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Abstract: This paper presents a brief survey of some of the main results in the negative
imaginary systems theory and its applications. In particular, the paper concentrates on the
application of lossless negative imaginary property for the characterization of the LCL filter,
widely used for grid-connected inverters. The characterization is established when the (all
possible) LCL filter transfer functions satisfy the lossless negative imaginary conditions. The
results are compared with the frequency response of the LCL filter transfer functions.
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1. INTRODUCTION

The positive real (PR) systems theory is one of the
main concepts of systems and control theory, and in
particular of passivity theory. The concept dates back
to the early 1930s, for a summary of the historic and
recent contributions in this area, we refer the readers
to expository article Petersen and Lanzon (2010) and
monograph Brogliato et al. (2007); given the extensive
amount of contributions. A fruitful novel development has
been the introduction of the notion of negative imaginary
(NI) systems, see Petersen and Lanzon (2010); Mabrok
et al. (2014) and the references cited therein.

Given the transfer function or state-space realization,
relevant characteristics or properties of (physical) systems
are presented using both system theories. For instance,
some basic relationships between positive real, passive,
and negative imaginary systems are the following:

• According to the Theorem 2.8 of Brogliato et al.
(2007), a passive system will have a transfer function
h(s) which satisfies

|∠H(jω)| ≤ 90◦ for all ω ∈ [−∞,+∞]

• The Nyquist plot of H(jω) lies entirely in the
(closed) right half complex plane. In other words,
the phase of a positive real transfer function lies
in [−π

2 ,
π
2 ] rad, and that of an strictly positive real

transfer function lies in (−π
2 ,

π
2 ) rad.

• The phase of negative imaginary systems satisfies
∠H(s) ∈ [−π, 0] rad. This is why some transfer
functions like 1

s
can be both NI and PR, i.e., its phase

belongs to [−π
2 , 0] rad.

Additionally, the NI systems theory can deal with systems
of relative degrees zero, one or two, which complements
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the PR systems theory that copes with systems of relative
degrees zero or one, Brogliato et al. (2007).

An important subclass of the NI systems is the lossless
negative imaginary systems, where for the continuous-
time proper lossless negative imaginary systems, the def-
inition was first proposed in Xiong et al. (2012) by re-
stricting no poles at the origin and infinity, and a mini-
mal state-space characterization of such systems was also
developed in Xiong et al. (2012). After, the realization of
continuous-time lossless negative imaginary systems was
studied in Roa and Rapisarda (2012), where an algebraic
approach was given. Finally, Lui and Xiong (2016) ex-
tended the definition of continuous-time lossless negative
imaginary systems to non-proper case by allowing poles
at the origin and infinity.

The NI systems theory is being used in a range of ap-
plications including modelling and (robust) control of
undamped or lightly damped mechanical flexible struc-
tures, Petersen and Lanzon (2010); Mabrok et al. (2014).
In electrical systems, similar RLC electrical circuit in-
terpretations of the negative imaginary stability results
were presented in Petersen (2015), where an undamped or
lightly damped (lossless) RLC circuit exhibits an inherent
resonance behaviour. Indeed, control challenges of LCL-
type grid-connected inverter arise from the resonance
problem, Xinbo et at. (2018).

The negative imaginary systems (NIS) theory is used in
the control design of grid converters, particularity the
proportional resonant controller in Sarkar et al. (2019)
and Haque et al. (2020, 2022) where proposed as a second-
order controller to control the load voltage of a single- and
three-phase islanded micro-grid (MG) systems. In these
MG systems, voltage source converters with LCL filters
are required to convert the dc voltage to ac voltage to
run the load. Whereas in Badal et al. (2020) a control
system is carried out for the active damping of a grid-
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connected inverter with an LCL filter by means of a
resonant controller. However, in the above references the
lossless negative imaginary property of the LC- and LCL-
filters was not studied. The main result of this paper is the
particularization of the results in Xiong et al. (2012); Liu
et al. (2020) to the case where transfer functions of the
LCL filter meet the lossless negative imaginary condition.

The organization of the paper is as follows. Section II
briefly recalls some basic concepts and results on nega-
tive imaginary transfer and lossless negative imaginary
transfer functions. In Section III, Lossless Negative Imag-
inary Property of the LCL filter is established when its
transfer functions satisfy the lossless negative imaginary
condition. Validation through the frequency response is
presented in Section IV. Finally, Section V concludes the
paper.

2. PRELIMINARIES

In this section, for the sake of completeness we briefly
present some concepts on (lossless) negative imaginary
transfer functions, which will be used to develop the main
results of this paper.

2.1 Negative imaginary systems with poles at the origin

We begin with a generalized definition of the negative
imaginary property.

Definition 1. (Mabrok et al. (2014)) A square transfer
function matrix G(s) is negative imaginary (NI) if the
following conditions are satisfied:

(1) G(s) has no pole in Re[s] > 0.
(2) For all ω > 0 such that jω is not a pole of G(s),

j(G(jω)−G(jω)∗) ≥ 0.
(3) If s = jω0 with ω0 > 0 is a pole of G(s), then it is a

simple pole and the residue matrixK = lims→jω0
(s−

jω0)jG(s) is Hermitian and positive semidefinite.
(4) If s = 0 is a pole of G(s), then lims→0 s

kG(s) = 0
for all k ≥ 3 and lims→0 s

2G(s) is Hermitian and
positive semidefinite.

Then, we define the following matrices which will be used
in the stability conditions to be presented:

G2 = lim
s→0

s2G(s), G1 = lim
s→0

s

(

G(s)−
G2(s)

s2

)

,

G0 = lim
s→0

(

G(s)−
G2(s)

s2
−

G1(s)

s

)

(1)

where

• Transfer function matrices G(s) with only single
poles at the origin have G2 = 0

• Transfer function matrices with only double poles at
the origin have G1 = 0

In Mabrok et al. (2014) is remarked that these matrices
are the first three coefficients in the Laurent series ex-
pansion of the transfer function G(s) around the zero.
Note that the dc gain Condition (1) cannot be defined
for an NI system with transfer function matrix G(s)
unless G2 = G1 = 0, which reduces to the case where

the dynamical system has no free body motion. From
Condition (4) in Definition 1, the matrix G2 is required
to be Hermitian and positive semidefinite.

Definition 2. Let R : C −→ C
m×m real, rational, proper

transfer function matrix. Then, R(s) ∈ R
m×m is said to

be strictly negative imaginary (SNI) if

(1) R(s) has no pole in Re[s] ≥ 0
(2) j[(R(jω)−R(jω)∗] ≥ 0 for all ω ∈ (0,∞).

For SISO systems, the NI property ensures that the
positive branch of the Nyquist plot lies below the real
axis.

2.2 Lossless negative imaginary transfer functions

Definition 3. A real-rational proper transfer function ma-
trix R(s) ∈ R

m×m is lossless negative imaginary if

(1) R(s) is negative imaginary;
(2) j[(R(jω) − R∗(jω)] = 0 for all ω ∈ (0,∞) except

values of ω where jω is a pole of R(s)

Remark 1. It can be seen from Definition 3 that the
lossless negative imaginary property of a transfer function
is simply defined by replacing the “ ≥ ” sign with the
“ = ” sign in the Condition (2) of Definition 1.

The following theorem, which was presented as a gener-
alization of Lemma 2 in Xiong et al. (2012) by allowing
poles at the origin and infinity, provides a necessary and
sufficient condition in frequency domain for a system to
be non-proper lossless negative imaginary.

Theorem 1. (Liu et al. (2020)). A square real-rational
transfer function matrix G(s) is lossless negative imag-
inary if and only if

(1) all poles of elements of G(s) are purely imaginary;
(2) if s = 0 is a pole of G(s), it is at most a double

pole, lims→0 s
2G(s) is positive semidefinite Hermi-

tian, and lims→0 s
mG(s) = 0 for all m ≥ 3;

(3) if s = jω0 with ω0 > 0 is a pole of G(s), ω0 is finite,
it is at most a simple pole and the residue matrix
K = lims→jω0

(s− jω0)jG(s) is positive semidefinite
Hermitian;

(4) if s = j∞ is a pole ofG(s), it is at most a double pole,
limω→∞ G(jω) is negative semidefinite Hermitian,

and limω→∞

G(jω)
(jω)2 = 0 for all m ≥ 3;

(5) G(s) = G⊤(−s) for all s such that s is not a pole of
any element of G(s).

3. MAIN RESULT

Figure 1 shows the LCL-type filter, where L1 is the
inverter-side inductor, Cf is the filter capacitor, and L2 is
the grid-side inductor. By representing the inverter bridge
output voltage with a voltage source vi and vg is the grid
voltage.

3.1 Lossless LCL Filter

Grid-side current ig as output signal. The transfer
function from vin to ig can be derived as

Gig (s) =
1

CfLgL1 s

1

s2 + ω2
r

(2)
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Fig. 1. Lossless LCL Filter

where ωr =
√

L1+Lg

CfL1Lg
is the resonance angular frequency

and the resonance frequency is fr = ωr

2π . The transfer
function presents one pole at the origin and two pure
imaginary poles at ±jωr. Moreover, it has no finite zeros.
From Definition 1, clearly (2) has no pole in Re[s] > 0.
For the Condition (2), we obtain

j[Gig (jω)−Gig (−jω)] =
2

ω2
r − ω2

≥ 0 ⇒ ωr > ω (3)

which is not satisfied for all ω > 0, only below ωr. The
residue for s = jωr, with ωr > 0, is given by

Ress=jωr
Gig (s) = lim

s→jωr

(s− jωr)jGig (s) =
−j

2CfLgL1ωr
,

which is not positive semidefinite Hermitian. Finally, the
first three coefficients in the Laurent series expansion of
Gig (s) around the zero are:

G2 = 0,

G1 =
1

L1LgCω2
r
,

G0 = 0.

Since, Gig (s) has only single poles at the origin then
G2 = 0. Moreover, the dc gain Condition (1) cannot be
defined since G1 6= 0.

Inverter-side current i1 as output signal. The
transfer function from vin to i1 can be derived as

Gi1(s) =
CfLgs

2 + 1

CfLgLis3 + (Lg + Li)s
, (4)

=
1

Li s

s2 + ω2
f

s2 + ω2
r

, (5)

where ωf =
√

1
CfLg

is the anti-resonance angular fre-

quency. The transfer function Gi1(s) has two finite zeros
at ±jωf . From Definition 1, clearly (5) has no pole in
Re[s] > 0. The condition j[Gi1(jω) − Gi1(−jω)] is given
by

j[Gi1(jω)−Gi1(−jω)] =
2

L1ω

(

ω2
f − ω2

ω2
r − ω2

)

≥ 0 (6)

or

j[Gi1(jω)−Gi1(−jω)] =
2

L1ω

(

ω2 − ω2
f

ω2 − ω2
r

)

≥ 0 (7)

which are satisfied for all positive ω /∈ (ωf , ωr] since from
the angular frequency definitions

ω2
r =

L1 + Lg

CfL1Lg

= ω2
f +

1

CfL1
⇒ ω2

r > ω2
f , (8)

which equals

ω2
f − ω2

ω2
r − ω2

≤ 1, ∀ω > 0, (9)

except for ω = ωr. If ω > ωr, then ω > ωf and hence (6)
and (7) hold. If ωf > ω, then ωr > ω and hence (6) and
(7) are satisfied. But, when ωf < ω ≤ ωr, Condition (2)
in Definition 1 is not satisfied.
The residue for s = jωr, with ωr > 0,

Ress=jωr
Gi1(s) =lim

s→jωr

(s− jωr)jGi1(s) =
j (ω2

r−ω2

f )

2L1ωr
≥ 0

is positive semidefinite Hermitian provided that ωr > ωf .
The quantities G0, G1 and G2 defined in (1) are given as
follows:

G2 = 0,

G1 =
1

L1+Lg
,

G0 = 0.

Since, Gi1(s) has only one pole at the origin then G2 = 0
and the dc gain Condition (1) cannot be defined because
G1 6= 0.

Filter capacitor current iCf
as output signal. The

transfer function from vin to iCf
can be derived as

GiCf
(s) =

1

Li s

s2

s2 + ω2
r

(10)

where there is a pole zero cancellation. The transfer
function presents one pole at the origin and two pure
imaginary poles at ±jωr.
For the Condition (2), we obtain

j[GiCf
(jω)−GiCf

(−jω)] =
2

ω2 − ω2
r

≥ 0 ⇒ ω > ωr (11)

which is not satisfied for all ωr > ω > 0. The residue for
s = jωr, with ωr > 0, is given by

Ress=jωr
GiCf

(s) = lim
s→jωr

(s− jωr)jGiCf
(s) = jωr

2L1

> 0,

which is positive semidefinite Hermitian. And, after car-
rying out the pole zero cancellation, we have

G2 = 0,

G1 = 0,

G0 = 0.

Since, GvC (s) has one pole at the origin then G2 = G1 =
G0 = 0. In fact, it is a negative imaginary system as long
as ω > ωr, according to Definition 3 .

Grid-side inductor voltage vLg
as output signal.

The transfer function from vin to vLg
can be derived as

GvLg
(s) =

1

CfL1

1

s2 + ω2
r

(12)

where the transfer function presents two pure imaginary
poles at ±jωr and has no finite zeros. From Definition 1,
clearly (12) has no pole in Re[s] > 0. For the Condition
(2), we obtain

j[GvLg
(jω)−GvLg

(−jω)] =
j

L1C

(

1

ω2
r − ω2

−
1

ω2
r − ω2

)

= 0,
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∀ω > 0, except ωr, therefore, Condition (3) in Definition
1 is satisfied. The residue for s = jωr, with ωr > 0, is
given by

Ress=jωr
Gig (s) = lim

s→jωr

(s− jωr)jGig (s) =
−j

2CfLgL1ωr
,

which is not positive semidefinite Hermitian.
Since, GvLg

(s) has no poles at the origin then G2 = G1 =

0, with dc gain G0 = 1
L1Cω2

r
. However, it is not a lossless

negative imaginary system, according to Definition 3.

Inverter-side inductor voltage vL1
as output signal.

The transfer function from vin to vL1
can be derived as

GvL1
(s) =

s2 + ω2
f

s2 + ω2
r

, (13)

with ωr and ωf defined for (2) and (5), respectively. The
transfer function Gvi1

(s) has two zeros at ±jωf . From

Definition 1, clearly (5) has no pole in Re[s] > 0. The
condition j[GvL1

(jω)−GvL1
(−jω)] is given by

j[GvL1
(jω)−GvL1

(−jω)] = j

(

ω2
f − ω2

ω2
r − ω2

−
ω2
f − ω2

ω2
r − ω2

)

= 0

(14)
∀ω > 0, except ωr, therefore, Condition (3) in Definition
1 is satisfied. The residue for s = jωr, with ωr > 0, is

Ress=jωr
GvL1

(s) = lim
s→jωr

(s−jωr)jGvL1
(s) =

ω2

f−ω2

r

2ωr
> 0,

(15)
which is positive semidefinite Hermitian only when ωf >
ωr. Since, GvL1

(s) has no poles at the origin then G2 =

G1 = 0, with dc gain G0 =
ωf

ωr
. In fact, it is a lossless

negative imaginary system as long as ωf > ωr, according
to Definition 3.

Filter capacitor voltage vCf
as output signal. The

transfer function from vin to vCf
can be derived as

GvCf
(s) =

1

CfLgLi s

Lg s

s2 + ω2
r

(16)

where there is a pole zero cancellation. From Definition
1, clearly (16) has no pole in Re[s] > 0. For the condition
j[GvCf

(jω)−GvCf
(−jω)], we have

j[GvCf
(jω)−GvCf

(−jω)] =
j

jωL1C

(

jω

ω2
r − ω2

−
jω

ω2
r − ω2

)

= 0,

∀ω > 0, except ωr, therefore, Condition (3) in Definition
1 is satisfied. The residue for s = jωr, with ωr > 0, is

Ress=jωr
GvCf

(s) = lim
s→jωr

(s−jωr)jGvCf
(s) = 1

2CfL1ωr
> 0,

which is positive semidefinite Hermitian. And, after car-
rying out the pole zero cancellation, we have

G2 = 0,

G1 = 0,

G0 =
1

L1Cω2
r
.

Since, GvCf
(s) has no poles at the origin then G2 =

G1 = 0. In fact, it is a lossless negative imaginary system,
according to Definition 3.

4. SIMULATIONS

In this section, the frequency response of LCL filter (as
negative imaginary system) is presented. The parameter
values are: L1 = 1mH, Lg = 2mH, and Cf = 10µF.
Moreover, the resonance frequency is fr = 50.342 kHz
and the anti-resonant frequency is ff = 1.1254 kHz, then
ωr > ωf .
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Fig. 2. Frequency responses of Gig (s) (blue graph), Gi1(s)
(red graph), and GiCf

(s) (magenta graph), where ωr

and ωf are shown as dotted lines.

Figure 2 shows that the phase of all systems, with a
current as output, do not satisfy ∠G(s) ∈ [−π, 0] rad.
However, for instance, the phase of Gi1 when ωf < ω ≤
ωr, Condition (2) in Definition 1 is not satisfied and
∠Gi1(s) /∈ [−π, 0], therefore it is not a negative imaginary
system. Similar conclusion, for each system Gig and Gic

can be derived from conditions (3) and (11) respectively.
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Fig. 3. Frequency responses of GvLg
(s) (blue graph),
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(s) (red graph), and GvCf

(s) (magenta graph),

where ωr and ωf are shown as dotted lines.
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Similarly, the phase of all systems, with a voltaje as
output, are presenten in Fig. 3. Notice that only the
system GvCf

defines a lossless negative imaginary system

since its phase satisfies ∠G(s) ∈ [−π, 0] rad, see the
magenta graph. For the system GvL1

the Condition (15)

requires ωf > ωr, but from (8) we have that ωr > ωf

for the LCL filter. Then, the system GvL1
is not a NIS.

Likewise, conclusion for the system GvLg
can be derived.

5. CONCLUSIONS AND PERSPECTIVES

This paper has studied the lossless negative imaginary
properties of LCL filter transfer functions, where these
were established by means of each transfer function sa-
tisfies the (lossless) negative imaginary conditions. The
voltaje or current of each passive element was used as
output signal for the LCL filter transfer functions. In
fact, as main conclusion, only when the filter capacitor
voltage is used as output signal defines a lossless negative
imaginary system.

Dynamic systems with lossless negative imaginary trans-
fer functions have applications in control of lossless elec-
trical circuits. From the results presented in this work,
some issues that remain open, and are currently being
explored, include for instance: (a) A control challenge
of LCL-type grid-connected inverter arise from the res-
onance problem, then resonance damping methods of
LCL Filter by means of the existing passive- and active-
damping solutions are studied systematically by the NIS
conditions, and (b) The positive feedback interconnection
of an NI system R(s) and a strictly negative imaginary
(SNI) system Rs(s) with R(∞)Rs(∞) = 0 and Rs(∞) ≥
0, internal stability is achieved if and only if the dc loop
gain of the interconnection is strictly less than unity; i.e.,
λmax(R(0)Rs(0)) < 1 (see Petersen and Lanzon (2010)).
Then, regarding the controller design, it is interesting to
extent the results presented here and to the references in
this work.
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