
A Python-based open-source software for

real-time control systems ⋆

Bryan Rojas-Ricca ∗ Rubén Garrido ∗ Sabine Mondié ∗

∗ Departamento de Control Automático, CINVESTAV-IPN, Av.
Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco,
Gustavo A. Madero, C.P. 07360, Ciudad de México, México.

(e-mail: bryan.rojas@cinvestav.mx).

Abstract: This paper introduces an open-source Python software that achieves a high
performance for the sampled period, despite running on a general-purpose operating system
instead of a real-time operating system. The software is designed to implement control systems
and experiment with physical platforms, particularly the Quanser Qube-Servo 2. This article
describes the coding design, numerical methods, modeling, and identification of the Qube-
Servo 2, the control design, and its implementation. Finally, a quick guide to downloading via
GitHub and installation requirements are provided.

Keywords: Software for system identification, Linear systems, Real-time algorithms,
scheduling, and programming.

1. INTRODUCTION

The implementation of real-time control systems in in-
dustry and academia has been dominated by closed ar-
chitecture software and hardware solutions. Software such
as Matlab© and Simulink© are used in most applica-
tions (Sigarev et al., 2016; An et al., 2012), while among
hardware solutions, Quanser products stand out, with the
Quanser Qube-Servo 2 prototype being a clear example.
This prototype allows to implement controller for a DC
motor or a Furuta rotary pendulum. However, designing
and implementing those controllers using this platform
requires the use of both QUARC© and MATLAB©
software (Maldonado et al., 2018; Morales et al., 2022;
Hernández-Gallardo et al., 2024), a combination that,
although powerful, this year increased its cost due to
QUARC© changing its license to an annual pay plan,
which may be out of the reach of many Mexican institu-
tions.

Additionally, there exist real-time operating systems
(RTOS) that address the real-time speed computation
requirements. These operative systems are lightweight,
efficient, and widely used in embedded systems (Li et al.,
1997). Nevertheless, RTOS usually requires specialized
hardware which increases the cost of practical imple-
mentations. To avoid this additional cost it is possible
to use general-purpose operating systems (GPOS). How-
ever, GPOS are usually inefficient regarding computation
speed requirements for real-time applications. In RTOS,
tasks are managed and executed within specific time con-
straints. This differs from GPOS where tasks are sched-
uled based on priority. Despite the advantages of RTOS,
GPOS remain more common, particularly in academics.

On the other hand, due to the digital nature of cur-
rent microcontrollers and digital processors, control law

⋆ This work was supported by Project Conahcyt A1-S-24796.

implementation often requires additional discretization
procedures for the controller (Fadali and Visioli, 2009).
The discretized controller together with a digital signal
processor are known as sampled-data systems because
the inputs are acquired and processed in discrete-time
instants. Several control laws can be discretized without
problem through the z-transform, however, the limit of
this mathematical tool is quickly reached when non-linear
dynamics are considered. Another crucial characteristic of
these systems is the sampling period, which quantifies the
elapsed time between data samples.

In sampled-data systems, it is reasonable to expect that
the sampling period is regular. Nevertheless, recent re-
search addresses the cases where the sampling period
is not regular, for example, Seuret (2012) considers the
variation in the sampling period as a time-variant delay
and extends some stability and robustness criteria of time-
delay systems to sampled systems with irregular sampling
times. In real-time applications the sampling period is
crucial for numerically solving differential equations. Ir-
regularities in the sampling period may lead to numerical
problems in the computation methods (Holmes, 2007).

This article presents a Python-based open-source soft-
ware designed specifically for the implementation and
experimentation of real-time control systems running on
GPOS. This software is designed to achieve the sampling
performance of an RTOS. Moreover, the software inter-
faces effectively with Quanser’s Qube-Servo 2 platform,
positioning it as a viable alternative to the traditional
QUARC© -MATLAB© setup.

The contribution is structured as follows. Section 2 de-
scribes the software design process and the main numer-
ical methods implemented. Section 3 presents the mod-
eling process and the parameter identification theory of
the DC motor. Section 4 discusses the application of both
modeling and identification to the Qube-Servo 2 platform.

Memorias del 2024 Congreso Nacional de Control Automático

8-11 de Octubre, 2024. Ciudad de México, México.

Copyright© AMCA, ISSN: 2594-2492

https://doi.org/10.58571/CNCA.AMCA.2024.092

Finally, concluding remarks and an installation guide are
provided in Section 5.

2. SOFTWARE DESIGN

In this section, we discuss the main challenges of real-
time implementation of controllers from a computational
point of view. This section also presents the structure
and design of the proposed software, which is developed
to provide an open-source alternative for quickly and eas-
ily implementing real-time control systems using several
platforms.

2.1 Improvement of tasks performance

Considering that the software is intended to run on
a personal computer using Windows or Linux as the
GPOS, it is natural to assume that the hardware has
two or more physical cores. This assumption is useful in
software design because it allows tasks to be performed
simultaneously. This is highly relevant because real-time
applications require careful attention in timed tasks.

From the outset, two processes are assigned to differ-
ent cores. The main process handles the graphical user
interface (GUI) management, while the second process
executes the real-time sampling manager, which functions
similarly to an RTOS. As illustrated in the flowchart
(see Fig 1), the main process may establish a connection
with the platform. Specifically, it manages the usb_2 API
provided by Quanser for Python interaction with the
Qube-Servo 2 platform (Quanser Inc, 2024). Regardless
of whether a valid connection exists, the main process
sends instructions to start or stop the experiment to
the secondary process. Additionally, upon experiment
completion, it displays results on a plot created using
the Python module Matplotlib (Python Software Foun-
dation, 2001-2024). Finally, the application handles the
platform disconnection during closure.

The real-time sampling manager is a dedicated routine
that governs both the data acquisition and the com-
putation of the control law. As mentioned before, the
manager operates through the multiprocessing Python
module (Python Software Foundation, 2001-2024). Note
also that the GUI and the real-time sampling manager
run on different cores. It is important to note that the
real-time sampling manager is performed on a separate
core to achieve the lowest possible latency and it is not
thread-based. The routine contains an exhaustive loop
thus ensuring accurate sampling time regardless of the
overall system load or performance. More specifically, the
real-time sampling manager is responsible for calling the
reading functions of the input port, sending this informa-
tion to the functions defined by the user for computing
the control law, and writing the computed control signal
to the output port. It guarantees that the whole operation
is executed within each sampling period so that a highly
accurate sampling time is obtained.

2.2 Improvement of sampling period precision

A common practice when coding computational loops for
sampled systems is to use waiting functions. For instance,
in Python the most used waiting function is sleep() from

Start

Initialize GUI
Run the real-time
sampling manager

Connect to plataform?

Connect

Is connected?

Run plataform Run simulation

Save and
plot results

Show sampled info?

Display
sampled info

Run user-defined function?

Run and show
results of user-
defined function

Close GUI

Disconnect
plataform and

stop the real-time
sampling manager

Stop

Yes

No

No

Yes

Yes

No

Yes

No

Fig. 1. Main flowchart of the software using Python.

the time module (Python Software Foundation, 2001-
2024). The problem with this function in a GPOS is that
the task manager interprets this function as a low-priority
process, so it postpones its execution to attend other
tasks thus resulting in a longer waiting time than the
time setting in the waiting function. Therefore, avoiding
waiting functions in GPOS is preferable.

An alternative to the sleep() function is to compute the
sampling step in the loop through an active mode, which
means that after data acquisition and control computa-
tion, the loop does nothing more than exhaustively verify
the elapsed time. This allows the loop to preserve high
priority in the task manager. However, the elapsed time
should be computed with the processor’s performance
counter instead of the system clock which drives events
at the processor level and quantifies the machine cycles
of each instruction. This way of computing the elapsed
time allows greater precision of the waiting time of each

Congreso Nacional de Control Automático 2024,

8-11 de Octubre, 2024. Ciudad de México, México.

543 Copyright© AMCA, ISSN: 2594-2492https://doi.org/10.58571/CNCA.AMCA.2024.092

Start

Compute
elapsed time

Data acquisition
process

Run control-law
function from
Python module

Run control-
law offline

function from
Python module

Storage data

Stop

Stop is triggered?

The plataform is connected?

Time is over?

Yes

No

No

Yes

Yes

No

Fig. 2. Flowchart of the real-time sampling manager.

sampling period. The processor’s performance counter in
Python is accessed through the perf_counter() function
of the time module.

2.3 Graphic user interface design

The GUI, which is designed with a user-friendly interface,
is focused on operating with a Qube-Servo 2 platform.
The GUI features a single window as depicted in Fig. 3.
This streamlined design aims at simplifying the process
of conducting experiments with the platform while facili-
tating real-time data visualization. This enables users to
gain immediate insights into their experimental results.
Furthermore, the application can export the results in
various widely used formats including PDF, JPG, PNG,
SVG, and EPS, to name a few. The following paragraphs
provide a detailed description of each GUI element num-
bered in Fig. 3:

(1) Connection Button: This interactive element initi-
ates the connection process between the interface
and the Qube-Servo 2 platform. Upon successful con-
nection, the platform’s specifications are displayed,
and its status color changes from red to blue.

(2) Platform Information and Specifications: This sec-
tion provides the technical specifications of the con-
nected platform.

(3) Running Time and Sampled Period: These labels
display the total running time of the current ex-
periment and the period at which data is sampled,
respectively.

Fig. 3. Graphic user interface.

(4) Run Button: This control initiates the execution of
experiments on the connected platform, if available.
Otherwise, a simulation can be executed.

(5) Stop Button: This control interrupts the currently
running experiment and stops the platform, allowing
users to end their experiment at any time.

(6) Additional Function Buttons: These controls provide
access to the sampling time information and execute
an additional user-defined function.

(7) Data Visualization Toolbar: This control panel, pow-
ered by Matplotlib, provides various tools for ma-
nipulating the data visualization, such as zooming,
panning, and saving the current view.

(8) Data Visualization Panel: This is the main area
where the data from the real-time experiments is
plotted after the execution.

(9) Signal Selector: These checkboxes allow users to se-
lect which signals are displayed on the Data Visual-
ization Panel.

(10) Status Bar: This section displays the software and
connected platform’s status, warnings, and errors.

(11) Progress Bar: This indicator visually represents the
progress of the current experiment.

2.4 Numerical methods for controller implementation

In Python, there are powerful modules that facilitate
the analysis and simulation of control systems, such
as control, sciPy, and simuPy. However, these mod-
ules are not designed to address real-time implementa-
tions. Therefore, we decided to include a Python script
reTimeSytems.py, which codes numerical derivatives and
integrals and can apply transfer functions to signals ob-
tained in real-time. Holmes (2007) provide detailed de-
scriptions of numerical methods summarized in this sec-
tion.

In the reTimeSytems.py file, we approximate derivatives
using the first order of backward finite differences. The
first-order algorithm is chosen by its simplicity and the
backward type is selected because no time-ahead data
is available in real-time. This method is based on the
backward expansion of a function f(x) in Taylor series:

f(xi−1) = f(xi)− Tf ′(xi) +
T 2

2!
f ′′(xi)− · · · (1)

where T = xi − xi−1. Truncating the series expansion at
the first derivative, we obtain:

f ′(xi) ≈
f(xi−1)− f(xi)

T
(2)

Congreso Nacional de Control Automático 2024,

8-11 de Octubre, 2024. Ciudad de México, México.

544 Copyright© AMCA, ISSN: 2594-2492https://doi.org/10.58571/CNCA.AMCA.2024.092

which provides a first-order approximation for the first
derivative of f(x) at x = xi.

To compute the integral of a function f(x), we apply the
composite trapezoid rule, which is used to compute the
integral of f in a subdivided interval [a, b] partitioned as:

a = x0 < x1 < x2 < · · · < xp = b (3)

Hence:
∫ b

a

f(x)dx ≈
1

2

p
∑

i=1

T [f(xi−1) + f(xi))] (4)

with h as defined above.

Additionally, the module reTimeSytems.py implements
the computation of a general transfer function of the form

Y (s)

U(s)
=

bmsm + . . .+ b1s+ b0

ansn + . . .+ a1s+ a0
(5)

with m ≤ n. The module computes the output y(t) using
the backward first-order approximation for all the deriva-
tives. Naturally, this requires m initial conditions for u
and n initial conditions for y. The implemented algorithm
sets all initial conditions to zero unless otherwise stated.
Hence, the first-order approximation of the k-th derivative
of f(x) is given by

f (k)(xi) =

k
∑

j=0

(

k

j

)

(−1)jf(xi−j) (6)

where
(

k
j

)

is the binomial coefficient between k and j.

Therefore, (5) is solved in the time domain for y(t) and
expressed in terms of y(t − jT), with j ∈ {1, 2, . . . , k}
and T the sampling period.

3. MODELING PLATFORM AND ITS PARAMETER
IDENTIFICATION

This section presents a review of the modeling and identi-
fication process, with a practical focus on the Qube-servo
2 platform by Quanser. While this platform can be used
as both DC motor and Furuta rotary pendulum systems,
the subsequent discussion concentrates solely on the DC
motor system.

3.1 DC motor modeling

The DC motor, a prevalent example in control text-
books and applications, comprises an electrical circuit
that describes the behavior of the motor armature, and
a rotational mechanical system that characterizes the
rotor’s behavior. As depicted in Fig. 4, the input voltage,
denoted by Vs(t), is applied across the armature. The
armature, characterized by resistance Ra and inductance
La, has a current ia(t) flowing through it. The position

and speed of the motor are represented by θ(t) and θ̇(t)
respectively. The counter-electromotive force is generated
due to the motion of the armature in the magnetic field
and it bridges the electrical and mechanical behaviors.
The counter-electromotive force is given by

Vb(t) = kbθ̇ (7)

where kb is known as the electromotive force constant.
This force opposes the input voltage Vs(t). The motor

Fig. 4. DC motor diagram.

torque is directly proportional to the armature current
and is responsible for the rotation of the armature:

τθ(t) = kτ ia(t) (8)

where kτ is the motor torque constant. Finally, the damp-
ing rate, cD, represents the friction force that opposes the
motion of the motor.

The differential equations describing the electrical and
mechanical behaviors of the DC motor are:

Raia(t) + Lai̇a(t) + Vb(t) = Vs(t) (9a)

Jθ̈(t) + cD θ̇(t) = τθ(t) (9b)

Considering (7) and (8), and defining the state x =

[x1 x2 x3]
¦
, with x1 = ia, x2 = θ and x3 = θ̇ yields:

ẋ(t) =

−
Ra

La

0 −
kb

La
0 0 1

−
kτ

J
0 −

cD

J

x(t) +

1

La
0
0

u(t) (10)

where u(t) = Vs(t) is the input. The output of (10) is

y(t) = [0 1 0]x(t) (11)

which describes the most usual physical implementation
in DC motor platforms.

The open loop transfer function of (10-11) is given by

G(s) =
kτ

s((Las+Ra)(Js+ cD) + kτkω)
(12)

Assuming that La << Ra, we get Las + Ra ≈ Ra.
A common assumption in DC motors modeling. The
transfer function of the simplified model is

G(s) =
b

s(s+ a)
(13)

where

a =
RacD + kτkω

RaJ
and b =

kτ

RaJ

There are two ways to obtain the values of a and b:
Using the parameter values provided in the Qube-servo
2 platform manual, or using a parameter identification
method. The next sections compare both approaches.

3.2 Parameters identification

The parameter identification problem involves finding
parameters a and b such that the behavior (13) approx-
imates the behavior of the real DC motor system. The
Least Squares method (Isermann, 2005) is a classical and
powerful way to identify the parameters of a dynamic sys-
tem. This method minimizes the quadratic error criterion
of a linear problem of the form:

AΘ = B (14)

Congreso Nacional de Control Automático 2024,

8-11 de Octubre, 2024. Ciudad de México, México.

545 Copyright© AMCA, ISSN: 2594-2492https://doi.org/10.58571/CNCA.AMCA.2024.092

when A and B are given. The quadratic error criterion is:

J =
∑

e¦e =
∑

(B −AΘ)¦(B −AΘ)

and its minimum is achieved when the partial derivative
of J w.r.t Θ vanishes, that is:

∂J

∂Θ
= −2B¦A+ 2Θ¦A¦A = 0 (15)

Therefore the value Θ that minimize the criterion J are
given by

Θ = (A¦A)−1A¦B (16)

The time-domain representation of (13) is

ÿ(t) = −aẏ(t) + bu(t) , (17)

It can be written in the form (14). In practice, only y and
u are available from measurements, and one must obtain
approximations y1 ≈ ẏ and y2 ≈ ÿ using filters:

Y1(s)

Y (s)
=

f2s

s2 + f1s+ f2
(18)

Y2(s)

Y (s)
=

f2s
2

s2 + f1s+ f2
(19)

where f1 and f2 are positive constants, while Y1 and Y2

denote the Laplace transforms of y1 and y2, respectively.
Therefore, (17) is written as:

y2(t) = −ay1(t) + bu(t) (20)

The identification problem consist of sampling u and y
with a fixed period T ∈ R+ and filtering y to build the
following system of equations:

−y1(T) u(T)
−y1(2T) u(2T)

...
...

−y1(kT) u(kT)

[

a
b

]

=

y2(T)
y2(2T)

...
y2(kT)

(21)

with k ∈ N. Thus, the parameter Θ = [a, b]¦ are obtained
using (16). The identification process requires that the ref-
erence fulfills the persistency of excitation (PE) condition
(Sastry and Bodson, 1989). The filtered white noise signal
fulfills such a condition because the system is excited with
the same amplitude at all frequencies. In practice, there
is no ideal white noise, nevertheless, an approximation
can be computed as follows. Consider a set of q distinct
frequencies defined as

0 < ω0 < ω1 < · · · < ωq (22)

thus, the excitation signal is computed by

N(t) =

q
∑

i=0

sin(2πωit+ φi) (23)

where ωi and φi are the frequency and phase, respectively.
In this way, a flat power spectrum is approximated at the
frequency interval [ω0, ωq].

4. EXPERIMENTAL RESULTS

We use the software introduced in this paper to im-
plement the parameter identification method detailed in
Section 3.2. We compute (23) with ω0 = 0, ωq = 200,
q = 1024 and set random numbers for the phases φi.
The excitation signal obtained is the red dashed line and
the output signal is the blue solid line of Fig. 5. Our
identification process yields the parameter estimates of
a = 8.05 and b = 171.7. These values closely align with

Fig. 5. The parameter identification process of the Qube-
Servo 2 platform, where the reference (red dashed
line) provided by (23), and the resulting output (blue
solid line) are displayed.

Fig. 6. Sampling period information.

those reported in the literature; for instance Reck (2018)
reports parameter estimates of a = 8 and b = 195.

Additionally, as illustrated in Fig. 6, the software stores
and displays the sampling period statistics via an addi-
tional function button. Notably, the software maintains a
high precision in a sampled period of 1 ms, with no errors
greater than ±2µs, for 97.39% of the running time.

Consider the Proportional Derivative (PD) controller:

C(s) =
1

b
(kds+ kp) (24)

The closed-loop system (13, 24) is

Gc.l.(s) =
kds+ kp

s2 + (a+ kd)s+ kp
(25)

The Ruth-Hurwitz criterion (Nise, 2019) gives kd > −a
and kp > 0 as stability conditions, but note that every
kd < 0 introduces a non-minimum phase zero. Therefore,
we state kd > 0 and kp > 0 as tuning rules. The estimated
parameters a and b are used to calculate the desired
closed-loop characteristic function coefficients. To assign
a double real root at s = −20 we set kd = 31.95 and
kp = 400, which satisfies the stated tuning rules. Fig. 7
depicts a square wave as reference θd (black dashed line),
and the angular position θ (blue solid line) whereas Fig. 8
displays the control signal u (red solid line).

5. CONCLUSION AND INSTALLATION GUIDE

The proposed software serves as a starting point for self-
development or as an alternative for implementing real-
time control systems using Python. The software achieves

Congreso Nacional de Control Automático 2024,

8-11 de Octubre, 2024. Ciudad de México, México.

546 Copyright© AMCA, ISSN: 2594-2492https://doi.org/10.58571/CNCA.AMCA.2024.092

Fig. 7. Motor position output (blue solid line) of Qube-
Servo 2 platform with a PD controller and the
corresponding reference signal (black dashed line).

Fig. 8. The voltages supplied to the DC motor (input
signal).

a high sampling time performance despite the limitations
of GPOS, and it provides a Python resource of numer-
ical methods for real-time applications. The parameter
identification and the control law are available in the
code, therefore, these results can be easily reproduced.
It is important to underline that the proposed low-cost
software can be modified to make it compatible with
platforms such as Arduino and Raspberry Pi. This fea-
ture expands the scope of the Python code, making it
a versatile tool for implementing experimental platforms
for real-time control systems.

The modules and Python code are available at

https://github.com/BryanRojasRicca/ReTime_CA

where it is possible to download, clone, or collaborate
with the repository. The software execution requires the
following Python modules installed: multiprocessing,
time, numpy, matplotlib, PyQt5 and cffi. To interact
with the Qube-Servo 2 platform, the Quanser SDK,
an application programming interface (API) for C and
Python hardware interfacing and communication libraries
are required. The Quanser SDK download from:

https://github.com/quanser/quanser_sdk_win64
https://github.com/quanser/quanser_sdk_linux

for GPOS Windows and Linux, respectively. Also, in-
stalling QUARC© (including trial version) the Quanser
SDK is downloaded. Finally, installing the Python API
from Quanser SDK as in (Quanser Inc, 2024), choosing
"%QSDK_DIR\% or "\%QUARC_DIR\% appropriately.

REFERENCES

An, B., Liu, G., and Senchun, C. (2012). Design and
implementation of real-time control system using rtai
and matlab/rtw. In Proceedings of 2012 UKACC
International Conference on Control, 834–839. doi:
10.1109/CONTROL.2012.6334740.

Fadali, M.S. and Visioli, A. (2009). Digital control
engineering, analysis and design. Academic Press,
Boston. doi:10.1016/B978-0-12-374498-2.X0001-X.

Hernández-Gallardo, J.A., Guel-Cortez, A.J., González-
Galván, E.J., Cárdenas-Galindo, J.A., Félix, L., and
Méndez-Barrios, C.F. (2024). Synergistic design of
optimal pi controllers for linear time-delayed systems.
In M.N. Cardona, J. Baca, C. Garcia, I.G. Carrera,
and C. Martinez (eds.), Advances in Automation and
Robotics Research, 77–88. Springer Nature Switzerland,
Cham.

Holmes, M.H. (2007). Introduction to Numerical Methods
in Differential Equations. Springer New York, New
York. doi:10.1007/978-0-387-68121-4.

Isermann, R. (2005). Identification of Dynamic Systems,
293–332. Springer London, London. doi:10.1007/1-
84628-259-4 7.

Li, Y., Potkonjak, M., and Wolf, W. (1997). Real-time
operating systems for embedded computing. In Pro-
ceedings International Conference on Computer Design
VLSI in Computers and Processors, 388–392. doi:
10.1109/ICCD.1997.628899.

Maldonado, J., Lopez, K., Garrido, R., and Mondié, S.
(2018). Implementing time-delay controllers on an
educational motion control platform. In 2018 XX
Congreso Mexicano de Robótica (COMRob), 1–6. doi:
10.1109/COMROB.2018.8689425.

Morales, O.J., Maldonado, J., and Garrido, R. (2022).
Robust adaptive control of servo systems. In 2022
19th International Conference on Electrical Engineer-
ing, Computing Science and Automatic Control (CCE),
1–6. doi:10.1109/CCE56709.2022.9975932.

Nise, N.S. (2019). Control Systems Engineering, 8th
Edition. Jhon Wiley & Sons, New Jersey.

Python Software Foundation (2001-2024). Python
documantation. https://docs.python.org/3/.

Quanser Inc (2024). Quanser
Python API Documentation.
https://docs.quanser.com/quarc/documentation/
python/installation.html.

Reck, R. (2018). Validating dc motor models on the
quanser qube servo. In Dynamic Systems and Con-
trol Conference, DSCC 2018, Sep 30 –Oct 3, Atlanta,
Georgia, USA. doi:10.1115/DSCC2018-9158.

Sastry, S. and Bodson, M. (1989). Adaptive control: Sta-
bility, convergence, and robustness. Prentice-Hall, Inc.,
New Jersey. doi:10.1016/B978-0-12-374498-2.X0001-X.

Seuret, A. (2012). A novel stability analysis of linear
systems under asynchronous samplings. Automatica,
48(1), 177–182. doi:10.1016/j.automatica.2011.09.033.

Sigarev, V., Kuzmina, T., and Krasilnikov, A. (2016).
Real-time control system for a dc motor. In 2016 IEEE
NW Russia Young Researchers in Electrical and Elec-
tronic Engineering Conference (EIConRusNW), 689–
690. doi:10.1109/EIConRusNW.2016.7448276.

Congreso Nacional de Control Automático 2024,

8-11 de Octubre, 2024. Ciudad de México, México.

547 Copyright© AMCA, ISSN: 2594-2492https://doi.org/10.58571/CNCA.AMCA.2024.092

