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Abstract: This paper presents a novel unknown input observer for nonlinear systems which,
based on as much time derivatives of the output as its relative degree plus one, is able to
asymptotically reconstruct both the state and the unknown input for a class of nonlinear
systems. Design conditions are expressed as linear matrix inequalities thanks to a convex
representation of the nonlinear terms involved in the error system which, in turn, is obtained
from a recently appeared factorization. Examples are provided to highlight the advantages of
the proposal.
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1. INTRODUCTION

The development of unknown input observers (UIOs) is
a very active area due to its close relationship to fault
estimation and fault-tolerant control (Alwi et al., 2012,
Section 4.7), (Xu et al., 2019; Hosseini et al., 2020);
indeed, fault diagnosis and isolation (Pertew et al., 2007;
Quintana et al., 2019) and fault estimation (Tan and
Edwards, 2002; Ichalal et al., 2014) can be viewed as
determining an unknown input that may come from
actuators or sensors (Zhang et al., 2002; Bedioui et al.,
2019).

Design of UIOs is clearly a more challenging task than
designing state observers: the latter relies upon measure-
ments of the input and output while having full knowledge
of the state dynamics; the former, on the other hand, has
no access to the input signal and intends to reconstruct
it without a model of its dynamics, i.e., no explicit equa-
tion governing the input behaviour is given. This is why
some researchers have provided partial solutions based on
further assumptions, e.g., an explicit equation governing
the input dynamics or a finite number of non-zero deriva-
tives of the input (assuming it to be polynomial as in
Chua et al. (2020)). In most cases, the unknown input
is estimated by solving a set of algebraic equations, thus
circumventing the problem of lacking dynamic equations
for it Ichalal and Mammar (2019).

⋆ This work has been supported by the CONACYT scholarship

758980 and the ITSON PROFAPI CA 2023 002.

Estimating an unknown input faces deeper problems than
those just mentioned, namely, the lack of full under-
standing of the meaning of classical concepts such as
observability and detectability (both for linear (Bhat-
tacharyya, 1978; Hautus, 1983) and nonlinear systems
Pertew et al. (2005); Hammouri and Tmar (2010)), and
the possibility of reproducing a given output with an
observer that asymptotically has the same dynamics of
the system while having different input and unobserved
state signals. Indeed, in Moreno et al. (2014), the latter
situation is referred to as indistinguishability which, up
to our knowledge, has not been overcome.

Problem statement: Most proposals for UIOs are based on
nominal linear systems; attempts to design them by fully
exploiting nonlinear terms have been made by mimicking
linear parameter varying (LPV) solutions (Ichalal and
Mammar, 2015; Marx et al., 2019), which is a common
practice within the Takagi-Sugeno (TS) framework (Marx
et al., 2007; Orjuela et al., 2009; Rotondo et al., 2016).

Methodology: LPV and TS treatment of nonlinear sys-
tems, when appropriately made via exact convex rewrit-
ing (Bernal et al., 2022), have the advantage of leading to
design conditions in the form of linear matrix inequalities
(Boyd et al., 1994), which are efficiently solved via com-
mercially available software (Gahinet et al., 1995); a very
recent example of the latter is (Coutinho et al., 2022),
where nonlinear systems, in contrast with LPV and TS
approaches, are not approximate.

Contribution: This work follows the latter path for single-
input single-output (SISO) distinguishable systems, while
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proposing an observer of the input dynamics based on its
relationship with the (ρ + 1)th-order time derivative of
the output, where ρ is the relative degree of the latter
w.r.t the input. An extended observer error system is
constructed thanks to the factorization in Quintana et al.
(2021) while convex treatment of nonlinearities allows
LMI design conditions to be obtained.

Organization: Preliminaries on convex modelling, con-
struction of error systems, and Levant’s robuts differentia-
tor, are shown in Section 2. The novel UIO is developed in
Section 3; its LMI design conditions are deduced by means
of convex properties and the direct Lyapunov method; its
implementability requires the use of a finite-time conver-
gent differentiator in the absence of noises. Two examples
are presented in Section 4: a 1-input-2-output 4th-order
single-link flexible joint robot manipulator and the Van
Der Pol oscillator, both of which are subject to non-
vanishing inputs and do not hold the decoupling condi-
tion between input and output (also known as unitary
unknown input relative degree) that is usually required
in former methodologies.

2. PRELIMINARIES

Convex rewriting of expressions, factorization of error sig-
nals and Levant’s robust differentiators are the different
elements on which rely our contribution; they are briefly
presented in this section.

2.1 Convex rewriting of nonlinear expressions

Let z(·) : Rn → R be a well-defined function ∀x ∈ C ⊂ R
n;

there exists z0 and z1 such that z0 = infx∈C z(x) and
z1 = supx∈C z(x), that is, z(x) ∈ [z0, z1]. Defining

w0(x)≡
z1−z(x)

z1−z0
, w1(x)≡1−w0(x),

it can be verified that

z(x) = w0(x)z
0 + w1(x)z

1 =

1
∑

i=0

wi(x)z
i, (1)

is an identity that holds ∀x ∈ R
n while w0(x) ∈ [0, 1] and

w1(x) ∈ [0, 1] are only guaranteed ∀x ∈ C. Notice that the
right-hand side of (1) is a convex sum of constant terms.

The previous concept can be extended to a collection
of nonlinear expressions z1(x), z2(x), . . ., zr(x) as long
as they are defined ∀x ∈ C ⊂ R

n. To do this, let us
employ the following notation: let z0i = infx∈C zi(x), z

1
i =

supx∈C zi(x), i ∈ {1, 2, . . . , r}, ∀x ∈ C; then, consider the
expression f(z1, z2, . . . , zr) –it might be a scalar, vector,
or matrix– so it can be rewritten as a convex sum of its
bounds:

f(z1, z2, . . . , zr) =
∑

i∈Br

wi(x)fi,

wi
0(x)≡

z1i −zi(x)

z1i −z0i
, wi

1(x)≡1−wi
0(x),

where B = {0, 1}, i = (i1, i2, . . . , ir), wi(x) = w1
i1
(x)

w2
i2
(x) · · ·wr

ir
(x), and fi = f(z1, z2, . . . , zr)|wi(x)=1. To

illustrate the methodology, let us consider

f(z1, z2) =

[

z1(x)+2 z1(x)z2(x)
−5z2(x) −1

]

=

1
∑

i1=0

1
∑

i2=0

w1
i1
(x)w2

i2
(x)

[

zi11 +2 zi11 zi22
−5zi22 −1

]

=
∑

i∈B2

wi(x)fi

where wi(x) = w1
i1
(x)w2

i2
(x), wi

0(x) = (z1i − zi(x))/(z
1
i −

z0i ), w
i
1(x) = 1− wi

0(x), fi =

[

zi11 +2 zi11 zi22
−5zi22 −1

]

, i = (i1, i2).

Since this work is concerned with estimation, distin-
guishing measurable and unmeasurable signals is critical;
thus, when required, measurable nonlinear expressions
will be cast as convex sums using the previous defini-
tions while unmeasurable ones will adopt the following
notation: given unmeasurable expressions ζ1(x), ζ2(x),
. . ., ζs(x) that are well-defined ∀x ∈ C ⊂ R

n, define
ζ0j ≡ infx∈C ζj(x), ζ

1
j ≡ supx∈C ζj(x), j ∈ {1, 2, . . . , s},

∀x ∈ C; thus, an expression f(ζ1, ζ2, . . . , ζs) can be rewrit-
ten as:

f(ζ1, ζ2, . . . , ζs) =
∑

j∈Bs

ωj(x)fj,

ωj
0(x)≡

ζ1j −ζj(x)

ζ1j −ζ0j
, ωj

1(x)≡1−ωj
0(x),

where B = {0, 1}, j = (j1, j2, . . . , js), ωj(x) = ω1
j1
(x)

ω2
j2
(x) · · ·ωs

js
(x), and fj = f(ζ1, ζ2, . . . , ζs)|ωj(x)=1.

2.2 Factorization of error signals

Expressions of the form f(x̂) − f(x) usually arise in the
context of observer design; Lyapunov analysis employed
in such cases is based on the estimation error e = x̂− x;
therefore, factorizing such signal from the aforementioned
differences is useful, i.e., finding F (x, x̂) such that f(x̂)−
f(x) = F (x, x̂)(x̂ − x). An explicit solution to this
problem is given in Quintana et al. (2021) for expressions
holding the differential mean value theorem. Instead of
introducing the somewhat cumbersome notation in the
referred work, we will show the main ideas by means of
suitable examples.

Polynomial expressions are easily handled by means of ad-
dition and substraction of proper terms that successively
lower the polynomial degree, thus allowing factorization
of the error signal in an infinite number of ways; for
instance, given ei = x̂i − xi, i ∈ {1, 2, 3}, e = [e1 e2 e3]

T ,
we have:

x̂1x̂2x̂3 − x1x2x3 = x̂1x̂2x̂3 − x̂1x2x3 + x̂1x2x3 − x1x2x3

= x̂1(x̂2x̂3−x2x3) + x2x3(x̂1−x1)

= x̂1(x̂2x̂3−x̂2x3 + x̂2x3 − x2x3) + x2x3e1
= x̂1 (x̂2 (x̂3 − x3) + x3 (x̂2 − x2)) + x2x3e1
= x̂1x̂2e3 + x̂1x3e2 + x2x3e1 = [x2x3 x̂1x3 x̂1x̂2]e.

Another option is
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x̂1x̂2x̂3 − x1x2x3 = [x2x3 x̂1x̂3 x̂1x2] e.

Non-polynomial expressions are treated in a similar way
by means of its Taylor series up to any degree of accuracy.

2.3 Levant’s robust differentiator

The Levant’s robust differentiator for a function f(t) has
the following structure (Levant, 2003):

v̇0 =− λ0 |v0 − f(t)|
s

s+1 sign (v0 − f(t)) + v1

v̇1 =− λ1 |v1 − v0|
s−1

s sign (v1 − v0) + v2
... (2)

v̇s−1 =− λs−1 |vs−1 − vs−2|
1
2 sign (vs−1 − vs−2) + vs

v̇s =− λssign (vs − vs−1) ,

where parameters λi > 0, i ∈ {0, 1, . . . , s}, are chosen
according to the Lipschitz constants of the successive time
derivatives of the function under consideration. In the
absence of input noises, after a finite time of a transient
process, vi = f (i)(t), i ∈ {0, 1, . . . , s}. The precision of
the estimation as well as the convergence time can be
improved by increasing the order s of the differentiator
beyond the maximum order sought.

3. MAIN RESULTS

Consider a SISO nonlinear system of the form

ẋ(t) = f(x) + g(x)u(t), y(t) = h(x), (3)

where f(·) : Rn 7→ R
n, g(·) : Rn 7→ R

n, and h(·) : Rn 7→ R

are sufficiently smooth vector fields in a domain of interest
Cx ⊂ R

n, x ∈ R
n is the state, u ∈ Cu ⊂ R the input, and

y ∈ R the system output. Both the state x and the input
u are assumed unknown.

Consider system (3) has relative degree ρ; this means
(Khalil, 2014):

y(ρ)(t) = Lρ
fh(x) + LgL

ρ−1
f h(x)u(t), (4)

while LgL
i−1
f h(x) = 0 for i ∈ {1, 2, . . . , ρ − 1},

LgL
ρ−1
f h(x) ̸= 0, where Lf (·) and Lg(·) denote the Lie

derivatives of the arguments with respect to the referred
vector fields.

From (4) we have that (omitting arguments when conve-
nient):

y(ρ+1) =
d

dt

(

Lρ
fh(x) + LgL

ρ−1
f h(x)u(t)

)

=
∂

∂x

(

Lρ
fh(x)

)

ẋ+

(

∂

∂x

(

LgL
ρ−1
f h(x)

)

ẋ

)

u+LgL
ρ−1
f h(x)u̇

=
∂

∂x

(

Lρ
fh
)

(f+gu)+

(

∂

∂x

(

LgL
ρ−1
f h

)

(f+gu)

)

u+LgL
ρ−1
f hu̇

=Lρ+1
f h+

(

LgL
ρ
f h
)

u+
(

LfLgL
ρ−1
f h

)

u+
(

L2
gL

ρ−1
f h

)

u2+LgL
ρ−1
f hu̇,

which allows solving for u̇ as follows:

u̇(t) =
y(ρ+1)−Lρ+1

f h−
(

LgL
ρ
f h+LfLgL

ρ−1
f h

)

u−
(

L2
gL

ρ−1
f h

)

u2

LgL
ρ−1
f h

≡q
(

y(ρ+1), x, u
)

. (5)

As customary in the UIO design problem, x and u are
unknown, but the structure of the vector fields f , g, h,
and q is known; thus, an observer of the form
[

˙̂x
˙̂u

]

=

[

f(x̂)+g(x̂)û
q
(

y(ρ+1),x̂,û
)

]

+

[

L1(y,x̂,û)
L2(y,x̂,û)

]

(ŷ−y), ŷ=h(x̂), (6)

can be proposed, where x̂ ∈ R
n is the observer state,

û ∈ R is the observer input, ŷ ∈ R is the observer
output, and L1(y, x̂, û) ∈ R

n, L2(y, x̂, û) ∈ R are possibly
nonlinear observer gains to be found.

Defining the observer errors ex ≡ x̂−x and eu ≡ û−u and
using the factorization in Quintana et al. (2021), briefly
described in the previous section, we have that the error
dynamics are:
[

ėx
ėu

]

=

[

f(x̂)+g(x̂)û−f(x)−g(x)u
q
(

y(ρ+1), x̂,û
)

−q
(

y(ρ+1), x,u
)

]

+

[

L1(y,x̂,û)
L2(y,x̂,û)

]

(h(̂x)−h(x))

=

[

F1(x, x̂, u, û) F2(x, x̂, u, û)
Q1(y

(ρ+1), x, x̂, u, û) Q2(y
(ρ+1), x, x̂, u, û)

] [

ex
eu

]

+

[

L1(y, x̂, û)
L2(y, x̂, û)

]

[H(x, x̂) 0]

[

ex
eu

]

, (7)

where F1(x,x̂, u,û) ∈ R
n×n, F2(x,x̂, u,û) ∈ R

n×1, H(x, x̂) ∈
R

1×n, Q1(y
(ρ+1),x,x̂,u,û) ∈R

1×n, and Q2(y
(ρ+1),x,x̂,u,û) ∈

R
1×1, must satisfy F1(x,x̂, u,û)ex+F2(x,x̂,u,û)eu = f(x̂)+

g(x̂)û − f(x) − g(x)u, H(x, x̂)ex = h(x̂) − h(x), and
Q1(y

(ρ+1),x,x̂,u,û)ex+Q2(y
(ρ+1),x, x̂,u,û)eu=q

(

y(ρ+1),x̂,û
)

−

q
(

y(ρ+1),x,u
)

.

Convex treatment of nonlinear expressions F1(·), F2(·),
Q1(·),Q2(·), andH(·), comes now at hand to find possibly
nonlinear gains L1(·) and L2(·) capable of guaranteeing
limt→∞ e(t), where e(t) = [eTx (t) eu(t)]

T ; shorthand
notation He(M) = M +MT will be employed:

Theorem 1. The origin of the nonlinear error system (7) is
asymptotically stable if there exists matrices P1 ∈ R

n×n,
P2 ∈ R

n×1, P3 ∈ R, Nk
1 ∈ R

n×1, Nk
2 ∈ R, k ∈ B

r, such
that the following LMIs hold ∀ i,k ∈ B

r and ∀ j ∈ B
s:

[

P1 P2

PT
2 P3

]

>0, He

([

P1 P2

PT
2 P3

][

F ij
1 F ij

2

Qij
1 Qij

2

]

+

[

Nk
1

Nk
2

]

[

H ij 0
]

)

<0,

(8)
provided that for l ∈ {1, 2}

Fl(x,x̂, u,û)=
∑

i∈Br

∑

j∈Bs

wi(y,x̂,û,y
(ρ+1))ωj(x,x̂, u,û)F

ij
l ,

Ql(y
(ρ+1),x,x̂,u,û)=

∑

i∈Br

∑

j∈Bs

wi(y,x̂,û,y
(ρ+1))ωj(x,x̂, u,û)Q

ij
l ,

H(x,x̂)=
∑

i∈Br

∑

j∈Bs

wi(y,x̂,û,y
(ρ+1))ωj(x,x̂, u,û)H

ij,

Ll(y,x̂,û) =
∑

k∈Br

wk(y,x̂,û,y
(ρ+1))Lk

l ,

Congreso Nacional de Control Automático 2023,

25-27 de Octubre, 2023. Acapulco, Guerrero, México.

9 Copyright© AMCA, ISSN: 2594-2492



where ∀ x, u, x̂, û, we have

wi(y,x̂,û,y
(ρ+1))=w1

i1
(y,x̂,û,y(ρ+1)) · · ·wr

ir
(y,x̂,û,y(ρ+1))

ωj(x,x̂, u,û) = ω1
j1
(x,x̂, u,û)ω2

j2
(x,x̂, u,û) · · ·ωs

js
(x,x̂, u,û),

and ∀x, x̂ ∈ Cx, ∀u, û ∈ Cu we have

0 ≤ wi
0(·) ≤ 1, 0 ≤ wi

1(·) ≤ 1, i ∈ {1, 2, . . . , r},

0 ≤ ωj
0(·) ≤ 1, 0 ≤ ωj

1(·) ≤ 1, j ∈ {1, 2, . . . , s},

and ∀ k ∈ B
r we have
[

Lk
1

Lk
2

]

=

[

P1 P2

PT
2 P3

]−1 [
Nk

1

Nk
2

]

.

Moreover, any trajectory within any level set

Ωk =

{

[

ex
eu

]T [
P1 P2

PT
2 P3

] [

ex
eu

]

≤ k

}

⊂ Ce ⊂ R
n+1,

with k > 0 and Ce being the region induced in e by Cx
and Cu, goes asymptotically to 0.

Proof. The first LMI expression in (8) guarantees

V (e) =

[

ex
eu

]T [
P1 P2

PT
2 P3

] [

ex
eu

]

is a Lyapunov function candidate for the error dynamics
in (7). The second LMI expression allows writing (omit-
ting arguments when convenient)
[

ex
eu

]T
(

∑

i,k∈Br

∑

j∈Bs

wi(y,x̂,û,y
(ρ+1))ωj(x,x̂, u,û)wk(y,x̂,û,y

(ρ+1))

×He

([

P1 P2

PT
2 P3

][

F ij
1 F ij

2

Qij
1 Qij

2

]

+

[

Nk
1

Nk
2

]

[

H ij 0
]

)

)

[

ex
eu

]

=

[

ex
eu

]T









He









[

P1 P2

PT
2 P3

]









∑

i∈Br

∑

j∈Bs

wiωjF
ij
1

∑

i∈Br

∑

j∈Bs

wiωjF
ij
2

∑

i∈Br

∑

j∈Bs

wiωjQ
ij
1

∑

i∈Br

∑

j∈Bs

wiωjQ
ij
2









+

[

P1 P2

PT
2 P3

]









∑

k∈Br

wkL
k
1

∑

k∈Br

wkL
k
2









[∑

i∈Br

∑

j∈Bs

wiωjH
ij 0
]

















[

ex
eu

]

=

[

ex
eu

]T(

He

([

P1 P2

PT
2 P3

][

F1(x,x̂,u,û) F2(x,x̂,u,û)
Q1(y

(ρ+1),x,x̂,u,û) Q2(y
(ρ+1),x,x̂,u,û)

]

+

[

P1 P2

PT
2 P3

][

L1(y,x̂,û)
L2(y,x̂,û)

]

[H(x,x̂) 0]

))[

ex
eu

]

= V̇ (e) < 0.

Thus, V (e) is a valid Lyapunov function associated to the
nonlinear error system (7), which establishes asymptotic
stability of the origin. Now, positive-definiteness of V (e)

and −V̇ (e) as well as its inclusion in the convex sums
above depend on functions wi(·), wk(·), ωj(·), holding
0 ≤ wi(·) ≤ 1, 0 ≤ wk(·) ≤ 1, and 0 ≤ ωj(·) ≤ 1, as
well as

∑

i∈Br wi(·) =
∑

k∈Br wk(·) =
∑

j∈Bs ωj(·) = 1,
which is ensured only in region Ce induced by x and
u belonging to regions Cx and Cu, respectively. Thus,
trajectories belonging to any level set Ωk as defined above
go asymptotically to 0, which concludes the proof. □

Remark 2. Although conditions in Theorem 1 were de-
veloped for SISO systems, they can be easily generalized
for multiple outputs by using all of them for observer
feedback and one of them to propose input dynamics. See
example 1.

4. EXAMPLES

Example 1: Consider the single-link flexible joint robot in
Fan and Arcak (2003)

ẋ1 = x2

ẋ2 =
1

Jm
(k1(x1−x3)+k2(x1−x3)

3)−
B

Jm
x2+

Kτ

Jm
u (9)

ẋ3 = x4

ẋ4 = −
1

Jl
(k1(x1−x3)+k2(x1−x3)

3)−
mgh

Jl
sinx1

where x1 and x3 are the motor and link position, re-
spectively; x2 and x3 are the motor and link velocities,
respectively; Jm = 3.7 × 10−3kgm2 is the motor inertia,
Jl = 9.3 × 10−3kgm2 is the link inertia, 2h = 3 × 10−1m
is the length of the link, m = 0.21kg is the mass of
the link, B = 4.6 × 10−2NmV−1 is the viscous friction,
k1 = k2 = 1Nm rad−1 are the torsional spring constant,
and Kτ = 8 × 10−2NmV−1 is the amplifier gain; the
measurable output of the system y = [x1 x3]

T , i.e., the
motor and link position. Without loss of generality, let us
assume u as the unknown input, this case contains as a
particular one that presented in Wang et al. (2021). The
relative degree of the output y1 = x1 w.r.t. u is ρ = 2,

thus, taking the derivative y
(3)
1 and solving for u̇, the input

dynamics is

u̇ =
k1
Jm

(x2 − x4) +
B

Jm
u+

3k2
Kτ

(x3 − x1)
2(x2 − x4)

−
B

JmKτ

(Bx2 − k2(x3 − x1)
3 − k1(x3 − x1)) +

Jm
Kτ

y
(3)
1 .

Now, mimicking the above system structure with the
extended state [x1 x2 x3 x4 u]T , the proposed observer
(omitting arguments in the observer gain) is

˙̂x1= x̂2+L11(ŷ−y)

˙̂x2=
1

Jm
(k1(x3−x1)+k2(x3−x1)

3)−
B

Jm
x̂2+

Kτ

Jm
û+L12ey

˙̂x3= x̂4+L13ey

˙̂x4=−
1

Jl
(k1(x3−x1)+k2(x3−x1)

3)−
mgh

Jl
sinx1+L14ey

˙̂u=
k1
Jm

(x̂2−x̂4)+
B

Jm
û+

Jm
Kτ

y
(3)
1 +

3k2
Kτ

(x3−x1)
2(x̂2−x̂4)

−
B

JmKτ

(Bx̂2−k2(x3−x1)
3−k1(x3−x1))+L2ey.

which exploits the information available from the output;
x̂1, x̂2, x̂3, x̂4, û, ŷ are the estimation of x1, x2, x3, x4,
u, y, respectively; L1(x̂,y,û)=[LT

11(·) L
T
12(·) L

T
13(·) L

T
14(·)]

T

and L2(x̂,y,û) are the observer gains to be designed such
that limt→∞ x̂ − x = 0 and limt→∞ û − u = 0; and
ey = ŷ − y is the output error. Taking into account
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the factorization given in section 2.2, the nonlinear error
system (7) is obtained with

F1=







0 1 0 0
0 − B

Jm

0 0
0 0 0 1
0 0 0 0






, F2=







0
Kτ

Jm

0
0






, Q2=

B

Jm
, H=

[

1 0 0 0
0 0 1 0

]

,

Q1(y) =
[

0 1
Kτ

(k1+3k2z1−
B2

Jm

) 0 − 1
Kτ

(k1+3k2z1)
]

,

where z1 = (x3 − x1)
2 is the sole nonlinearity in Q1(y).

Taking the bounds |x3 − x1| ≤ 2.8 given in Yan and
Edwards (2007), z1 can be bounded as z1 ∈ [0 7.84],
thus enabling the convex modelling in section 2.1 with
w1

0(z1) = 1 − 0.128z1 and w1
1(z1) = 0.128z1. The LMI

conditions (8) are feasible. The observer gains Lk
1 , L

k
2 are

L0
1=







−2126 138
−66267 −10244
122 −3109
113 −1669






, L1

1=







−2097 1331
−63583 −10670
126 −3110
114 −1669






,

L0
2=[−162827 5809], L1

2=[−158051 5050],

P=











409835 2122 2280 3784 −3704
2122 358 −1353 −95 −172
2280 −1353 201319 −119889 588
3784 −95 −119889 224558 55
−3704 −172 588 55 119











For simulation purposes the unknown input was consid-
ered as

u(t)=







































0.5 sin t+ 0.2 sin 5t
+0.2 sin 10t+ 0.1 sin 20t,

3<t ≤ 5

0.01t, 6<t≤10
−0.5, 10<t≤15

0.2(sin t− 0.2 sin 2t− 0.25 cos 25t
+0.5 sin 10t+ cos 15t− 1.5 sin 40t

−0.2 cos 30t− 0.1 cos 60t),
20<t≤25,

0, otherwise

Figures 1-2 depicts the time evolution of the unmeasur-
able signals and their estimates; the observation task is
effectively achieved. It is worth noticing that system (9)
does not hold the relative degree condition rank(CB) ̸=
rank(B), i.e., rank(CB) = 0, which makes works as Yan
and Edwards (2007); Marx et al. (2019); Ichalal and
Guerra (2019) to be inapplicable; works as Chua et al.
(2020); Tavasolipour et al. (2021) can be applied, however
the estimation error is no guaranteed to be limt→∞ e(t) =
0 because they use the L2-norm to attenuate the pertur-
bation due to the uncoupled UI (rank(CB) = 0); due to
the non-low variation (non-vanishing derivative of the UI
at the o-th order) nature of the UI, the example does
not meet conditions required to employ the observers
proposed in Guzman et al. (2021).

Example 2: Consider the forced van der Pol equation
(Khalil, 2014, (A.13))

[

ẋ1

ẋ2

]

=

[

x2

ϵ

ϵ(−x1 + x2 −
1
3x

3
2 + u)

]

, y = x1 (10)

where x = [x1 x2]
T is the state vector, u ∈ R is the input,

y is the measured output and ϵ = 0.1 is a parameter;

let us to assumed u as the unknown input. The relative
degree of the system is 2, thus, taking the derivative y(3)

and solving for u̇, the dynamic u̇ = ϵ(−u + x1 − x2 +
x2/ϵ

2+4x3
2/3−x5

2/3+ux2
2−x1x

2
2)+y(3) can be obtained.

Considering the extended system with [x1 x2 u]T as the
state, the unknown input observer (6) can be proposed
with g(x̂) = [0 1]T , q(y(ρ+1), x̂, û) = ϵ(x̂1− û− x̂2+

x̂2

ϵ2
+

4x̂3
2

3 −
x̂5
2

3 +ûx̂2
2−x̂1x̂

2
2)+y(3), and

f(x̂)=

[

x̂2/ϵ
ϵ(−x̂1+x̂2−

1
3 x̂

3
2)

]

,

where [x̂1 x̂2 û]T is the observer state; L1(x̂, y, û) ∈ R
2×1

and L2(x̂, y, û) ∈ R are the nonlinear observer gains to be
designed so that limt→∞ x̂−x = 0 and limt→∞ û−u = 0.

0 5 10 15 20 25 30

-0.5

0

0.5

x
2
(t
),
x̂
2
(t
)

x2(t)
x̂2(t)

0 5 10 15 20 25 30

-0.4

-0.2

0

0.2

0.4

Time (s)

x
4
(t
),
x̂
4
(t
)

x4(t)
x̂4(t)

Fig. 1. Time evolution of the unmeasurable states x2 and
x4 and their estimations x̂2 and x̂4 in Example 1.
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-0.8

-0.6

-0.4
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0

0.2

0.4

0.6

Time (s)

u
(t
),
û
(t
)

u(t)
û(t)

23.6 24 24.4

-0.4

0

Fig. 2. Time evolution of the unknown input u and its
estimation û in Example 1.
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Employing the factorization in section 2.2, the nonlinear
error system (7) can be obtained with

F1(x, x̂, u)=

[

0 1
ϵ

−ϵ ϵ(1− ζ3
3 )

]

, F2(x, x̂, u)=

[

0
ϵ

]

,

Q1(y
(ρ+1), x, x̂, u, û)=

[

ϵ(1−z22)
ϵ( 1

ϵ2
−1+ζ1z2+ζ1ζ2

−z1z2−z1ζ2+
4ζ3
3 − ζ4

3 )

]

Q2(y
(ρ+1), x, x̂, u, û)=ϵ(z22−1)

where z1 = x1, z2 = x̂2, ζ1 = u, ζ2 = x2, ζ3 = x̂2
2+ x̂2x2+

x2
2, and ζ4 = x̂4

2 + x̂3
2x2 + x̂2

2x
2
2 + x̂2x

3
2 + x4

2. Considering
the design region Cx = {x ∈ R

2 : |x1| ≤ 5, |x2| ≤ 2.5}
and Cu = {u ∈ R : |u| ≤ 0.4} and mimicking them for
the input and observer states, the non-constant terms are
bounded into the regions as z1 ∈ [−5, 5], z2 ∈ [−2, 2],
ζ1 =∈ [−0.4, 0.4], ζ2 ∈ [−2.5, 2.5], ζ3 ∈ [0, 18.75], and
ζ4 ∈ [0, 195.3125]. As before, the convex model can be
obtained employing the methodology in section 1. Using
the matrices obtained in the latter, the LMI conditions
in (8) are feasible; matrix P and 2 of the 8 gains Lk =
[Lk

1 Lk
2 ], k ∈ B

3 are

L000 =

[

−9.2412
−21.1889
−583.6710

]

, L010 =

[

−9.2924
−21.3303
−591.5769

]

P =

[

351.2866 −96.9064 −0.6029
−96.9064 434.8538 −8.9663
−0.6029 −8.9663 0.3154

]

.

The unknown input employed in the simulation is

u =



























0.3 sin 5t, 5 < t ≤ 10
0.3 sin 3t, 5 < t ≤ 8
0.01t, 8 < t ≤ 15
−0.2, 15 < t ≤ 20

−0.2 sin 10t+ 0.1 cos 4t+ 0.1 cos 15t, 20 < t ≤ 25
0, otherwise.

The simulation results are depicted in Figure 3-4; it can
be seen that the observation task is achieved successfully
for the states and the UI by the sole information on the
output. As for the example above, works as Yan and
Edwards (2007); Marx et al. (2019); Ichalal and Guerra
(2019) are inapplicable; works as Chua et al. (2020);
Tavasolipour et al. (2021) can be applied using the L2-
norm to attenuate the perturbation due to the uncoupled
UI (rank(CB) = 0); the UI in this example does not meet
the conditions required to employ the observer proposed
in Guzman et al. (2021).

5. CONCLUSION

A novel unknown input observer for nonlinear systems has
been presented, whose structure is based on as much time
derivatives of the output as its relative degree plus one.
It has been shown that an error system can be obtained
via a proper factorization, which is amenable to a convex
form that, combined with the direct Lyapunov method,
enables design conditions in the form of linear matrix
inequalities to be found. Detailed examples have been
provided that show the advantages of the proposal over
former methodologies.
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û
(t
)

u(t)
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