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Abstract:

This paper deals with the design of a sliding mode observer allowing to estimate the state vector
of a nonlinear dynamical cardiovascular system linearly unobservable. This state estimation is
used for detecting faults to study the problem of cardiovascular anomalies that can originate
from variations in physiological parameters and deviations in the performance of the heart’s

mitral and aortic valves.

Keywords: Cardiovascular system, normal form, sliding modes, unobservable states,

1. INTRODUCTION

Cardiovascular diseases (CVDs) continue to be the lead-
ing cause of death worldwide (Organization (June 2023)).
Therefore, many studies have been devoted to modeling
the CVS to well understand its behavior and to find
new reliable diagnosis techniques (Traver et al. (2022),
Ledezma and Laleg-Kirati (2012), Laleg-Kirati et al.
(2015), Fénod and Krokavec (2012)). Mathematical mod-
els have emerged as valuable tools, offering simpler and
less expensive experiments compared to in vitro heart
experiments [Korakianitis and Shi (2006), Simaan (2008),
Ferreira et al. (2005), Traver et al. (2022)].

Fault detection and localization methods for systems rep-
resented using a dynamic model include those based on
the generation of fault indicators (often called residu-
als) calculated as the difference between measurements
taken on the real system and estimates calculated by
an observer. Numerous results based on linear models in
particular have been published in a variety of situations.
However, when we wish to represent the behavior of a
system using a nonlinear model, the design of observers
is generally more delicate. For nonlinear systems, observ-
ability analysis, there are no simple general techniques
to design an observer for all types of nonlinear systems.
In this paper, we use the cardiovascular system model
as introduced by Simaan (2008), Ledezma and Laleg-
Kirati (2012), and Belkhatir et al. (2014). We propose
a methodology for detecting faults, aiming to address
the challenge of identifying cardiovascular anomalies that
may arise because of variations in physiological parame-

ters and irregularities in the heart’s performance’s mitral
and aortic valves. The SCV model presents two prin-
cipal difficulties: First, the SCV system has a hybrid
aspect due a natural consequence of the presence of valves
(aortic and mitral). Depending on the open or closed
state of these valves, the cardiac cycle is divided into
four operating modes. Second, the linear part of the
model SCV is not observable (Krener and Isidori (1983),
Boutat-Baddas (2002) and Serrano-Cruz et al. (2021))
(i.e. does not respect Brunovsky’s observability rank cri-
terion (Brunovsky (1970)). In this paper, we consider
the observer design problem for state estimation in the
cardiovascular system and to take full advantage of the
structural properties of the system, our idea is to design
a sliding mode observer, that allows us to solve the prob-
lems of observability singularities [Boutat-Baddas (2002)
and Serrano-Cruz et al. (2021)].

Sliding-mode observers use techniques based on variable-
structure or sliding-mode system theory (see Drazenovic
(1969), Utkin (1977), Utkin (1992)). The sliding-mode
observer is an observer whose correction term is a sign
function. The principle comprises of using discontinuous
functions to force the dynamics of observation errors to
converge towards a variety known as the sliding sur-
face. The attractiveness of this surface is ensured by
conditions called slip conditions, the dynamics of which
are computed using the equivalent ordering method (see
Drakunov (1992), Drakunov and Utkin (1995)). A so-
called step-by-step convergence strategy is performed to
ensure convergence of each state variable one after the
other in finite time (see Barbot et al. (2002), Floquet and
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Barbot (2007), Barbot and Floquet (2010), Y. Shtessel
and Levant (2014)). One of the main features of these
observers is their robustness against external disturbances
and modeling errors or system uncertainties, in addition
to the property of fast, finite-time convergence of obser-
vation errors.

The paper is organized as follows, in section 2 we will
present a briefly describes the considered nonlinear model
of the cardiovascular system and after an analysis of
the observability of the cardiovascular system, we will
present a sliding modes observer design. Section 3, the
CVS model for detection of anomalies is presented and
2 types of faults in the mitral and aortic valves are con-
sidered, based on the obtained results, some simulation
results are presented to show how this design has the
ability to estimate system states to monitor the activity
cardiovascular. Finally, section 4 presents the conclusions.

2. OBSERVABILITY ANALYSIS AND OBSERVER
DESIGN OF THE CARDIOVASCULAR SYSTEM

2.1 Presentation of the cardiovascular system

Let us consider the cardiovascular system presented in
Diaz Ledezma and Laleg-Kirati (2015) and Simaan et al.
(2008):

Fig. 1. Model of the cardiovascular system.

In this model, voltages are analogous to pressure and cur-
rents are analogous to blood. The circuit model in Figure
1 represents the heart’s left ventricle hemodynamics. This
model comprises the following parts:

1) Preload: is represented by the pulmonary circulation
and the heart left atrium are represented are repre-
sented by the capacitance, Cg; the mitral valve is
represented by resistor Ry, and ideal diode D);; the
aortic valve is represented by resistor R4 and ideal
diode D 4; a fourth capacitor is introduced to account
for the compliance of the aorta Cjy.

2) Afterload: is represented by the systemic circulation
is modeled as a four-element Windkessel model com-
prising (Rc, Lc, Rs, Cs).

The left ventricle is represented by a time-varying compli-
ance C(¢), which is the inverse of the ventricle’s elastance
function E(t). The behavior of the left ventricle is mod-
eled as C(t) = %, where E(t) is relates to the ventricle’s
pressure and volume according to an expression of the
form E(t) = (Emaz — Emin) En(tn) + Epin where

(%)149

- 1
En(tn) = 1.55 (1 " (54,;)1‘9> (1 - (f%)21‘9> (1)

Ep(tn) is the normalized elastance, t,, = ¢/(0.2+0.15 4%,

with Hp is the heart rate expressed in beats per minute
(bpm), Epee = 2 and Ey, = 0.06 mmHg/ml. Let the

vector u(t) € R? be the natural input vector representing
the mitral valve Djs and aortic valve D4 given by:

_J0 2 <a _J 0,z <4
DM_{l,xzle’DA_{l,mZu (2)

where Dy and D4 are the control inputs sequence of the
system. Table 1 shows the system parameters.

Table 1. Physiological meaning of the model

variables  name Physiological parameter

z1(¢) LVP(t) Left ventricular pressure (mmHg)
z2(t) LAP(t) Left atrial pressure (mmHg)
z3(t) AP(t) Arterial pressure (mmHg)

x4(t) Ao(t) Aortic pressure (mmHg)

x5(t) F(t) aortic flow (ml/s)

Now, we present the equations of this system are defined
by the following model:

) —C(¥) Dyr ( ) Dy ( )

& = P 1 —T2) — ——— (T1 — T4
Cl(t) Ct)Rm ) C(t)Ra

— B 2D

&2 RaCn (x3 — x2) + Crlinr (1 —x2) Dy

&3 = ! (x2 —x3) + —x5 (3)
RSIC'S s

N 20D

&y s x5 + OiR (x1 —24) Dy

b — Ly L Bol

T5 = LS xr3 LS 4 LS 5

with y; = x5 and y» = x4 are the outputs of CVS. It is
important to note that the measurements considered can
be obtained non-invasive, thanks to some recent devices:
N-point moving average Xiao et al. (2018) and wearable

Doppler ultrasound patch Emile S. Kenny (2021).
2.2 Observability analysis

Consider the following change of coordinates:

2 = a5

1
24 = ——u3
Ls
I 1 1 (4)
23 = — z3
LsRsCgs LsRsCgs
2 _
2] = x4
z = C(t)z1(t)

We obtain directly the quadratic normal form of the CV
system, as a result, we have:

. Rc
fa=—Tz +zp+ B
Lg 1
1 1 1
25 = — 21+ 2
2 lecs 1 3
.1 1 131 131 131 132
23 = —————27 — %23 — k3{zzu1 — k3{zau1 — ka5z5us3 5
3 LsRsC2 1 3 3123 2122 2223 (5)
.2 21 _1 2 2
1= Bz — iUy — ———25Ug
1 U CaRa Y CaRa 2
.2 22 1 S 1 2 2 1 4
25 =k57z3u1 — ——2z5u1 + —2zjug — ——z5uU3 — —25U4
2 3173 Ry 2 Ra L Ray 2 Ra 2
12 _ 1 313 _ 1 1 13 _ 1 13 _
where g2 = 8% = mien + moos ki = oo ket =
1 13 _ 1 g2l = =L k22 = _LsRsCs
RsCsCrRa 722 LsRsCsCrRM’ Ca 731 Ry
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— — — 1 — 1
and w1 =Dy, Us =Dy, Us =D &0y and uyq =Dag-
For the considered cardiovascular system the resonant
terms are ki3z3us, k3323ua, k2222us and k?222us. As a result,
thanks to resonant terms k31z2us and kijusz2 we can
recover the observability for 23.

Now, we will do a structural analysis of observability
applied to the CVS model (5). For this, let O the ob-
servability matrix given by:

T
O = [dy1,dy2,dLsy1,dLsy2, dL3y: | (6)
which gives 1 0 0 0 0
0 0 0 1 0
R
-=¢ 1 0 pg© 0
o-| D A g
B8 0 0 ——u u.
R CaRa ° CaRa
My —RE 0 Ml 5
1 _ RZ 12 521 _ B12u
where M}, = i rzos HA2AM MY, = i — &on>- Then,
-1
det(O) Ug.
CARA

In the literature, we call the observability singularity
manifold or the unobservability submanifold the subset
S given by

S = {z € IR®/det[dh1,dh2,dLh1,dL}h:]" =0}

Then, for the cardiovascular systems considered we have:

S = {z € IR5/C ;Am :o} =5,

when CVS evolves on .S we lose the linear and nonlinear
observability. Then,

(1) If ug # 0, then rank(O) = 5 and therefore we recover
the quadratic observability of 23.

(2) If ug = 0, then rank(O) = 4 and therefore we lose the
observability of 3.

2.3 Sliding mode observer design

In this subsection, we will present the observer structure
that takes into account quadratic observability singulari-
ties due to either state separation or universal input. This
method is based on the step-by-step sliding mode ap-
proach (Barbot et al. (2002), Floquet and Barbot (2007),
Barbot and Floquet (2010)). We assume that the state z{

and 27 are directly measurable, but the others are not.
The sliding mode observer is given by:

2= 7L—§z% + 23 + 81222 4 5lsign (z} - 2%)
2% = — lecs z% + 23 + E%&%sign (2% — 2%)
2= WZl + B3z L k222w + kA3 2hug + kA3 22us
+ Egagsign (25 - 23) (8)
2 - gl C } (zfm +f§u4) + 5fslign (zf - 2%)
32 S s1 52 2
z; = kgllziul - @,:21'“ — S—Mz;ug + ?AZlUQ
_ R—Az2u4 + E7é5sign (z2 - 22)

In system (8) the auxiliary components Z; are calculated
algebraically as follows:

S S UESI BS |
=2 +5131971('21 —21)

C E
32 = 32 MEaéfsign(z% —22)
s + ESA -1
7 = 21 4 6)sign(z — 2) or
1 _ 2 . =2 22
2= 05sign(z5 — 25)

kZu; + Egy — 1

with the following conditions:

if 21 = 2 and 22 = 2? then E} = E? = 1 otherwise E} =
E? =0,

if z% =z} and B! = F? =1 then El =1 otherwise E} =0,
if u; =1 then Egj; =1 otherwise Egy =0,

if u4 =1 then Eg4 =1 otherwise Egq = 0.

Now, we present the proof of the convergence of the
observer (8). The study of the observer’s stability and
convergence uses equivalent vector methods (Drazenovic
(1969)). The observer convergence strategy is carried out
step by step on different sliding surfaces and ensures
convergence of the observation error in 3 steps and in
finite time to zero in the Lyapunov sense (Barbot et al.
(2002), Floquet and Barbot (2007), Barbot and Floquet
(2010)).

proof 2.1. The dynamics of the observer error (e = z — 2)
is written:
. Rc
él = ——el+e 14+ B12e2 — 5lsign (z%le)

I%S
él = —L—el+e3+E152szgn (22 —22)

S
éx = (B 4+ kidur)ed + kddured + kiSuze2 — Eiodsign (zé 7z31,)
1 1

12 21 2 2 _ 22
é] = el — ———wuge? — ———c3uy + 62sign (22 — 2
1=28 OaR, 24 Ci1,%24119(11 1)
52 S 1 2
é2 = k3elup — —e¢ — e3ug + —eJus — —ciu
2 3131Rle Ry 2" T Ry, 12T Ry, M

+ E262sign (23 — 2%)

e Step 1: Assume 2] (0) # 2}(0) and 22(0) # 22(0) and as
El = E} = F? =0 in the first step, we obtain the following
observation error dynamics:

. R N
é = —L—Ce}—s—e%—&-b’m — 8}sign (z —z%)
S
. Rc
e% = fL—ei + e3
-1 1% 1 13, 1 13, 2
é3 = (B + k311&1)63 + k21ud62 + kjsuzes
-2 21,1 2 2 4 2 32
ée] = B — e — e2+46 szgn(z fz)
1 €1 CaRal T CaRA2 1 1 1
. s u3 u2 Ugq
2 = kPeluy - LS olyy - Wz M2 2 U4
Ry Ry Ry Ry

Let 51 = {e} = €2 = 0} be the sliding surface and the

1,2 242
Lyapunov function V! = % and V! = % The sliding
surface is attractive if and only if V! = elel < 0 and
V2 =e2¢2 <0, then

el (7%e%+e§+ﬁ12 *51&9”(2 *Zl)> <0 and
(- - o () <
By choosing, §! > He%Hmax and 62 > ||e§Hmax,

a ﬁnite time 7; > 0 such that vt > n we have 2! = 2],
32 =22 and E} = E?2 = 1. Then ¢! = ¢2 = 0. Therefore

e2 + 62sign (

there exists

Copyright® AMCA, ISSN: 2594-2492
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72 =21 4 51sign (z% - 2%) and

CaR
22+AA

E252sign (z% - 2%)

So we can see that when us = 0, 22 tends to infinity,
meaning that observability singularity occurs. Thus, to
avoid the explosion of 23 we introduce a Ega as follows: If
ug = 0 then Ess = 0 otherwise Eg4 = 1. Then 22 becomes:

- CaRaEsa .
2 2 2 2
22 4 mE 252 sign (z1 — Zl)

And consequently, by choosing, 1 > [[e}|| and 6} >
max

€3]], there exists a finite time r > 0 such that vt >~
we have el =¢? =0 and 2} =2 and 22 = 22.

e Second Step: The alm of this step is to reach e} = €2 =
0. So Vt > 1, we have 2] = 21 and 22 = 22.

As,z}_z} and 22 = 22 then E} =1, E2:1thene%=0
and e2 = 0 for all t > =~ then' ¢ = 0 and é2 = 0 then

consequently, invoking the equivalent vector, z} = 2 and
72 = 22, we obtain:

el =0

= e} + 03sign (2% — 2%)

b = (8% + kifu)eh

e1 =0

k22eluy + 82sign (23 - 23)

4]
N
I

[\
N
Il

To do this, let’s pose the Lyapunov function:

2
and V2 = (81) <e2) . The sliding surface
Sy = {ei =el=el=e3=0} i is attractlve if and only if

V21 _ (51) (52)

V21 = e%é% = e% ((23 + 6251gn (z2 — 22)) <0 and
VE = e3é2 = &2 (k%%e:)’ul + 62sign (z2 — 22)) <0

By choosing, 65 > ||e3 and 62 > ||

, there exists
max

max

a finite time 7 > 7 > 0 such that vt > r, we have 21 = 24,

22 =22 and E} = E? = E = 1. Then ¢} = ¢2 = 0. Therefore
2 = 25 + 0ysign (73 — 23) or

2=z 82sign (23 - 2;)

_
kg%llq
Due to the finite time convergence of the sliding mode,
there exists 7 > 71 > 0 such that vt > m, 21 = 2! = 21 and
22 = 72 = 22 then we pass to the:

e Third Step: The aim of this btep is to reach e} = el =
e? =e2=0. So Vt > 12, we have 2! = 21.

As 2{ = 2}, 28 = 2}, 22 = 22 and %2 = 22 then E} =
E? = F} =1, then consequently, invoking the equivalent
vector, Z = z, we obtain:

e =¢él=0

éé = —5§sign (2% — 73%)

2 =¢2=0

Let S3 = {el =e} = e} = e? = ¢ =0} be the sliding surface
and the Lyapunov function v} = % + (eg) <63) . The
sliding surface is attractive if and only if

Vi =elel =l ( 83 sign (Z'?l) - Zg)) <0

Then e} converges to 0 in a finite time 73 > 7o for any
value of 83 > 0 and if all conditions 41 , 43, % and 65 are
satisfied after 75.

3. CVS MODEL FOR DETECTION OF ANOMALIES
AND SIMULATIONS

In this sections, we consider faults in the inputs D, and
D4 for detecting anomalies in the mitral and aortic valves.
As described before, the valves are a inputs vector can
only have 0 or 1, this represents the ideal opening and
closing of the mitral and aortic valves. However, there
are cases when a valve either does not close completely
or does not open fully. This medical terms to refer to
these situations are valve regurgitation (faulty closing)
and valve stenosis (faulty opening). Now, we propose
to adapt the model (3) by including the following fault
vector F which describe variations acting on the mitral
valve f, and f,, aortic. The fault vector is given by
following equation:

F(t) = |:}J::Z:| ,such as: { g; z gf:]{: 9)

where Dj; and D4 are the nominal values of the real

state of the mitral valve and aortic valve, f,,, and f,, are
the faults corresponding to the mitral and aortic valves
respectively. The fault model of the SCV has the following
form:

. —C (1) U1 ( ) Us ( )
T = z1 — 1 —22) — ——— (T1 — @
T om T omry T T o R T
N _ e

&2 RsCn (x3 —x2) + Crinr (1 —22) U1

i ! (2 — z3) + ! T (10)
T3 = — —

3 Rslc's 2 @3)+ 5o

. e

2 CA:E + C{AR (x1 — x4) Uz

Tr5 = _ZIB + 7Sx4 - L 5

Remark 3.1. In observer design, U; and U, are considered
as bounded unknown inputs (Barbot et al. (2002)).

Simulations: Parameter values are (Simaan (2008)):
Cs = 1.33,Cp = 440,Rg = 1, C4 = 0.08,Lg = 0.0005,
Rc = 0.0398, Ry = 0.005 and R4=0.001. For the initial
conditions, we put z, = [0,—12¢*,6.0150¢%,60,183.3]7 and
2, = [5,—11e%,5.7143¢%,0,150]T. Figures 2 to 3 illustrate
the effectiveness of the choice of Egs and Egj; for the
good estimation 2}, zi, 2z, 22 and 22. We can see that
from the transformation presented in 4 we can obtain the
estimated states #2 and #3 from the measurable outputs.
In Figure 2, we assume that Es4 =0if uy =0 and Egy; =0
if us3 = 0. This choice ensures that state estimation is
completed within a finite time. Figure 3 presents the
states of systems (3) and the observer (8). It demonstrates
how the state estimation converges completely for all
states within a time frame of 1.5 s. We observe that the
convergence of the 2 state of the observer to 22 of the
system is dependent on the selection of Es, and Eg,,. To
recover all the information of the unobservable state z1, it
is crucial to make appropriate choices for Es, and Eg,, in
order to avoid information loss during estimation caused
by the singularity formation of u; and wus.

Remark 3.2. The simulations results show that the pro-
posed sliding mode observer is more robust than the
Kalman Filter proposed in (Diaz Ledezma and Laleg-
Kirati (2015)).

Copyright® AMCA, ISSN: 2594-2492
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Fig. 3. States of the system and the observer

In the following two different scenarios of faults are given,
the scenario 1 is mitral regurgitation and the scenario 2
is mitral regurgitation.

3.1 Case 1: Mitral Regurgitation

In this case, we consider a 50% regurgitation in the mitral
valve (i.e. f, = 0.5 when u; = 0 and f,, = 0). The
simulation of fault in the mitral valve was modeled as an
addition to the valve (1 or 0) of the input ;. This change
was introduced at time ¢ = 2.5s. In figure 4, we can see
that after the fault occurs in the mitral valve, there is a
change in the aortic valve, uz and uy have a change in the
dynamics because they depend on u; and wus. In figure
5, we can see the change in the dynamics system when
the failure occurs, blood flow decreases and pressures
change. Also, we show that the SMO can adapt to the
change in the dynamics, also the observer can reconstruct
the unobservable state when the failure occurs, but only
states x3, x4 and x5 are able to convergent again to the
true state.

3.2 Case 2: Aortic Regurgitation

In this case, we consider a 50% regurgitation in the aortic
valve (i.e. foo = 0.5 when us = 0 and f,, = 0). The
simulation of fault in the aortic valve was modeled as an
addition to the valve (1 or 0) of the input us. This change
was introduced at time ¢ = 2.5s. In the figure 6, we can
see that after the fault occurs in the aortic valve, there is
a change in the mitral valve, also uz and u4 have a change
in the dynamics because they depend of u; and us. In the
figure 7, we can see the change the dynamics system when
the failure occurs, blood flow the blood flow changes and
pressures increase. However, we show that the SMO has

the capacity to adapt to the change in the dynamics, also
the observer is able to reconstruct the unobservable state
when the failure occurs, but only states z3, z4 and x5 can
convergent again to the true state and the state x; and
To have a constant error.
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Fig. 7. States of the system and the observer with fault
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4. CONCLUSION

In this paper, the detection of cardiovascular dysfunctions
or anomalies using sliding-mode observers is presented. To
this end, we first analyzed observability for a nonlinear
cardiovascular model. Then, we proposed a sliding-mode
observer that allowed us to recover observability, despite
the fact that the cardiovascular model is not linearly
observable. Moreover, the singularities of observability are
taken into account in the construction of the sliding-mode
observer. Finally, two cases of mitral and aortic valve
failure are considered, representing a cardiac problem
(valvular regurgitation), and we can observe that the ob-
server can reconstruct the dynamics of the unobservable
state.
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