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Abstract:
This paper deals with the design of a sliding mode observer allowing to estimate the state vector
of a nonlinear dynamical cardiovascular system linearly unobservable. This state estimation is
used for detecting faults to study the problem of cardiovascular anomalies that can originate
from variations in physiological parameters and deviations in the performance of the heart’s
mitral and aortic valves.
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1. INTRODUCTION

Cardiovascular diseases (CVDs) continue to be the lead-
ing cause of death worldwide (Organization (June 2023)).
Therefore, many studies have been devoted to modeling
the CVS to well understand its behavior and to find
new reliable diagnosis techniques (Traver et al. (2022),
Ledezma and Laleg-Kirati (2012), Laleg-Kirati et al.
(2015), Fónod and Krokavec (2012)). Mathematical mod-
els have emerged as valuable tools, offering simpler and
less expensive experiments compared to in vitro heart
experiments [Korakianitis and Shi (2006), Simaan (2008),
Ferreira et al. (2005), Traver et al. (2022)].
Fault detection and localization methods for systems rep-
resented using a dynamic model include those based on
the generation of fault indicators (often called residu-
als) calculated as the difference between measurements
taken on the real system and estimates calculated by
an observer. Numerous results based on linear models in
particular have been published in a variety of situations.
However, when we wish to represent the behavior of a
system using a nonlinear model, the design of observers
is generally more delicate. For nonlinear systems, observ-
ability analysis, there are no simple general techniques
to design an observer for all types of nonlinear systems.
In this paper, we use the cardiovascular system model
as introduced by Simaan (2008), Ledezma and Laleg-
Kirati (2012), and Belkhatir et al. (2014). We propose
a methodology for detecting faults, aiming to address
the challenge of identifying cardiovascular anomalies that
may arise because of variations in physiological parame-

ters and irregularities in the heart’s performance’s mitral
and aortic valves. The SCV model presents two prin-
cipal difficulties: First, the SCV system has a hybrid
aspect due a natural consequence of the presence of valves
(aortic and mitral). Depending on the open or closed
state of these valves, the cardiac cycle is divided into
four operating modes. Second, the linear part of the
model SCV is not observable (Krener and Isidori (1983),
Boutat-Baddas (2002) and Serrano-Cruz et al. (2021))
(i.e. does not respect Brunovsky’s observability rank cri-
terion (Brunovskỳ (1970)). In this paper, we consider
the observer design problem for state estimation in the
cardiovascular system and to take full advantage of the
structural properties of the system, our idea is to design
a sliding mode observer, that allows us to solve the prob-
lems of observability singularities [Boutat-Baddas (2002)
and Serrano-Cruz et al. (2021)].
Sliding-mode observers use techniques based on variable-
structure or sliding-mode system theory (see Drazenovic
(1969), Utkin (1977), Utkin (1992)). The sliding-mode
observer is an observer whose correction term is a sign
function. The principle comprises of using discontinuous
functions to force the dynamics of observation errors to
converge towards a variety known as the sliding sur-
face. The attractiveness of this surface is ensured by
conditions called slip conditions, the dynamics of which
are computed using the equivalent ordering method (see
Drakunov (1992), Drakunov and Utkin (1995)). A so-
called step-by-step convergence strategy is performed to
ensure convergence of each state variable one after the
other in finite time (see Barbot et al. (2002), Floquet and
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Barbot (2007), Barbot and Floquet (2010), Y. Shtessel
and Levant (2014)). One of the main features of these
observers is their robustness against external disturbances
and modeling errors or system uncertainties, in addition
to the property of fast, finite-time convergence of obser-
vation errors.

The paper is organized as follows, in section 2 we will
present a briefly describes the considered nonlinear model
of the cardiovascular system and after an analysis of
the observability of the cardiovascular system, we will
present a sliding modes observer design. Section 3, the
CVS model for detection of anomalies is presented and
2 types of faults in the mitral and aortic valves are con-
sidered, based on the obtained results, some simulation
results are presented to show how this design has the
ability to estimate system states to monitor the activity
cardiovascular. Finally, section 4 presents the conclusions.
.

2. OBSERVABILITY ANALYSIS AND OBSERVER
DESIGN OF THE CARDIOVASCULAR SYSTEM

2.1 Presentation of the cardiovascular system

Let us consider the cardiovascular system presented in
Diaz Ledezma and Laleg-Kirati (2015) and Simaan et al.
(2008):

Fig. 1. Model of the cardiovascular system.

In this model, voltages are analogous to pressure and cur-
rents are analogous to blood. The circuit model in Figure
1 represents the heart’s left ventricle hemodynamics. This
model comprises the following parts:

1) Preload: is represented by the pulmonary circulation
and the heart left atrium are represented are repre-
sented by the capacitance, CR; the mitral valve is
represented by resistor RM and ideal diode DM ; the
aortic valve is represented by resistor RA and ideal
diodeDA; a fourth capacitor is introduced to account
for the compliance of the aorta CA.

2) Afterload: is represented by the systemic circulation
is modeled as a four-element Windkessel model com-
prising (RC , LC , RS , CS).

The left ventricle is represented by a time-varying compli-
ance C(t), which is the inverse of the ventricle’s elastance
function E(t). The behavior of the left ventricle is mod-
eled as C(t) = 1

E(t) , where E(t) is relates to the ventricle’s

pressure and volume according to an expression of the
form E(t) = (Emax − Emin)En(tn) + Emin where

En(tn) = 1.55

(

( tn
0.7

)1.9

1 + ( tn
0.7

)1.9

)(

1

1 + ( tn
1.17

)21.9

)

(1)

En(tn) is the normalized elastance, tn = t/(0.2+0.15 60
HR

),
with HR is the heart rate expressed in beats per minute
(bpm), Emax = 2 and Emin = 0.06 mmHg/ml. Let the
vector u(t) ∈ R

2 be the natural input vector representing
the mitral valve DM and aortic valve DA given by:

DM =

{

0, x2 < x1

1, x2 ≥ x1
, DA =

{

0, x1 < x4

1, x1 ≥ x4
(2)

where DM and DA are the control inputs sequence of the
system. Table 1 shows the system parameters.

Table 1. Physiological meaning of the model

variables name Physiological parameter

x1(t) LVP(t) Left ventricular pressure (mmHg)
x2(t) LAP(t) Left atrial pressure (mmHg)
x3(t) AP(t) Arterial pressure (mmHg)
x4(t) Ao(t) Aortic pressure (mmHg)
x5(t) F(t) aortic flow (ml/s)

Now, we present the equations of this system are defined
by the following model:










































ẋ1 =
−Ċ (t)

C (t)
x1 −

DM

C(t)RM

(x1 − x2)−
DA

C (t)RA

(x1 − x4)

ẋ2 =
1

RSCR

(x3 − x2) +
1

CRRM

(x1 − x2)DM

ẋ3 =
1

RSCS

(x2 − x3) +
1

CS

x5

ẋ4 = −
1

CA

x5 +
1

CARA

(x1 − x4)DA

ẋ5 = −
1

LS

x3 +
1

LS

x4 −
RC

LS

x5

(3)

with y1 = x5 and y2 = x4 are the outputs of CVS. It is
important to note that the measurements considered can
be obtained non-invasive, thanks to some recent devices:
N-point moving average Xiao et al. (2018) and wearable

Doppler ultrasound patch Émile S. Kenny (2021).

2.2 Observability analysis

Consider the following change of coordinates:

z11 = x5

z12 = −
1

LS

x3

z13 = −
1

LSRSCS

x2 +
1

LSRSCS

x3

z21 = x4

z22 = C(t)x1(t)

(4)

We obtain directly the quadratic normal form of the CV
system, as a result, we have:










































ż11=−
RC

LS

z11 + z12 + β12z21

ż12 = −
1

LSCS

z11 + z13

ż13 =
1

LSRSC
2
S

z11 − β13z13 − k1331z
1
3u1 − k1321z

1
2u1 − k1322z

2
2u3

ż21 = β21z11 −
1

CARA

z21u2 −
1

CARA

z22u4

ż22 = k2231z
1
3u1 −

LS

RM

z12u1 +
1

RA

z21u2 −
1

RM

z22u3 −
1

RA

z22u4

(5)

where β12 = 1
LS

, β13 = 1
RSCR

+ 1
RSCS

, k1331 = 1
CRRM

, k1321 =

1
RSCSCRRM

, k1322 = 1
LSRSCSCRRM

, β21 = −1
CA

, k2231 = −LSRSCS

RM
,
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and u1 =DM , u2 =DA, u3 =DM
1

C(t)
and u4 =DA

1
C(t)

.

For the considered cardiovascular system the resonant
terms are k1322z

2
2u3, k2122z

2
2u4, k2222z

2
2u3 and k2212z

2
2u4. As a result,

thanks to resonant terms k2112z
2
2u4 and k1323u3z22 we can

recover the observability for z22 .

Now, we will do a structural analysis of observability
applied to the CVS model (5). For this, let O the ob-
servability matrix given by:

O =
[

dy1, dy2, dLfy1, dLfy2, dL
2
fy1

]T
(6)

which gives

O =

















1 0 0 0 0
0 0 0 1 0

−
RC

LS

1 0 β12 0

β21 0 0
−1

CARA

u2
−1

CARA

u4

M1
11 −

RC

LS

1 M1
14 β12k2112u4

















(7)

where M1
11 =

R2

C

L2

S

− 1
LSCS

+β12β21,M1
14 = RC

L2

S

− β12u2

CARA
. Then,

det(O) =
−1

CARA

u4.

In the literature, we call the observability singularity
manifold or the unobservability submanifold the subset
S given by

S =
{

z ∈ IR5/ det[dh1, dh2, dLfh1, dL
2
fh1]

T = 0
}

Then, for the cardiovascular systems considered we have:

S =

{

z ∈ IR5/
−1

CARA

u4 = 0

}

= S4.

when CVS evolves on S we lose the linear and nonlinear
observability. Then,
(1) If u4 ̸= 0, then rank(O) = 5 and therefore we recover
the quadratic observability of z22 .
(2) If u4 = 0, then rank(O) = 4 and therefore we lose the
observability of z22 .

2.3 Sliding mode observer design

In this subsection, we will present the observer structure
that takes into account quadratic observability singulari-
ties due to either state separation or universal input. This
method is based on the step-by-step sliding mode ap-
proach (Barbot et al. (2002), Floquet and Barbot (2007),
Barbot and Floquet (2010)). We assume that the state z11
and z21 are directly measurable, but the others are not.
The sliding mode observer is given by:






























































˙̂z11 = −
RC

LS

z11 + ẑ12 + β12z21 + δ11sign
(

z11 − ẑ11
)

˙̂z12 = −
1

LSCS

z11 + ẑ13 + E1
1δ

1
2sign

(

z̃12 − ẑ12
)

˙̂z13 =
1

LSRSC
2
S

z11 + β13z̃13 + k1331 z̃
1
3u1 + k1321 z̃

1
2u1 + k1322 z̃

2
2u3

+ E1
2δ

1
3sign

(

z̃13 − ẑ13
)

˙̂z21 = β21z11 −
1

CARA

(

z21u2 + ẑ22u4

)

+ δ21sign
(

z21 − ẑ21
)

˙̂z22 = k2231 z̃
1
3u1 −

LS

RM

z̃12u1 −
1

RM

z̃22u3 +
1

RA

z21u2

−
1

RA

z̃22u4 + E2
1δ

2
2sign

(

z̃22 − ẑ22
)

(8)

In system (8) the auxiliary components z̃i are calculated
algebraically as follows:

z̃12 = ẑ12 + δ11sign(z
1
1 − ẑ11)

z̃22 = ẑ22 +
CARAESA

u4 + ESA − 1
E2

1δ
2
1sign(z

2
1 − ẑ21)

z̃13 = ẑ13 + δ12sign(z̃
1
2 − ẑ12) or

z̃13 = ẑ13 +
1

k2231u1 + ESM − 1
δ22sign(z̃

2
2 − ẑ22)

with the following conditions:
if ẑ11 = z11 and ẑ21 = z21 then E1

1 = E2
1 = 1 otherwise E1

1 =

E2
1 = 0,

if ẑ12 = z12 and E1
1 = E2

1 = 1 then E1
2 = 1 otherwise E1

2 = 0,
if u1 =1 then ESM = 1 otherwise ESM = 0,
if u4 =1 then ESA = 1 otherwise ESA = 0.

Now, we present the proof of the convergence of the
observer (8). The study of the observer’s stability and
convergence uses equivalent vector methods (Drazenovic
(1969)). The observer convergence strategy is carried out
step by step on different sliding surfaces and ensures
convergence of the observation error in 3 steps and in
finite time to zero in the Lyapunov sense (Barbot et al.
(2002), Floquet and Barbot (2007), Barbot and Floquet
(2010)).

proof 2.1. The dynamics of the observer error (e = z− ẑ)
is written:

ė11 = −
RC

LS

e11 + e12 + β12e21 − δ11sign
(

z11 − ẑ11
)

ė12 = −
RC

LS

e11 + e13 + E1
1δ

1
2sign

(

z̃12 − ẑ12
)

ė13 = (β13 + k1331u1)e
1
3 + k1321u1e

1
2 + k1322u3e

2
2 − E1

2δ
1
3sign

(

z̃13 − ẑ13
)

ė21 = β21e11 −
1

CARA

u2e
2
1 −

1

CARA

e22u4 + δ21sign
(

z21 − ẑ21
)

ė22 = k2231e
1
3u1 −

LS

RM

e12u1 −
1

RM

e22u3 +
1

RM

e21u2 −
1

RM

e22u4

+ E2
1δ

2
2sign

(

z̃22 − ẑ22
)

• Step 1: Assume z11(0) ̸= ẑ11(0) and z21(0) ̸= ẑ21(0) and as
E1

1 = E1
2 = E2

1 = 0 in the first step, we obtain the following
observation error dynamics:



































ė11 = −
RC

LS

e11 + e12 + β12e21 − δ11sign
(

z11 − ẑ11
)

ė12 = −
RC

LS

e11 + e13

ė13 = (β13 + k1331u1)e
1
3 + k1321u1e

1
2 + k1322u3e

2
2

ė21 = β21e11 −
u2

CARA

e21 −
u4

CARA

e22 + δ21sign
(

z21 − ẑ21
)

ė22 = k2231e
1
3u1 −

LS

RM

e12u1 −
u3

RM

e22 +
u2

RM

e21 −
u4

RM

e22

Let S1 = {e11 = e21 = 0} be the sliding surface and the

Lyapunov function V 1
1 =

(e1
1
)2

2
and V 1

1 =
(e2

1
)2

2
. The sliding

surface is attractive if and only if V̇ 1
1 = e11ė

1
1 < 0 and

V̇ 2
1 = e21ė

2
1 < 0, then

e11

(

−
RC

LS

e11 + e12 + β12e21 − δ11sign
(

z11 − ẑ11
)

)

< 0 and

e21

(

β21e11 −
u2

CARA

e21 −
u4

CARA

e22 + δ21sign
(

z21 − ẑ21
)

)

< 0

By choosing, δ11 >
∥

∥e12

∥

∥

max
and δ21 >

∥

∥e22

∥

∥

max
, there exists

a finite time τ1 ⩾ 0 such that ∀t ⩾ τ1 we have ẑ11 = z11 ,
ẑ21 = z21 and E1

1 = E2
1 = 1. Then ė11 = ė21 = 0. Therefore
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z̃12 = ẑ12 + δ11sign
(

z11 − ẑ11
)

and

z̃22 = ẑ22 +
CARA

u4
E2

1δ
2
1sign

(

z21 − ẑ21
)

So we can see that when u4 = 0, z̃22 tends to infinity,
meaning that observability singularity occurs. Thus, to
avoid the explosion of z22 we introduce a ESA as follows: If
u4 = 0 then ESA = 0 otherwise ESA = 1. Then z̃22 becomes:

z̃22 = ẑ22 +
CARAESA

u4 + ESA − 1
E2

1δ
2
1sign

(

z21 − ẑ21
)

And consequently, by choosing, δ11 >
∥

∥e12

∥

∥

max
and δ21 >

∥

∥e22

∥

∥

max
, there exists a finite time τ1 ⩾ 0 such that ∀t ⩾ τ1

we have ė11 = ė21 = 0 and z̃12 = z12 and z̃22 = z22 .

• Second Step: The aim of this step is to reach e11 = e21 =
0. So ∀t ⩾ τ1, we have z̃12 = z12 and z̃22 = z22 .
As ẑ11 = z11 and ẑ21 = z21 then E1

1 = 1, E2
1 = 1 then e11 = 0

and e21 = 0 for all t ≥ τ1 then ė12 = 0 and ė22 = 0 then
consequently, invoking the equivalent vector, z̃12 = z12 and
z̃22 = z22 , we obtain:

ė11 = 0

ė12 = e13 + δ12sign
(

z̃12 − ẑ12
)

ė13 = (β13 + k1331u1)e
1
3

ė21 = 0

ė22 = k2231e
1
3u1 + δ22sign

(

z̃22 − ẑ22
)

To do this, let’s pose the Lyapunov function:

V 1
2 =

(e1
1
)2

2
+

(e1
2
)2

2
and V 2

2 =
(e2

1
)2

2
+

(e2
2
)2

2
. The sliding surface

S2 =
{

e11 = e12 = e21 = e22 = 0
}

is attractive if and only if

V̇ 1
2 = e12ė

1
2 = e12

(

e13 + δ12sign
(

z̃12 − ẑ12
))

< 0 and

V̇ 2
2 = e22ė

2
2 = e22

(

k2231e
1
3u1 + δ22sign

(

z̃22 − ẑ22
))

< 0

By choosing, δ12 >
∥

∥e13

∥

∥

max
and δ22 >

∥

∥e13

∥

∥

max
, there exists

a finite time τ2 ≥ τ1 ≥ 0 such that ∀t ≥ τ2, we have ẑ12 = z12 ,
ẑ22 = z22 and E1

1 = E2
1 = E1

2 = 1. Then ė12 = ė22 = 0. Therefore

z̃13 = ẑ13 + δ12sign
(

z̃12 − ẑ12
)

or

z̃13 = ẑ13 +
1

k2231u1
δ22sign

(

z̃22 − ẑ22
)

Due to the finite time convergence of the sliding mode,
there exists τ2 > τ1 > 0 such that ∀t ≥ τ2, ẑ12 = z̃12 = z12 and
ẑ22 = z̃22 = z22 then we pass to the:

• Third Step: The aim of this step is to reach e11 = e12 =
e21 = e22 = 0. So ∀t ⩾ τ2, we have z̃13 = z13 .
As ẑ11 = z11 , ẑ12 = z12 , ẑ21 = z21 and ẑ22 = z22 then E1

1 =
E2

1 = E1
2 = 1, then consequently, invoking the equivalent

vector, z̃ = z, we obtain:

ė11 = ė12 = 0

ė13 = −δ13sign
(

z̃13 − ẑ13
)

ė21 = ė22 = 0

Let S3 =
{

e11 = e12 = e13 = e21 = e22 = 0
}

be the sliding surface

and the Lyapunov function V 1
3 =

(e1
1
)2

2
+

(e1
2
)2

2
+

(e1
3
)2

2
. The

sliding surface is attractive if and only if

V̇ 1
3 = e13ė

1
3 = e13

(

−δ13sign
(

z̃13 − ẑ13
))

< 0

Then e13 converges to 0 in a finite time τ3 > τ2 for any
value of δ13 > 0 and if all conditions δ11 , δ12 , δ

2
1 and δ22 are

satisfied after τ2.

3. CVS MODEL FOR DETECTION OF ANOMALIES
AND SIMULATIONS

In this sections, we consider faults in the inputs DM and
DA for detecting anomalies in the mitral and aortic valves.
As described before, the valves are a inputs vector can
only have 0 or 1, this represents the ideal opening and
closing of the mitral and aortic valves. However, there
are cases when a valve either does not close completely
or does not open fully. This medical terms to refer to
these situations are valve regurgitation (faulty closing)
and valve stenosis (faulty opening). Now, we propose
to adapt the model (3) by including the following fault
vector F which describe variations acting on the mitral
valve fm and fao aortic. The fault vector is given by
following equation:

F (t) =

[

fm
fao

]

, such as:

{

U1 = DM + fm
U2 = DA + fao

(9)

where DM and DA are the nominal values of the real
state of the mitral valve and aortic valve, fm and fao are
the faults corresponding to the mitral and aortic valves
respectively. The fault model of the SCV has the following
form:










































ẋ1 =
−Ċ (t)

C (t)
x1 −

U1

C(t)RM

(x1 − x2)−
U2

C (t)RA

(x1 − x4)

ẋ2 =
1

RSCR

(x3 − x2) +
1

CRRM

(x1 − x2)U1

ẋ3 =
1

RSCS

(x2 − x3) +
1

CS

x5

ẋ4 = −
1

CA

x5 +
1

CARA

(x1 − x4)U2

ẋ5 = −
1

LS

x3 +
1

LS

x4 −
RC

LS

x5

(10)

Remark 3.1. In observer design, U1 and U2 are considered
as bounded unknown inputs (Barbot et al. (2002)).

Simulations: Parameter values are (Simaan (2008)):
CS = 1.33, CR = 4.40, RS = 1, CA = 0.08, LS = 0.0005,

RC = 0.0398, RM = 0.005 and RA=0.001. For the initial
conditions, we put xn = [0,−12e4, 6.0150e4, 60, 183.3]T and
ẑn = [5,−11e4, 5.7143e4, 0, 150]T . Figures 2 to 3 illustrate
the effectiveness of the choice of ESA and ESM for the
good estimation z11 , z12 , z13 , z21 and z22 . We can see that
from the transformation presented in 4 we can obtain the
estimated states x̂2 and x̂3 from the measurable outputs.
In Figure 2, we assume that ESA = 0 if u4 = 0 and ESM = 0

if u3 = 0. This choice ensures that state estimation is
completed within a finite time. Figure 3 presents the
states of systems (3) and the observer (8). It demonstrates
how the state estimation converges completely for all
states within a time frame of 1.5 s. We observe that the
convergence of the ẑ22 state of the observer to z22 of the
system is dependent on the selection of ESA

and ESM
. To

recover all the information of the unobservable state x1, it
is crucial to make appropriate choices for ESA

and ESM
in

order to avoid information loss during estimation caused
by the singularity formation of u1 and u2.

Remark 3.2. The simulations results show that the pro-
posed sliding mode observer is more robust than the
Kalman Filter proposed in (Diaz Ledezma and Laleg-
Kirati (2015)).

Congreso Nacional de Control Automático 2023,

25-27 de Octubre, 2023. Acapulco, Guerrero, México.

23 Copyright© AMCA, ISSN: 2594-2492



0 1 2 3 4 5 6 7 8
0

0.5

1

0 1 2 3 4 5 6 7 8
0

0.5

1

0 1 2 3 4 5 6 7 8
0

1

2

Fig. 2. States of u3, ESM , u4 and ESA
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Fig. 3. States of the system and the observer

In the following two different scenarios of faults are given,
the scenario 1 is mitral regurgitation and the scenario 2
is mitral regurgitation.

3.1 Case 1: Mitral Regurgitation

In this case, we consider a 50% regurgitation in the mitral
valve (i.e. fm = 0.5 when u1 = 0 and fao = 0). The
simulation of fault in the mitral valve was modeled as an
addition to the valve (1 or 0) of the input u1. This change
was introduced at time t = 2.5s. In figure 4, we can see
that after the fault occurs in the mitral valve, there is a
change in the aortic valve, u3 and u4 have a change in the
dynamics because they depend on u1 and u2. In figure
5, we can see the change in the dynamics system when
the failure occurs, blood flow decreases and pressures
change. Also, we show that the SMO can adapt to the
change in the dynamics, also the observer can reconstruct
the unobservable state when the failure occurs, but only
states x3, x4 and x5 are able to convergent again to the
true state.

3.2 Case 2: Aortic Regurgitation

In this case, we consider a 50% regurgitation in the aortic
valve (i.e. fao = 0.5 when u2 = 0 and fm = 0). The
simulation of fault in the aortic valve was modeled as an
addition to the valve (1 or 0) of the input u2. This change
was introduced at time t = 2.5s. In the figure 6, we can
see that after the fault occurs in the aortic valve, there is
a change in the mitral valve, also u3 and u4 have a change
in the dynamics because they depend of u1 and u2. In the
figure 7, we can see the change the dynamics system when
the failure occurs, blood flow the blood flow changes and
pressures increase. However, we show that the SMO has

the capacity to adapt to the change in the dynamics, also
the observer is able to reconstruct the unobservable state
when the failure occurs, but only states x3, x4 and x5 can
convergent again to the true state and the state x1 and
x2 have a constant error.
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Fig. 4. States of inputs with fault fm
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Fig. 5. States of the system and the observer with fault
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Fig. 7. States of the system and the observer with fault
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4. CONCLUSION

In this paper, the detection of cardiovascular dysfunctions
or anomalies using sliding-mode observers is presented. To
this end, we first analyzed observability for a nonlinear
cardiovascular model. Then, we proposed a sliding-mode
observer that allowed us to recover observability, despite
the fact that the cardiovascular model is not linearly
observable. Moreover, the singularities of observability are
taken into account in the construction of the sliding-mode
observer. Finally, two cases of mitral and aortic valve
failure are considered, representing a cardiac problem
(valvular regurgitation), and we can observe that the ob-
server can reconstruct the dynamics of the unobservable
state.
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