4 displays the computed costates. Given that the path
constraints remain inactive, the measure µi is zero for
i = 1, 2, 3. Consequently, the costates exhibit continuity
and they end at zero, as expected.

In Figures 5, 6 and 7 we display the results obtained
for the same data but larger values of x0 and y0. The
most notorius difference is that, now, the optimal control
corresponding to harvesting of intermediate predator is
singular in a subinterval, another situation that is not
possible to achieve with a scalar control. We also observed
that the CPU time increased to 17.

Congreso Nacional de Control Automático 2023,

25-27 de Octubre, 2023. Acapulco, Guerrero, México.

42 Copyright© AMCA, ISSN: 2594-2492



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Optimal input sequences

u
x

u
y

Fig. 5. The optimal control corresponding to the har-
vesting of prey ux always takes its maximum value,
whereas uy is singular in a subinterval.
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Fig. 6. Optimal states do not reach the boundary con-
straints. For the prey, it initially occupied 90% of Kx

and gradually decreased to 32%. The intermediate
predator’s population began at 90% of Ky, remained
stable at 47%, and then declined to 22%. The top
predator’ population is slightly increased.
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Fig. 7. Once more, the costates are continuous and all of
them converge to zero. Now only qy, has corners at
the endpoints of the interval where uy is singular.

5. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a new approach to use optimal
control techniques in the search for optimal harvesting
policies that guarantee the persistence of the species
in a tritrophic food chain where prey and intermediate
predator are harvested. We consider the harvesting to be

selective. Therefore, the harvesting effort is represented
by a vector control variable. Numerical simulations using
ICLOCS2 show that this approach is efficient for small
time horizons and functional costs that combine the
profits from both harvests. It would be worthwhile to
examine how the results are affected by considering profits
separately, as conflicting interests may arise. Naturally, a
more comprehensive analysis of the system’s qualitative
behavior is necessary. This analysis can provide insights
into the selection of appropriate path constraints for each
Holling-type response, establishing conditions to ensure
applicability to real-world data, and conducting a rigorous
assessment of the model’s robustness to determine how
sensitive it is to uncertainties in the parameters. We defer
these aspects to future research, including the pursuit of
finding the optimal harvesting policy through the solution
of an optimal control problem with boundary constraints,
rather than path constraints.
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