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Resumen In this paper we compare two different methodologies for computing the gradient
of a linear, continuous-time dynamical system with no parametric uncertainties nor unknown
inputs. Such a gradient is computed by performing the partial derivative of a performance
function w.r.t. the input of the system. The first of the methodologies uses the model of the
dynamical system to construct the gradient; whereas the second one avails of the differentiation
of the performance function and the system’s input. We compare both approaches via a
numerical simulation.
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1. INTRODUCTION

Optimisation is an important tool in decision science and
engineering. To solve optimisation problems, an objective
(output variable) must be firstly identified, a quantitative
measure of the performance of the system under study.
Optimisation algorithms are iterative, they begin with
an initial guess of the decision variable (input variable)
and generate a sequence of improved estimates until
they terminate at a solution. The strategy used to move
from one iterate to the next distinguishes one algorithm
from another. Most strategies make use of the values
of the objective function and the input-output gradient
(Nocedal and Wright, 2000).

The gradient estimation of the output of a dynamical
system with respect to its input is an important trait of
the behavior of such dynamical systems, as it measures
how fast an input drifts the output of the system. In
optimisation problem solution, the gradient estimation
gives important information about the direction in which
the objective function grows or decreases faster.

In particular, Extremum Seeking Control (ESC) is a
model-free, real-time optimisation approach that aims
to steer the state of dynamical system to an optimal
condition. Such a control technique relies on an estimate
of the output-input gradient via a high-pass filter in order
to compute an input that drifts the state closer to such
an optimal condition (Ariyur and Krstic, 2003; Dochain
et al., 2011). In general, such strategies do not require
the knowledge of the underlying dynamical model, but
only an online measurement of the objective function and

the input of the dynamical system. Some modifications
of the ESC rely on the actual estimate of the gradient;
see for instance (Torres-Zuniga et al., 2021) where the
gradient is computed by differentiating the output and
the input with respect to time and then the parametric
gradient is calculated as the quotient of both differentia-
ted signals; in (Guay and Dochain, 2017) the gradient is
parameterised and such parameters are online estimated
by means of a Lipschitz projection operator; in (Feudjio
Letchindjio et al., 2019) the gradient is parameterised and
such parameters are estimated online through a recursive
estimation algorithm.

In this paper, we provide a closed form expression for the
gradient of a linear, continuous-time dynamical system,
for which we know the model. Such an expression relies
completely on the model, the (estimated) states of the
system, along with the input applied to such system.
By means of a numerical simulation, we compare the
performance of such estimation of the gradient with a
model-free technique, based on sliding modes differentia-
tors (López-Caamal and Moreno, 2019).

This article is organized as follows, in Section 2 the pro-
blem to address is formulated and the gradient estimation
approach is presented; in Section 3 simulation results
of the gradient estimation approach are presented and
compared with a gradient estimation strategy previously
proposed by the authors; finally, in Section 4 conclusions
about the work developed are discussed.
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2. OUTPUT-INPUT GRADIENT

Let us consider a time-invariant SISO linear plant in
continuous time

d

dt
x(t) = Ax(t) + bu (t) (1a)

y(t) = cx(t), (1b)

along with the performance function

J(t) = g (t, y, u) . (1c)

Here x : R+ → R
n and u, y, J : R+ → R. The matrices

A,b, c have appropriate dimensions. We further assume
that the pair (A, c) is observable.

The gradient of J(t) w.r.t. u(t) is defined as

σ :=±
∂J

∂u

=±

dJ(t)

dt
du(t)

dt

, (2)

whenever the derivatives exist and
du(t)

dt
6= 0. The ± sign

in the expression above is considered since in some cases
such a gradient is used to maximise or to minimise the
objective function. However, such a control scheme is out
of the scope of the present work.

2.1 Model-based approach

In this first approach, we use of the model to derive the
gradient estimate. Since

dJ

dt
=
∂g (t, y, u)

∂t
+

∂g (t, y, u)

∂y
c (Ax+ bu) +

∂g (t, y, u)

∂u
u̇

(3a)

du

dt
=u̇(t), (3b)

the gradient in (2) becomes

σ =±









∂g

∂u
+

∂g

∂t
+

∂g

∂y
c (Ax+ bu)

u̇









. (4)

However, the state x(t) is not known. Given the obser-
vability of (A, c) we can design an observer and use the
estimate of x to attain an estimate of the gradient. We,
however, consider the function u(t) and its time derivative
known.

For the sake of simplicity, let the observer be a Luenberger
Observer:

d

dt
x̂(t) = Ax̂(t) + bu(t)− L (ŷ − y) (5a)

ŷ(t) = cx̂(t). (5b)

Let us now define the error estimation as e = x− x̂. This
way, the error dynamics can be expressed as:

d

dt
e(t) = (A− Lc)e(t).

The stability of the observation error origin may be
attained by choosing an appropriate L, provided that the
pair (A, c) is observable. To compute the observer gain
L, let us now consider the following candidate Lyapunov
function

V (e) = e>Pe, (6)

withP = P> (Scherer and Weiland, 2004). The derivative
of V (e) with respect to time is given by

V̇ (e) = e>
(

A>P+PA− c>L>P−PLc
)

e.

Clearly, (6) is a Lyapunov function if and only if

P > 0, (7a)

A>P+PA− c>Q> −Qc < 0, (7b)

with Q = PL. This way the asymptotic stability of the
estimation error is assured and therefore, the estimated
x̂ asymptotically will converge to the true state x. By
solving LMIs (7) for P and Q, the observer gain is then
computed as L = P−1Q.

Thus, when using the observed states, the estimate of the
gradient becomes

σ̂1 =±









∂g

∂u
+

∂g

∂t
+

∂g

∂y
c (Ax̂+ bu)

u̇









. (8)

2.2 Differentiator-based approach

A different way to estimate the gradient is by means of
(2) and by differentiating the performance function and
the input, to obtain

σ̂2 = ±
ω̂1

ω̂2

, (9)

where ω̂i are the estimates of

ω :=

(

J̇
u̇

)

; furthermore (10)

θ :=

(

J
u

)

. (11)

An estimate of the derivative of θ may be given by (López-
Caamal and Moreno, 2019)

˙̂
θ(t) = −k1φ1

(

θ̂ − θ
)

+ ω̂(t)

˙̂ω(t) = −k2φ2

(

θ̂ − θ
)

,
(12)

where θ̂ ( ω̂, resp.) denotes the estimation of θ (ω , resp.),
in addition,
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φ1 (z) :=
(

η ||z(t)||
−p

2
+ β + γ ||z(t)||

q

2

)

z, φ1 (0) := 0,

φ2 (z) :=
(

η(1− p) ||z(t)||
−p

2
+ β + γ(1 + q) ||z(t)||

q

2

)

φ1,

where z(t) := θ̂(t) − θ(t) and ||z(t)||
2
:=
√

z>(t)z(t). In

addition, η, β, γ > 0,
1

2
≥ p > 0, and q > 0. To ensure

that the estimate converges in finite-time to the actual
derivatives, one requires the actual signals derivative to be
bounded, i.e. |ω̇i| < ∆, ∆ ∈ R+. Moreover, one requires
the matrix

Γ =

(

−κ1 1
−κ2 0

)

to be negative definite. This is attained, for instance,
when κ1, κ2 > 0.

2.3 Discretisation of the derivatives

To compare both approaches we compute the gradient in
(2) via the ratio of the finite differences of the performance
function and input; that is

σ̂3 = ±
J([k + 1]τ)− J(kτ)

u([k + 1]τ)− J(kτ)
. (13)

Here k and τ denotes the kth time-step and sampling
period, respectively.

In addition, to assess the performance of the model-based
approach and the one based on the differentiator, we
define

εi(t) := log10

∣

∣

∣

∣

σ̂i(t)− σ̂3(t)

σ̂3(t)

∣

∣

∣

∣

, σ̂3(t) 6= 0. (14)

In the following section, we compare these three approa-
ches for a linear plant via numeric simulation.

3. SIMULATION RESULTS

In this section, we consider the following linear system in
(1) with the following matrices

A =

(

−1 8 2
1 −3 0
−3 −5 −3

)

b = (0 0 1)
>

c = (0 0 1)

Along with the objective function

J(t) = y2(t),

and input

u(t) = 10t+ cos(3t),

whose time derivative is

u̇(t) = 10− 3 sin(3t).

3.1 Model-based observer

For this approach one requires the state estimation ob-
tained via (5) with gain L computed by solving LMIs (7)
using CVX solver (Grant and Boyd, 2014). This way, the
observer gain obtained is

L = 1× 103 (1.8382 −1.4159 0.0680)
>
.

The estimates states may be found in Figure 1. Now,
with the definitions above and with Eq. (8) the estimated
gradient becomes

σ̂1 =
2y(t)c (Ax̂+ bu(t))

10− 3 sin(3t)
.

3.2 Differentiator-based approach

For this approach let

{η, β, γ} = {15, 5, 5}

{p, q} = {0.5, 0.5}

{κ1, κ2} = {3, 3}.

The gradient estimation in (9) is computed with the
differentiator in (12).

3.3 Discretisation of derivatives

In this case, we use a time step of τ = 2 × 10−3. For all
cases, the numerical solution was obtained via Matlab’s
ode45 with relative tolerance of 10−3 and an absolute one
of 10−4.

3.4 Outcome assessment

Figures 2 and 3 shows the comparison of the three
approaches for the computation of the gradient. Despite
the transient of the observer and the differentiator, one
may see that the results are very similar to that of the
one obtained with the discretisation of the derivatives in
(13).

In turn, Figure 4 shows the relative, absolute error as com-
puted with Equation (14). Please notice that, although
such an error is very similar, the error obtained with σ̂2

exhibits chattering given that it is computed via the ratio
of derivatives obtained with sliding mode approaches.

Now, to assess the effect of a perturbation on the estima-
tion of the gradient, we consider an additive perturbation
in the input

up(t) = 0.75 cos(10t), (15)

which is unknown to the observer and to Eq. (8). Figures
5 and 6 show how the model-based estimation of the
gradient, σ̂1, deteriorates when such an unknown input is
applied. The differentiator-based gradient estimation, σ̂2,
practically keeps its accuracy given that it does not rely
on the knowledge of u(t), but on its online measurement.
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Figura 1. Estimated states via the Luenberger observer
in (5).

Time

1 2 3 4 5 6 7 8 9 10

G
r
a
d

ie
n

t

×10
4

-1

0

1

2

3

4

Gradient Estimation

σ
1

σ
2

σ
3

Figura 2. Estimated gradient. The blue discontinuous line,
σ1, is the model-based estimation in (8); whereas, the
red discontinuous line, σ2, is the gradient estimation
in (9) obtained via the differentiators. In turn, the
finite-difference estimation of the gradient, σ3, in (13)
is the yellow, continuous line.

4. CONCLUSIONS

Three different approaches to compute the gradient of a
continuous-time, linear dynamical system are considered
and compared via a numerical simulation.

The first approach provides a closed formula for the
gradient, but it requires the mathematical model of the
system along with the knowledge of the input and output
and the state estimates. In this case, the estimation error
of the gradient is driven by the underpinning estimation
error of the state. Furthermore, should the system had
uncertainties, the state estimates would not be accurate,
which would deteriorate the gradient estimate, as may be
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Figura 3. Detail of the estimated gradient. The organisa-
tion of the figure is the same as for Figure 2.
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Figura 4. Relative, absolute error defined in (14) of
the gradient estimations w.r.t. the finite difference
estimation.
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Figura 5. Detail of the estimated gradient with an additive
perturbation in the input.
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Figura 6. Relative, absolute error defined in (14) of
the gradient estimations w.r.t. the finite difference
estimation, considering the perturbation in the input
in (15).
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seen in Figures 4 and 6. The effect of uncertainties on
the estimation, however, may be minimized by designing
a robust Luenberger observer.

In contrast, the second approach relies only on the online
measurements of the input and the output to estimate
its first derivatives via a sliding modes based differen-
tiator; the gradient is then computed by the ratio of
such derivatives, which might have some chattering, thus
exhibiting such trait in the gradient estimate along with
a larger estimation error of the gradient as may bee seen
from Figure 4. However, the presence of an unknown
perturbation in the input did not yield a significant effect
on this estimation.

In turn, the last method requires the sampling of the data
one step of time ahead in order to provide the estimation
of the gradient, thus not providing an online estimate
of the gradient. If the application allows it, the use of
previous samples instead of future samples could mitigate
this problem.
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