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Abstract: This paper addresses the attitude stabilization problem of a flying robot with
four rotors. We propose an alternative attitude dynamic model based on the unit quaternion.
The proposed dynamic model resembles the equation of motion of a four degrees of freedom
robot manipulator and shares similar properties. If the desired attitude is constant, we show
that a PD controller renders the equilibrium point of the closed-loop dynamics exponentially
stable. The validity of the dynamic model and effectiveness of the controller were assessed by
experimental results on a small quadrotor.
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1. INTRODUCTION

Aerial vehicles have been a topic of great relevance in
recent years, mainly due to technological advances. The
development and control of the quadrotor has been of
great interest to the scientific community due to its
maneuverability and low cost. The quadrotor is a type
of unmanned aerial vehicle with four rotors with the
ability to take off and land in limited spaces (Abdelhay
and Zakriti, 2019). Although there are a variety of sizes,
they have a simple structure since they are quick to
manufacture and economical (Xuan-Mung and Hong,
2019; Bashi et al., 2017). Controlling the robot’s position
and attitude have been the subject of studies for years
with different control schemes and applications mainly
based on Euler angles (Castillo et al., 2004; Bouabdallah
et al., 2005; Madani and Benallegue, 2006; Luukkonen,
2011; Mahony et al., 2012). However, Euler angles cannot
globally describe any attitude of the robot and present
singularities; thus, these type of controllers do not allow
angles greater than ±90[deg].

An alternative to Euler’s angles is the quaternions dis-
covered by William Hamilton, which have one real part
and three imaginary parts (Kuipers, 1999). They have a
large number of applications mainly for three-dimensional
rotations, providing advantages over traditional methods,
since it only requires 4 parameters compared to the 9
elements of rotation matrices, which means that it is less
sensitive to computational errors (Salamin, 1979).

In computer graphics, unit quaternions are used to in-
terpolate rotations, for instance inanimations (Mukun-
dan, 2012; Shoemake, 1985). The combination of Euler
parameter kinematics and Hamiltonian mechanics pro-

⋆ This work was supported by CONAHCYT

vides a model of rigid body dynamics suitable for use
in strongly nonlinear problems involving large arbitrary
rotations (Shivarama and Fahrenthold, 2004).

Attitude control of rigid bodies has important applica-
tions for airplanes, helicopters, spacecraft, satellites and
even robots with the use of non minimal attitude rep-
resentations (Wen and Kreutz-Delgado, 1991). Attitude
control can also be applied to water vehicles such as sub-
marines with 6 degrees of freedom (Fjellstad and Fossen,
1994a,b).

One of the first works to study the attitude problem
by means of the unit quaternion in quadrotors was re-
ported in (Tayebi and McGilvray, 2006) where the au-
thors propose a feedback control scheme for the attitude
exponential stabilization problem. The authors report two
controllers, the first one is based on the compensation
of Coriolis and gyroscopic terms with the use of a PD2

structure and the second one is based on the classical
PD controller where the proportional action is in terms
of Quaternion and derivative action in terms of angular
velocity providing asymptotic stability. In (Tayebi, 2008)
a dynamic feedback based on unit quaternions is proposed
for attitude tracking without velocity measurement, this
approach introduces an auxiliary system based on the
unit quaternion, using it in the control law together with
the attitude error, the authors developed a velocity-free
scheme that guarantees almost global asymptotic stabil-
ity. In the case of regulation, the control law is a pure
feedback of quaternions.

Other authors, such as in (Fresk and Nikolakopoulos,
2013) address the attitude problem by proposing a non-
linear proportional squared P 2 control algorithm. Stingu
and Lewis (2009) proposed simple PD controllers that
guarantee stable flight in hover motion. The authors de-
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scribe the implementation of the simple PD algorithms for
flight in a controlled environment equipped with low-cost
sensors.

Carino et al. (2015) present the design and implementa-
tion of a control scheme capable of globally stabilizing
the position and attitude of a quadrotor. Using position
references, they calculate a smooth trajectory that the
attitude controller must follow to stabilize the vehicle’s
position. The control law proposed by the authors can be
analyzed as a linear system.

The problems of altitude and attitude tracking in quadro-
tors have also been studied by means of computational
tools such as neural networks (Xian et al., 2015) where
the authors present a robust nonlinear output feedback
tracking controller based on quaternions. The problem is
subject to structural uncertainties and unknown external
perturbations. Neural networks are used to estimate mod-
eling uncertainties. They use a Lyapunov-based stability
analysis to demonstrate semi-global asymptotic tracking.

Unit quaternion has been also used to describe the at-
titude of hybrid aerial robots, that is, flying robots that
integrate manipulator arms fixed in the body (Alvarez-
Munoz et al., 2018). Mo et al. (2019) use a quadrotor
with an arm of 2 degrees of freedom to follow a time-
varying reference. For the model, they take into account
external disturbances such as the torque generated by the
gravitational force of the manipulator.

On the other hand, Esṕındola and Tang (2023) present
a Lagrangian approach to model the attitude of rigid
bodies. The Lagrangian dynamics of 4 degrees of freedom
evolve on the unit sphere, and exploit the property of
conservation of energy.

This paper focuses on the attitude stabilization problem
of quadrotors. We employ the unit quaternion to describe
the attitude of the flying robots. Exploiting the properties
of the quaternion kinematics, we develop an alternative
attitude dynamic model with four degrees of freedom.
Using the proposed dynamic model, we design and an-
alyze the stability properties of a PD control law. The
paper is organized as follows: the quaternion kinematics
and the Newton-Euler equations of the quadrotors are
given in Section 2. The dynamic model based on the unit
quaternion is presented in Section 3. Section 4 presents
the control law and stability analysis. The experimental
results are discussed in Section 5. The paper ends in
Section 6, where we give some conclusions and future
directions.

2. PRELIMINARES

The flying robot considered in this paper is shown in
Figure 1. The attitude of the flying robot is described
by the rotation matrix R ∈ SO(3) that relates the
body frame ΣB with the inertial frame ΣI . A useful
parametrization of the rotation matrix R is the unit
quaternion

q =
[

qs q
⊤

v

]⊤
∈ S

3

where qs ∈ R is the scalar part and qv ∈ R
3 is the vector

part and S
3 = {x ∈ R

4 | x⊤
x = 1} denotes the three-

sphere. The kinematics of the unit quaternion is given

Fig. 1. Flying robot with four rotors

q̇ =
1

2
J(q)ω, J(q) ≜

[

−q
⊤

v

qsI3 + S(qv)

]

∈ R
4×3 (1)

where ω ∈ R
3 is the quadrotor angular velocity expressed

in the body frame I3 is the 3×3 identity matrix and S(·) ∈
R

3×3 is a skew-symmetric matrix such that S(x)y = x×y

for all x, y ∈ R
3. The Jacobian matrix J(q) in (1) satisfies

J⊤(x)x = 0 (2a)

J⊤(q)J(q) = I3 (2b)

for all x ∈ R
4, q ∈ S

3.

On the other hand, the attitude dynamics of the quadro-
tor in the body frame is given by

M ω̇ = τ + S(Mω)ω (3)

where M = M⊤ ∈ R
3×3 is the constant inertia matrix

and τ ∈ R
3 is the input torque.

3. QUATERNION-BASED DYNAMIC MODEL

In this section, we develop an alternative dynamic model
for the quadrotor. Using the properties of the Jacobian
matrix J(q) in (2), the angular velocity can be expressed
as follows

ω = 2J⊤(q)q̇. (4)

Now, we define the quaternion ω̄ =
[

0 ω
⊤
]⊤

∈ R
4 and

the matrix (Esṕındola and Tang, 2023)

P (q) = [ q J(q) ] =






qs −qx −qy −qz
qx qs −qz qy
qy qz qs −qx
qz −qy qx qs




 . (5)

where q = [ qs qx qy qz ]
⊤

∈ S
3. By direct computation

we can prove that P (q)P⊤(q) = P⊤(q)P (q) = I4 and
det(P (q)) = 1. Therefore, the matrix P (q) is orthogonal
and in fact is a rotation matrix, that is, P (q) ∈ SO(4).
Some interesting properties of the structure of the matrix
P (·) are listed below
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P (x) + P (y) = P (x+ y) (6a)

d

dt
P (x) = P (ẋ) (6b)

for all x, y ∈ R
4.

Using the definitions of ω̄ and P (q), the kinematics of the
unit quaternion can be written as

q̇ =
1

2
P (q)ω̄ ⇔

1

2
ω̄ = P⊤(q)q̇. (7)

Differentiating with respect to time the previous expres-
sion yields

1

2
˙̄ω = P (q)q̈ + P (q̇)q̇. (8)

Note that the first element of the previous equation is
given by

q
⊤
q̈ + q̇

⊤
q̇ = 0 (9)

which correspond to the second time derivative of the unit
quaternion constraint q⊤

q = 1.

Multiplying (8) by the following symmetric positive defi-
nite matrix

M̄ =

[

µ 0⊤

0 M

]

∈ R
4×4, µ > 0, (10)

yields the following expression

1

2
M̄ ˙̄ω =

1

2

[
0

M ω̇

]

= M̄P⊤(q)q̈ + M̄P⊤(q̇)q̇. (11)

Finally, multiplying (11) by P (q) and by taking into
account the quadrotor dynamics (3), we obtain the
quaternion-based dynamic model given by

H(q)q̈ + C(q, q̇)q̇ = τ̄ (12)

where:

• H(q) = P (q)M̄P⊤(q) ∈ R
4×4 is a symmetric

positive definite matrix.
• C(q, q̇) = P (q)M̄P⊤(q̇) − P (q)S̄(Mω)P⊤(q) ∈
R

4×4 is the Coriolis matrix and

S̄(Mω) =

[

0 0⊤

0 S(Mω)

]

∈ R
4×4

is a skew-symmetric matrix.
• τ̄ = 1

2
J(q)τ ∈ R

4 is torque input in the unit
quaternion coordinates.

From the definition of the inertia matrix H(q) it follows
P⊤(q)H(q) = M̄P⊤(q), this expression implies that
H(q) and M̄ are similar matrices and hence they have the
same eigenvalues. Therefore, if the parameter µ is selected
as µ = λmin{M}, the inertia matrix H(q) satisfies

λmin{M}∥x∥2 ≤ x
⊤H(q)x ≤ λmax{M}∥x∥2

for all x ∈ R
4.

Since the matrix S̄(·) is skew-symmetric, we can show by

direct computation that the matrix Ḣ(q) − 2C(q, q̇) is
also a skew-symmetric matrix, that is,

x
⊤(Ḣ(q)− 2C(q, q̇))x = 0,

for all x ∈ R
4. In addition, we have the following result

Ḣ(q) = C(q, q̇) + C⊤(q, q̇).

4. ATTITUDE CONTROL LAW

This section presents a control law that stabilize the
quadrotor’s attitude q(t) ∈ S

3 to some desired constant
attitude qd ∈ S

3. The proposed control law is given by

τ̄ = K1q̃ −K2q̇ (13)

where q̃ = qd − q ∈ R
4 is the attitude error and

K1 ∈ R
4×4, K2 ∈ R

4×4 are diagonal positive definite
matrices. In the original coordinates, the control law is
given by

τ = 2J⊤(q)

(

K1q̃ −
1

2
K2J(q)ω

)

. (14)

where we used (4). Furthermore, if we select the control
gains as K1 = 1

2
k1I4 and K2 = k2I4 for some positive

constant k1, k2 ∈ R, the controller (14) further simplifies
to

τ = k1J
⊤(q)qd − k2ω

= k1ev − k2ω (15)

where we have used J⊤(q)q = 0 and ev ∈ R
3 is the

vector part of the attitude error e ∈ S
3 defined as (Pliego-

Jiménez, 2021)

e =

[
es
ev

]

= q
−1 ⊗ qd (16)

where⊗ denotes de Hamilton product. The controller (15)
is the classical PD controller reported in the litera-
ture (Wen and Kreutz-Delgado, 1991).

Theorem 1. For any positive definite matricesK1 andK2,
the control law (13) in closed-loop with (12) drives the
quadrotor’s attitude q(t) to the desired constant attitude
qd with zero angular velocity, that is,

lim
t→∞

q(t) = qd, lim
t→∞

ω(t) = 0 (17)

with an exponential converge rate.

Proof. Substituting the control law (13) into (12) and by

taking into account that ˙̃q = −q̇, we obtain the closed-
loop dynamics

˙̃q = −q̇ (18a)

H(q)q̈ = K1q̃ −K2q̇ − C(q, q̇)q̇ (18b)

which has an equilibrium point at the origin, that is,
(q̃, q̇) = (0,0). To prove Theorem 1, we need to show
that the origin of (18) is exponentially stable.

Consider the candidate Lyapunov function

V =
1

2
q̇
⊤H(q)q̇ +

1

2
q̃
⊤K1q̃ − ϵq̃⊤H(q)q̇ (19)

with ϵ > 0. The Lyapunov function can be lower and
upper bounded as follows

V ≥
1

2

[
∥q̃∥
∥q̇∥

]⊤ [
k1 −ϵm̄

−ϵm̄ µ

] [
∥q̃∥
∥q̇∥

]

(20)

V ≤
1

2

[
∥q̃∥
∥q̇∥

]⊤ [

k̄1 ϵm̄
ϵm̄ m̄

]

︸ ︷︷ ︸

A

[
∥q̃∥
∥q̇∥

]

(21)

where k1 = λmin{K1} and k̄1 = λmax{K1} are, respec-
tively, the minimum and largest eigenvalue of K1. If the
parameter ϵ is selected to satisfy

µk1
m̄2

> ϵ2,
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then, the candidate Lyapunov function is positive definite
and radially unbounded.

The time derivative of V along (18) is given by

V̇ =q̇
⊤
(
K1q̃ −K2q̇ − C(q, q̇)q̇

)
− q̇

⊤K1q̃ + ϵq̇⊤H(q)q̇

− ϵq̃⊤
(
K1q̃ −K2q̇ − C(q, q̇)q̇

)
− ϵq̃⊤Ḣ(q)q̇. (22)

Using the skew-symmetric property of the matrix Ḣ(q)−

2C(q, q̇), the identity Ḣ(q) = C(q, q̇)+C⊤(q, q̇) and the

inequality ∥q̃∥ ≤ ∥q∥+ ∥qd∥ ≤ 2, an upper bound of V̇ is
given by

V̇ ≤ −

[
∥q̃∥
∥q̇∥

]⊤

Q

[
∥q̃∥
∥q̇∥

]

(23)

where we used ∥C(q, q̇)∥ ≤ kc∥q̇∥
2 for some kc > 0, see

(Kelly et al., 2005). The matrix Q ∈ R
2×2 is given by

Q =






ϵk1 −
1

2
ϵk̄2

−
1

2
ϵk̄2 k2 − ϵ(m̄+ 2kc)




 ∈ R

2×2 (24)

If the parameter ϵ also satisfies the following inequality

k1k2
k̄2 + k1(m̄+ 2kc)

> ϵ > 0. (25)

Then, the matrix Q is positive definite and hence

V̇ ≤ −λmin{Q}
(
∥q̃∥2 + ∥q̇∥2

)

≤ −
λmin{Q}

λmax{A}
V. (26)

where P ∈ R
2×2 is defined in (21). The inequality (26)

implies that the origin of the closed-loop dynamics (18)
is exponentially stable: thus, q(t) → qd and q̇(t) → 0
with an exponential convergence rate. The exponential
converge of q̇ to zero, also implies ω(t) → 0 as t → ∞,
see (4). This completes the proof. ✷

5. EXPERIMENTAL RESULTS

In this section, we present experimental results to validate
the quaternion-based dynamic model and the efficacy
of the control law (13). The experimental platform is
composed of the low-cost quadrotor Crazyflie from the
Swedish company Bitcraze 1 , PC computer, and a test
bench, see Figure 2. The minidrone is equipped with a
microcontroller STM32F40, a nRF51822 radio and an
Inertial Measurement Unit (IMU) BMI088. The attitude
controller was programed onboard using C language. A
Python program running on the PC sends the desired
attitude and thrust to the quadrotor via the Crazyra-
dio. The test bench is a 3-dof mechanism designed to
carry out experiments safely and was manufactured by
3D printing (Sidon-Ayala, 2020).

To show the stabilization capabilities of the proposed
controller, we carried out two experiments with different
desired attitudes. In both experiments, we selected the
control gains as K1 = diag{0.025 0.0228 0.039 0.0165}
and K2 = diag{0.0005 0.0065 0.01 0.004} and the sample
time was set as 0.002 [s]. The desired attitude in the first

1 https://www.bitcraze.io

Fig. 2. Test bench and Crazyflie drone

Fig. 3. Desired quaternion versus the measured quater-
nion in the first experiment

experiment was qd = [ 1 0 0 0 ]
⊤

and the initial attitude
of the robot was

q(0) = [ 0.491 0.781 0.321 0.212 ]
⊤
, ω(0) ≈ 0 [rad/s].

Figure 3 shows the time evolution of the unit quaternion
in the first experiment; after a few seconds, the Crazyflie
reaches the desired attitude since the attitude measure-
ments provided by the IMU are very similar to the desired
one. As can be seen in Figure 4, the angular velocity
converges to zero; therefore, the control law has a good
performance and achieves the control objective. Figure 5
shows the control signals generated by the control law;
the control input vanishes as the robot’s attitude reaches
the desired one.

In the second experiment, the desired attitude is specified
as a function of the roll (ϕ), pitch (θ) and yaw (ψ) Euler
angles

qd =










cos

(
ψd

2

)

0
0

sin

(
ψd

2

)










⊗










cos

(
θd
2

)

0

sin

(
ψd

2

)

0










⊗










cos

(
ϕd
2

)

sin

(
ψd

2

)

0
0









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Fig. 4. Angular velocity in the first experiment

Fig. 5. Control input τ in the first experiment

where ϕd = 10 [deg], θd = 15 [deg] and ψd = 0 [deg]. The
initial conditions in the second experiment was

q(0) = [ 0.305 −0.933 0.105 −0.157 ]
⊤
, ω(0) ≈ 0[rad/s].

The experimental results of the second experiment are
shown in Figure 6, 7 and 8. The control objective is also
satisfied in the second experiment, the elements of the
unit quaternion converges to the desired values and the
angular velocity converges to zero, see Figure 6 and 7.
A good performance is achieved even though the friction
of the test bench joints and motors’ dynamics were not
considered in the design of the control law.

Fig. 6. Desired quaternion versus the measured quater-
nion in the second experiment

Fig. 7. Angular velocity in the second experiment

Fig. 8. Control input τ in the second experiment

Figure 8 shows the time evolution of the control input.
In a similar fashion as the first experiment (see Figure 5)
the input torques tend to zero after the transient response,
therefore, we conclude that in the second experiment the
control law works out properly, since it supplies the torque
necessary to attain the regulation goal.

6. CONCLUSION

This work proposes an attitude stabilization control law
for flying robots based on the unit quaternion. Exploit-
ing the properties of the unit quaternion kinematics, we
develop a 4-dof attitude dynamic model that is very sim-
ilar to the Euler-Lagrange equations of motion of robot
manipulators without gravity term and presents similar
properties regarding the Inertia and Coriolis matrices. Us-
ing the alternative dynamic model, we show by means of a
strict Lyapunov function that the proposed stabilization
controller drives the attitude and angular velocity errors
to zero with an exponential convergence rate. The exper-
imental results are consistent with the proposed theory.
Since q and −q represent the same attitude, the proposed
controller may induce the unwinding phenomena; thus, in
future work, we will consider the problem of designing
anti-unwinding or hybrid controllers to overcome this
issue.
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