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Abstract: In this paper we present a comparative numerical simulation study of three dynamic
regressor extension and mixing estimators applied to the quadrotor system. Our main objective
is to compare the transient performance of these three parameter estimators a topic that plays
a major role in parameter estimation tasks. Our study goes beyond verifying theoretically
validated (asymptotic) properties. We delve into aspects not previously explored, such as
sensitivity to tuning parameters, focusing specifically on a quadrotor dynamic model. The
ultimate goal of this study is to provide useful design guidelines for the unmanned aerial
vehicles community interested in utilizing these estimators.
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1. INTRODUCTION

Gain tuning for control and parameter adaptation algorithms is
time-consuming. A classic example of this situation is the tuning
of the gains of a simple PID controller. This task becomes even
more involved when dealing with nonlinear algorithms for which
we usually dispose only of asymptotic behavior guarantees. In
this paper, we address this issue in relation to the particular
problem of parameter estimators for a quadrotor aerial vehicle.
We concentrate on high-performance dynamic regressor extension

and mixing (DREM) estimators, which ensure excellent asymptotic
convergence properties under extremely weak excitation conditions;
see (Ortega, 2020) for a recent survey, with a focus on their practical
implementations. DREM is a novel technique to design parameter
estimators introduced in (Aranovskiy, 2017) that has attracted the
attention of the identification and adaptive control community,
reaching 424 citations in Google Scholar to date. The construction
of DREM estimators involves two steps: S1 Proceeding from the
original vector linear regression equation (LRE), which is of the form
y = ψ⊤θ, with y(t) ∈ R, ψ(t) ∈ R

q measurable signals and θ ∈ R
q

the vector of unknown parameters to be estimated, in the regressor
extension step, we construct a square matrix regressor equation of
the form Y = Ψθ, with Y (t) ∈ R

q ,Ψ(t) ∈ R
q×q new measurable

signals. S2 The mixing step, which multiplies the matrix regression
equation by the adjoint matrix of the matrix regressor, yielding a
set of scalar regression equations of the form Yi = ∆θi, i ∈ q̄ with
Y := adj{Ψ}Y and ∆ = det{Ψ}. This latter essential feature, which
is unique to DREM, makes it a very powerful parameter estimation
technique.
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While the mixing step of DREM is always the same, the regressor
extension is carried out by applying a vector-valued linear (possibly
time-varying and infinite dimensional) operator to the original
regression equation. Hence, the regressor extension can be achieved
in many ways by selecting different linear operators—see (Ortega,
2021a) for a detailed discussion on this topic. The main feature
requested for the regression extension operation is that it generates
a matrix regression whose determinant, as shown in S2 above, is
the new regressor for the scalar regressor equations and satisfies
suitable excitation properties. It has been shown that a determinant
not being square integrable is a necessary and suicient condition for
parameter convergence, with the convergence being exponential if
and only if the determinant is persistently exciting (PE) (Sastry,
1989). It is clear that to ensure the required excitation of the
determinant it is necessary to impose some excitation properties on
the original vector regressor ψ, the weakest being interval excitation
(IE) (Kreisselmeier, 1990; Tao, 2003). 2

In the paper, we look at the following three high-performance
DREM estimators, which ensure PE of the scalar regressor ∆—
and, consequently, exponential convergence of the estimator—
under the IE condition of the original vector regressor ψ. E1 The
GPEBO+DREM estimator reported in (Wang, 2023) generates the
extended regressor applying the construction of the generalized
parameter estimation-based observer (GPEBO) technique (Ortega,
2021b) to a classical gradient estimator. E2 The LS+DREM esti-
mator of (Ortega, 2022) replaces the gradient scheme with a least-
squares one and exploits a well-known property of the covariance
matrix reported in (de Larminat, 1984) to generate the extended re-
gressor. E3 The highly sophisticated DREM+GPEBO scheme, first

2 It is important to note that it has been recently shown in (Wang, 2023,

Proposition 2.3) that IE of the regressor ψ is equivalent to identifiability of

the LRE y = ψ⊤θ—so IE is a necessary condition for the solution (via on- or

off-line estimators) of the parameter identification problem.
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reported in (Bobtsov, 2022) and later complemented in (Korotina,
2022), creates the extended regressor invoking Kreisselmeier’s con-
struction (Kreisselmeier, 1977) and then applies the mixing step
to generate the scalar regression equation. GPEBO techniques are
applied to the mixing step by tailoring virtual dynamics that gen-
erate new scalar regressors with guaranteed excitation properties,
particularly that the regressor ∆ is bounded away from zero in a
longer time interval than the original. The study reported here aims
to gain insight into their role in the transient behavior via detailed
simulation studies with a quadrotor system and develop guidelines
to facilitate their tuning. 3

Quadroror parameter identification was addressed in (Dhaybi, 2020)
using the recursive least squares algorithm with a covariance re-
setting loop to preserve the estimator alertness and increase the
convergence rate and accuracy of the estimated parameters (Sastry,
1989, Theorem 2.4.4). Numerical and experimental evaluation using
data from the Quanser quadrotor QBall-2 in a flight designed to
ensure persistently exciting signals are provided. The aerodynamic
parameters of the quadrotor rotational model are determined using
the Comprehensive Identication from FrEquency Responses tool in
reference (Yang, 2021). The result is validated using the Quanser 3-
DOF hover quadrotor platform. A multivariable extremum-seeking
algorithm solves the problem of nonlinear and closed-loop parameter
identification for quadcopters (Liu, 2018). This algorithm ignores
the prior knowledge of the input and output mapping to reduce
sensitivity to initial values. The algorithm is tested using numerical
simulations. In (Mungúıa, 2019), a method for estimating the model
parameters of multi-rotor unmanned aerial vehicles through an ex-
tended Kalman filter is presented. The proposed approach identifies
all model parameters using a single on-line estimation process that
fuses measurements obtained directly from on-board sensors from
actual flight log data. Kalman filtering and DREM methods are
employed to estimate quadrotor parameters in (Kakanov, 2020).
Numerical simulations support the theoretical developments. Ex-
perimental parameter estimation using two mixing procedures was
reported in (Cortés-Benito, 2023).

The rest of the paper has the following structure. Section 2 presents

the quadrotor dynamic model and in Section 3 we derive the LRE

used for the estimation of the translational dynamics parameters.

Section 4 presents the simulation study of the three DREM estima-

tors described above. Finally, Section 5 presents some concluding

remarks.

Notation. In is the n × n identity matrix, ej ∈ R
ny is the j-

th vector of ny-dimensional Euclidean basis, and R+ denotes the
positive real numbers . The action of a linear time-invariant (LTI)
filter F(p) ∈ R(p) on a signal w(t) is denoted as F(p)[w], where

pn[w] :=
dnw(t)
dtn

. All mappings are assumed smooth and all signals
are differentiable and bounded.

2. THE QUADROTOR DYNAMIC MODEL

In this section we give the equations that describe the quadrotor
dynamics and identify the parameter estimation task. Also, since the
quadrotor is open-loop unstable we present a classical PD controller
to stabilize it, which will be used in our simulation study.

2.1 Formulation of the estimation problem

Under standard assumptions, the quadrotor aerial vehicle can be
modeled using the following equations (Leishman, 2014; Gómez-

3 The choice of the names GPEBO+DREM versus DREM+GPEBO stems

from the fact that in the former scheme the GPEBO action is carried out before

the DREM operation, while in DREM+GPEBO this operations are inversed.

Casasola, 2022) for the translational dynamics

mẌ = mge3 − TTRe3 − µRHR⊤Ẋ, (1)

and the rotational dynamics

JΩ̇ = −Ω× JΩ+Mb, (2)

where m > 0 is the quadrotor mass, X(t) ∈ R
3, with X =

col(x, y, z), is the inertial quadrotor position, g is the gravita-

tional acceleration constant, TT (t) ∈ R is the total thrust gen-

erated by the four rotors, µ > 0 is the aerodynamic drag co-

efficient, H = diag{1, 1, 0}, and R ∈ SO(3) with SO(3) =
{

R ∈ R
3×3 | R⊤R = I3,det(R) = 1

}

is the rotation matrix from

body to inertial axes. Moreover, J = diag{Jxx, Jyy , Jzz} ∈ R
3×3
+ is

the inertia matrix,Ω(t) =
[

p(t) q(t) r(t)
]⊤

∈ R
3 is the rotational

velocity and Mb(t) ∈ R
3 is the vector of moments generated by

modifying differentially the thrust of the four rotors.

Estimation objective. Assume that the states Ẋ, R and Ω and
the body acceleration

ab =
1

m

[

−TT e3 − µHR⊤Ẋ
]

(3)

are measurable. Moreover, consider that the control inputs TT and
Mb are available. Identify the constant parameters m, µ, and J .

2.2 A stabilizing control law

The quadrotor dynamic is open-loop unstable, so a stabilizing
control law must be implemented. The following control law is
a simplified version of (Lee, 2013) that stabilizes the quadrotor
positionX and the quadrotor yaw angle ψ at desired constant values
Xd and ψd, respectively:

TT = (Re3)
⊤u, u = KP (X −Xd) +KDẊ + ge3

Mb = −KReR −KOΩ, eR =
1

2

(

R̃− R̃
)∨

,

where R̃ = R⊤

d R, KP , KD, KR, and KO are positive definite
matrices, and (·)∨ is the map defined as (·)∨ : so3 → R

3 with

so(3) =
{

S ∈ R
3×3 | S+ S⊤ = 0

}

. Thus, for any a ∈ R
3

S(a) =

[

0 −a3 a2
a3 0 −a1
−a2 a1 0

]

∈ so(3) ⇒ S(a)∨ =

[

a1
a2
a3

]

and a × b = S(a)b,∀ b ∈ R
3 . Finally, the following vectors are

defined
r3d =

u

|u|
, r1d =

[

sin(ψd) cos(ψd) 0
]⊤

to synthesize the desired rotation matrix as follows

Rd =

[

r3d × (r1d × r3d)

‖r3d × (r1d × r3d)‖
|
r1d × r3d

‖r1d × r3d‖
|r3d

]

3. DERIVATION OF THE LRE

In this section we derive LRE for the translational dynamics, that
will be used in the sequel to implement the DREM estimators.
The first LRE is obtained via simple algebraic manipulations of
the dynamic equations (1).

For the translational dynamics we multiply from the left equation
(1) by Ẋ⊤ to get

Ẋ⊤ab =
1

m
TT Ẋ

⊤e3 −
µ

m
Ẋ⊤HR⊤Ẋ. (4)

Grouping in a vector the unknown parameters we can rewrite (4)
as a LRE for the translational dynamics as follows
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yT = ψ⊤

T θT (5)

with

yT = Ẋ⊤ab, ψT =

[

−TT Ẋ
⊤e3

−Ẋ⊤HR⊤Ẋ

]

, θT =

[

1

m

µ

m

]⊤

(6)

4. MAIN SIMULATION RESULTS

In this section we present the simulation of the three DREM-based
estimators described in E1-E3 of Section . In the interest of brevity,
we present the plots of µ

m
only—this because the behavior of the

other parameter 1
m

is always very similar.

4.1 Simulation scenario

The following parameters are considered in the simulations,
m = 1.4kg, µ = 0.7Ns/m. The controller gains are KP =
diag{5, 5, 5}, KD = diag{12, 12, 12}, KR = diag{4, 4, 0.4} and
KO = diag{1.5, 1.5, 0.15}. The quadrotor initial position is X(0) =
[

1.5 1.5 0
]⊤

, R(0) = diag{1, 1, 1} it is commanded to move to the

position Xd =
[

0.8 0.8 −1.5
]⊤

, ψd = π/4.

Figure 1 shows the time history of the quadrotor translational
position and the trace of the rotation matrix. We see that while
the behavior of the quadrotor position is monotonic, the rotation
matrix has a clear overshoot. We recall that the regressor ψT
given in (6), whose level of excitation determines the estimator
performance, depends—via some complicated expressions—on the
position velocity and the rotation matrix.

In all simulations below we depict the behavior of the estimated pa-
rameter θ̂T2—that is the estimate of µ/m—and the scalar regressor
∆. We recall that the overall behavior of the estimates is determined
by the latter function.

To assess the effect of additive noise in the performance of the
DREM estimators we also present a simulation with noisy mea-
surements. We recall that it Ortega (2022); Wang (2023) we show
that the corresponding estimators are robust to additive noise, more
precisely, that the defined bounded-input bounded-state operators
vis-à-vis additive noise in the LRE.
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Fig. 1. Quadrotor position, (left): x (continuous line), y (dashed
line), and z (dotted line). Rotation matrix trace (right).

4.2 The GPEBO+DREM estimator of E1

From (Wang, 2023) and the LRE (5), the GPEBO+DREM estima-
tor for the quadrotor translational dynamic reads as

˙̂
θg = −γgψT (ψ

⊤

T θ̂g − yT ), θ̂g(0) = θ̂g0 ∈ R
2

Φ̇ = −γgψTψ
⊤

T Φ, Φ(0) = I2

˙̂
θT = γ∆GD

(

YGD −∆GD θ̂T
)

, θ̂(0) = θ̂0 ∈ R
2,

(7)

with

YGD = adj(I2 − Φ)(θ̂g − Φθ̂g0) (8)

∆GD = det(I2 − Φ) (9)

and γg , and γ the positive estimator gains.

The first simulation shown in Figure 2 considers the following gain
set:

(γg , γ) ∈ {(1, 1), (30, 1), (60, 1), (100, 1)}. (10)

The behavior for the first set of values is somehow satisfactory,

with the estimate of µ/m increasing, eventually reaching the desired

value (not shown in the figure.) This stems from the fact that the

scalar regressor ∆GD is far from zero. Interestingly, increasing γg
(to 30, 60, 100), drives ∆GD to a small number quite close to zero,

so that the estimation freezes at a value different from the correct

one.
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Fig. 2. Simulations for gain set (10). Estimated parameter µ/m
(left). ∆GD (right). γg = 1.0 (continuous line), γg = 30.0
(dashed line), γg = 60.0 (dotted line), and γg = 100 (dash-
dotted line).

Motivated by the previous analysis we tried increasing γ, instead of
γg , and simulated with the following gain set:

(γg , γ) ∈ {(1, 1), (1, 3× 105), (1, 6× 105), (1, 12× 105)}. (11)

The results are displayed in Figure 3. We see that, starting from
γ = 3 × 105 the estimated value reaches very fast the true one.
With (γg , γ) = (1, 1) we also observed parameter convergence, but
at a very slow rate—see the difference in amplitude scales between
Figure 2 and Figure 3. The results depicted in Figures 2 and 3
suggest to consider the following gain set
(γg , γ) ∈ {(0.5, 12×105), (1, 12×105), (1.5, 12×105), (5, 12×105)}.

(12)
The results are presented in Figure 4, which shows that the gain γg
modifies the convergence speed. However, by performing simulations
increasing the γg gain, it was verified that the convergence speed
settles for γg values larger than 10. This behavior is consistent with
the ∆GD values. As depicted in Figure 4, the peak in ∆GD appears
earlier, and the settling value is smaller when increasing the γg gain
value.
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Fig. 3. Simulations for gain set (11). Estimated parameter µ/m
(left), ∆DG (right). γ = 1.0 (continuous line), γ = 3 × 105

(dashed line), γ = 6 × 105 (dotted line), and γ = 12 × 105

(dash-dotted line).

4.3 The LS+DREM estimator of E2

The LS+DREM of (Ortega, 2022) is described by the following
equations
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Fig. 4. Simulations for gain set (12). Estimated parameter µ/m
(left), ∆GD(right). (0.5, 12 × 105) (continuous line), (1, 12 ×
105) (dashed line), (1.5, 12 × 105) (dotted line), and (5, 12 ×
105) (dash-dotted line).

˙̂η = −αFψT
(

ψ⊤

T η̂ − yT
)

, η̂(0) = η0 ∈ R
2

Ḟ = −αFψTψ
⊤

T F + βF, F (0) =
1

f0
I2

˙̂
θT = γ∆LSD

(

YLSD −∆LSD θ̂T
)

, θ̂T (0) = θ0 ∈ R
2

ż = −βz, z(0) = 1

(13)

where
∆LSD = det(I2 − zf0F ),

YLSD = adj(I2 − zf0F )(η̂ − zf0Fη0)
(14)

and we introduce a forgetting factor 4

β = β0

(

1−
‖F‖

M

)

. (15)

For this estimator, the tuning gains are α > 0, f0 > 0, β0 > 0,
M ≥ 1

f0
and γ > 0. As seen from the equations α plays a similar

role to γg in the GPEBO+DREM estimator—namely, weighting
the role of the first estimation stage: gradient in GPEBO+DREM
and LS in LS+DREM. While γ in both estimators determines the
convergence rate of the second scalar estimator.

The first simulation is performed to evaluate the role of α. Towards

this end, we fix β = 1.0, M = 1.0, f0 = 2, γ = 1 and change α to

the following values {1, 30, 60, 120}. Figure 5 shows the estimator

behavior for these choices. Note that the gain α amplifies the

value of the signal ∆LSD; thus, the parameter convergence speed

increases, as illustrated in Figure 5. Although not shown in the

figure in all cases parameter convergence is achieved because ∆LSD
converges to a non-zero value.
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Fig. 5. Role of α with γ = 1. Estimated parameter µ/m (left),
∆LSD (right). α = 1 (continuous line), α = 30 (dashed line),
α = 60 (dotted line), and α = 120 (dash-dotted line).

The second simulation evaluates the effect of γ and considers the

following values γ = {1, 30, 60, 120}. The results of this simulation

are reported in Figure 6. Interestingly, the gain γ has a similar

effect on the estimated parameters convergence speed as the gain

α. However, the convergence speed increases much less than the

speed increased by varying the gain α—notice the difference in

amplitude scales. Note in Figure 6 that the gain γ does not affect

4 This factor is introduced to compensate the well-known drawback
of LS algorithms that, due to the covariance wind-up problem, they
loose their alertness to track parameter variations (Sastry, 1989,
Section 2.3.2). If this feature is removed we set β = 0.

the signal ∆LSD. Thus, the gain γ speeds up parameter convergence

differently than the gain α.
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Fig. 6. Role of γ.Estimated parameter µ/m (left), ∆LSD (right).
γ = diag{1, 1} (continuous line), γ = diag{30, 30} (dashed
line), γ = diag{60, 60} (dotted line), and γ = diag{120, 120}
(dash-dotted line).

The third simulation considers the variation of the gain f0. As seen
in the definition of F (0) this constant determines the initial value
of the covariance matrix. A key property of the LS algorithm, that
was first reported in (de Larminat, 1984), is that 5

d

dt
(F−1η̃) = −βF−1η̃. (16)

Solving this equation we get

η̃ = zf0F η̃(0). (17)

From which it is clear that reducing f0 reduces the estimation error.

In Figure 7 we present the results for f0 = {2, 5, 15, 30}. From

the figure it is seen that increasing f0 slows down the parameter

convergence speed; this is a consequence of the decrease in scalar

regressor ∆LSD.
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Fig. 7. Estimated parameter µ/m (left), ∆LSD (right). f0 = 2
(continuous line), f0 = 5 (dashed line), f0 = 15 (dotted line),
and f0 = 30 (dash-dotted line).

The fourth and fifth simulation pertain to the gainsM and β0 which
are related with the forgetting mechanism that was introduced via
(15). As thoroughly discussed in (Slotine, 1991, Section 8.7.6) this
implements a bounded gain forgetting. Indeed, a zero forgetting
factor leads to vanishing gain (in the face of PE) while a constant
positive factor leads to exploding gain (in the absence of PE). To
keep the benefits of data forgetting (parameter tracking ability)
while avoiding the possibility of gain unboundedness, it is desirable
to tune the forgetting factor variation so that data forgetting is
activated when the regressor is PE and suspended when it is not.
Since the magnitude of the covariance matrix F is an indicator
of the excitation level, it is reasonable to correlate the forgetting
factor variation with ‖F‖. A specific technique for achieving this
purpose is to choose the forgetting factor as (15) with β0 and M
being positive constants representing the maximum forgetting rate
and prespecified bound for gain matrix magnitude, respectively. The
forgetting factor β implies forgetting the data with a factor β0 if the
norm of F is small (indicating strong PE), reducing the forgetting

5 The result reported in (de Larminat, 1984) pertains to the case
of LS without forgetting factor, that is with β(t) = 0. The equation
above is then a generalization of this result.
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speed if ‖F‖ becomes larger and suspends forgetting if the norm
reaches the specified upper bound M .

In Figure 8 we consider the variation of the gain M within the

set {1, 5, 15, 30}. As can be observed, the gain slightly increases

the value of the signal ∆LSD, and this effect is reflected in a

slight parameter convergence speed-up. In Figure 9 we consider

variations of β in the set {1, 10, 50, 100}. Note that increasing β

also increases the value of ∆LSD to a certain level. After this level,

increasing β has a negligible effect on the ∆LSD value. As expected,

growing ∆LSD increases the estimated parameters convergence, as

illustrated in Figure 9.
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Fig. 8. Role ofM . Estimated parameter µ/m (left), ∆LSD (right).
M = 1 (continuous line),M = 5 (dashed line),M = 15 (dotted
line), and M = 30 (dash-dotted line).

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1
10

-4

0 2 4 6 8 10

0

0.005

0.01

0.015

0.02

Fig. 9. Role of β. Estimated parameter µ/m (left), ∆LSD (right).
β = 1 (continuous line), β = 10 (dashed line), β = 50 (dotted
line), and β = 100 (dash-dotted line).

Finally, the following gains are selected β = 50, M = 1,
f0 = 5, γ = 60 and α = 60. Figure 10 shows the results
together with the following gain combinations

(β,M, f0, γ, α) ∈ {(50, 1, 5, 60, 60)1, (50, 1, 5, 60, 120)2,
(50, 1, 5, 120, 60)3, (50, 1, 5, 120, 120)4}.

(18)

Note that increasing only α positively affects the convergence speed
without affecting the value of ∆LSD. On the other hand, raising
only γ does not change the value of ∆LSD, and the convergence
speed slows down. Finally, increasing both gains α and γ speeds up
the convergence rate and the value of ∆LSD.

0 0.5 1 1.5 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

Fig. 10. Gain set (18). Estimated parameter µ/m (left), ∆LSD
(right). (·)1 (continuous line), (·)2 (dashed line), (·)3 (dotted
line), and (·)4 (dash-dotted line)

Remark 1. As explained in (Ortega, 2022) the extended regressor in
the LS+DREM estimator is created replacing the gradient estimator
of (Wang, 2023) by a LS scheme and exploiting the key property of
the covariance matrix F identified in (16). This allows us to derive
(17) from which we can define the extended LRE

(η̂ − zf0Fη0) = (I2 − zf0F )θT ,

to which we apply the standard mixing procedure to get the scalar
LREs {YLSD}i = ∆LSDθTi, i = 1, 2.

4.4 The DREM+GPEBO estimator of E3

Following the developments reported in (Korotina, 2022), the con-
struction of the DREM+GPEBO estimator proceeds from the
translational LRE (5) and starts by constructing the Kreisselmeier
regressor extension (Korotina, 2022, Proposition 1) and applying
the DREM procedure to get the following scalar LREs.

Y1
DG = ∆DGθT1, Y

2
DG = ∆DGθT2 (19)

where we defined

Z = F1(p) [ψT yT ] , Ψ = F1(p)
[

ψTψ
⊤

T

]

YDG = adj(Ψ)Z, ∆DG = det(Ψ)
(20)

with the filter F1(p) =
g

p+λ
, g > 0 and λ > 0.

We consider the scenario where ∆DG does not have the required
excitation properties and proceed to construct new scalar LRE with
guaranteed PE of the new scalar regressor. Towards this end, the
following dynamic systems are constructed. For θT2

ż2 = ρ(φ21Y
2
DG − z2), z2(0) = 0 (21)

with ρ > 0, and φ21, φ22 defined as
[

φ̇21
φ̇22

]

=

[

0 −ρ∆DGφ21

ρ∆DGφ21 −(
1

2
(φ221 + φ222) + β)

]

[

φ21
φ22

]

,

[

φ21(0) φ22(0)
]⊤

=
[

1 0
]⊤

[

ζ̇21
ζ̇22

]

=

[

0 −ρ∆DGφ21

ρ∆DGφ21 −(
1

2
(φ221 + φ222) + β2)

]

[

ζ21
ζ22

]

+

[

ρ2∆DGφ21z2

(
1

2
(φ221 + φ222) + β2 − ρ2)z2

]

,

[

ζ21(0) ζ22(0)
]⊤

=
[

0 0
]⊤

(22)

with β > 0.5. Invoking GPEBO, the following new LRE is synthe-
sized based on the dynamic systems (21), and (22).

ȲDG = Φ̄θT (23)

with ȲDG = z2 − ζ22 and Φ̄ = ψ22, and it is proven that if the
original regressor ψT is IE we have that Φ̄ is PE. Thus, the classical
gradient estimator

˙̂
θT2 = γφ22(z2 − ζ22 − φ22θ̂T2) (24)

ensures exponential convergence.

As seen from the derivations above, this is a highly complicated

construction that involves many tuning gains, whose interpretation

is far from clear. Figure 11 presents the estimator response with

γ = 1, β = 0.75, and ρ ∈ {1, 30, 60, 90}. As seen in the figure, in all

cases ∆DG and φ22 converge to zero. However, φ22 is different from

zero more time than ∆DG, hence, φ22 has a larger exciting interval

than ∆DG. We recall that it is this signal that acts as regressor in

the final gradient estimator (24). Also, it is clear from the figure

that increasing ρ speeds-up the transient. This behavior may be

explained as follows. From (21) we see that ρ2 is the inverse of the

time constant of the filter. Hence, increasing ρ2 makes z2 to converge

faster to φ21Y2
DG

. This, in its turn ”speeds-up” the GPEBO stage

of the algorithm.

Figure 12 depicts the estimator response with µ = 1 and γ ∈
{1, 30, 60, 90}. It is again seen that ∆DG converges to zero in
all cases, and γ does not modify the behavior of φ22. Also, it is
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Fig. 11. Efect of ρ. Estimated parameter µ/m (top), (∆DG, φ22-
green line-) (right). ρ = 1 (5 × ∆DG, 5 × φ22) (continuous
line), ρ = 30 (dashed line), ρ = 60 (dotted line), and ρ = 90
(dash-dotted line).

clear from the figure that—as expected from the equations of the
gradient estimator (24)—increasing γ fastens the transient behavior.
Furthermore, this transient improvement is more pronounced than
the one achieved increasing ρ, which is somehow indirect.
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Fig. 12. Effect of γ. Estimated parameter µ/m (left), 5×
∆DG, 5×φ22 -green line- (right). γ = 1.0 (continuous
line), γ = 30.0 (dashed line), γ = 60.0 (dotted line),
and γ = 90 (dash-dotted line).

From the results in the previous simulations, the following gain
combinations are tested.

(γ, µ) ∈ {(90, 30), (30, 90), (30, 120), (30, 150)}.

The results are depicted in Figure 13, which shows that the best

response is obtained by increasing ρ with respect to γ. Finally, it

was verified that with the gain combination (30, 150) there is no

noticeable effect when the gain β varies.
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Fig. 13. Estimated parameter 1/m (left), ∆DG, φ22 -green
line-(right). (90, 30) (continuous line), (30, 90) (dashed line),
(30, 120) (dotted line), and (30, 150) (dash-dotted line).

5. CONCLUDING REMARKS

With the purpose of revealing the role of the various tuning
gains in three DREM estimators, we have carried out a detailed
simulation study of their effect when applied for the estimation
of the parameters of a quadrotor. It has been observed that the
estimators response is monotonic with respect all gains changes,
which significantly simplifies the tuning task . As expected, the
behavior of the scalar regressors ∆GD, ∆LSD, and ∆DG are the
best indicators to monitor the effect of the gains on the estimated
values.
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