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Abstract: The estimation of the states of a Saccharomyces cerevisiae (S. cerevisiae) biomass production process using glucose 

as carbon and energy source in CSTR-type bioreactor cultures was investigated. The biomass estimation was evaluated 

numerically by implementing the observer in the bioreactor model at a continuous regime. The observer was designed with two 

terms, one error proportional (Ke) and one sign type (Ksign(e)f(e)). The performance of the proposed observer was compared 

with the observer published by Bastin and Dochain. For different dilution rates, both observers showed equal performance for 

the same numerical conditions. Moreover, their response was evaluated for different initial conditions of the model and the 

estimators with a better performance index of the proposed observer. 
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1. INTRODUCTION 

The yeast S. cerevisae is a eukaryotic, heterotrophic 

microorganism belonging to the fungi kingdom (Parapouli et 

al., 2020), non-pathogenic, and considered to be a generally 

safe organism (GRAS) (Ostergaard et al., 2000). This yeast 

has been known for a long time for its use in the fermentation 

of beverages such as beer, cider, sake, and wine (Jacobus et 

al., 2021) and even in the production of bread (Lahue et al., 

2020) in different processes of the pharmaceutical industry 

(Ostergaard et al., 2000). This species has been widely 

studied because it is used as a biological model in basic 

research and in biotechnological applications such as the 

production of alcoholic beverages on an industrial scale, the 

production of biofuels from cellulose sources (Parapouli et 

al., 2020), and as an input for animal and human food 

because it contains a high protein content (Parapouli et al., 

2020). An advantage of working with this microorganism is 

its susceptibility to genetic modification by means of 

recombinant DNA technology or by random mutagenesis or 

the crossing of two strains (Ostergaard et al., 2000).  

Due to the wide knowledge and use of this yeast in the 

scientific community (academic and industrial), as well as 

the need to control and optimize these bioprocesses in batch, 

fed-batch, or continuous bioreactors, the design and 

implementation of estimators and/or controllers to observe 

and control the process variables, respectively, continues due 

to the nonlinear nature of the microorganism and the 

operating conditions. According to the authors Bastin and 

Dochain (Chen et al., 1990b, 1990a; Dochain, 2003), 

software sensors are programs that apply process models and 

estimation algorithms to estimate variables and parameters 

that are not easily measured or that are available. Software 

sensors use online data to estimate these variables. Different 

applications of observers in bioprocesses are presented in 

Table 1 for different modes of bioreactor operation, i.e., 

batch and fed-batch and continuous. Therefore, in this work 

a nonlinear observer is designed and numerically 

implemented to observe the biomass concentration in S. 

cerevisiae cultures in a continuous bioreactor, considering 

the modeling errors in the proposed observer. The 

performance of the proposed observer was compared with 

the observer published by Chen et al. (1990a, 1990b). 

 
Table 1. Biotechnological processes by Saccharomyces cerevisiae are 

observed and/or regulated through the implementation of 

observers and controllers. 

Bioreactor 

type 

Methods Ref. 

Fed-batch  Flow cytometry 

(FCM) 

(Palomba 

et al., 2021) 

Fed-batch Calorimetry-

based control  

(Kottelat et 

al., 2021) 

Batch  UDE-based 

hybrid model 

approach and 

the deep hybrid 

model proposed 

by Bangi and 

Knon 

(Bangi et 

al., 2022) 
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Batch First-order 

sliding mode 

observer, 

proportional 

sliding mode 

observer and 

high-order 

sliding mode 

observer 

(Alvarado-

Santos et 

al., 2022) 

Fed-batch Hybrid observer 

(an asymptotic 

observer 

combined with 

an extended 

Kalman filtrer 

applied to high-

density cultures 

of S. cerevisiae) 

(Bárzaga-

Martell et 

al., 2021) 

Batch Unsecented 

Kalman Filter 

(UKF) 

(Yousefi‐
Darani et 

al., 2021) 

Fed-batch PID, system 

identification 

and parameter 

optimization. 

(Hu et al., 

2021; Qin 

& Zhai, 

2024) 

Batch Sliding mode 

observer  

(Spurgeon, 

2008) 

2. METHODOLOGY 

2.1 Basic methodology for writing model equations 

Led us write the balances for bioreactor as: ýÿāă ÿāāĂÿĂþÿāÿāĀ = ÿÿāă ÿĀ 2 ÿÿāă āĂā (1) ÿÿāă ÿĀ = ĀĂþý ĄþāĄ ÿĀāā ā/ă ăāþĂÿă + ąăĀăÿÿāÿāĀ Ąÿā/ ā/ă ăāþĂÿă +āÿÿĀĀĄăÿ ÿĀāā ā/ă ăāþĂÿă ÿāÿāĀĀ ā/ăĀāĂĀĂÿÿÿăĀ āā/ăÿ ā/ÿĀ ĀĆ ĀĂþþ ĄþāĄ.  

ÿÿāă āĂā = ĀĂþý ĄþāĄ āĂā ā/ă ăāþĂÿă + ąăĀăÿÿāÿāĀ Ąÿā/ ā/ă ăāþĂÿă + āÿÿĀĀĄăÿ āĂā ā/ă ăāþĂÿă ÿāÿāĀĀ ā/ă ĀāĂĀĂÿÿÿăĀ āā/ăÿ ā/ÿĀ ĀĆ ĀĂþþ ĄþāĄ.  

We can now write the balance equations for the quantity. Ă[�Ć�]Ăā = [��ĀĆ�Ā + �ÿ + ��] (2) 

Batch fermentation processes (��ĀĆ�Ā 2 �āĂāĆāĂā = 0) for 

Saccharomyces cerevisiae 

A general form of these equations is given by: Ă[�ą]Ăā = ý� (3) ý� = ÿ�� (4) ÿ�� = ąĀ(ą, Ā, ÿ = ÿāă. , Ă� = ÿāă. )�;  ą(ā = 0) = ą0 (5) Ă[�Ā]Ăā = ýĀ = 2ÿĀ� = 2 ÿ��Ā�Ā = 2 ąĀ�Ā Ā(ą, Ā, ÿ, Ă�, . . . )�;  Ā(ā = 0) = Ā0 (6) 

where ą is the biomass concentration (g/L); Ā represents the 

substrate concentration (g/L); Ā�Ā represents the yield 

coefficient of substrate in grams per gram of biomass (g/g); 

and Ā(∙) is the growth rate (or specific growth rate). Āÿ�� is 

the maximum specific growth rate (1/h) 

2.2 Observer design (proposed observer) 

Yeast cells (S. cerevisiae=X) Ăÿ�Ăā = Ā(ÿ�, þ̂)ÿ� + Ā ∙ [ÿ�Ā 2 ÿ�] + ý1ă + Ą1(þ,�  ă) (7) 

Carbon substrate (Glucose=S) Ăþ̂Ăā = 2ĀĀ(ÿ�, þ̂)ÿ� + Ā ∙ [þ�Ā 2 þ̂] + ý2ă + Ą2(þ,�  ă) (8) 

Initial conditions ÿ�0 (āÿÿă ćăÿā) = 0.15 ą/Ā  þ̂0 (āÿÿă ćăÿā) = 10 ą/Ā  

In this work, we design of the gains Ą1(þ,�  ă) and Ą2(þ,�  ă) 

with the following functions: Ą1(þ,�  ă) = ā1ĀÿąĀ(ă) (1 2 ( ��1)2) , Ą2(þ,�  ă) =ā2ĀÿąĀ(ă) (1 2 ( ��2)2) and with ă = þ 2 þ̂. Also, with Ą1(þ,�  ă), Ą2(þ,�  ă) ∈ ℜ±: {21, 0, +1} and ā1, ā2, ÿ�Ā, þ�Ā, Ā,  Ā, ý1, ý2and Ā ∈ ℜ+. 

Remark 1. Functions Ą�(þ,�  ă) {ÿ = 1, 2}: |Ą1(þ,�  ă)| = |ā1ĀÿąĀ(ă) (1 2 ( ��1)2)| f ā1 but if ā1 f 1, 

so that, Ą1(þ,�  ă) is bounded, and this assumption, gives 

opportunity to Assumption 1 (A1) 

A1 |Ą1(þ,�  ă)| f 1 

Analogously for the function Ą2(þ,�  ă) |Ą2(þ,�  ă)| = |ā2ĀÿąĀ(ă) (1 2 ( ��2)2)| f ā2 but if ā2 f 1, 

so that, Ą2(þ,�  ă) is bounded, and this assumption gives 

opportunity to Assumption 2 (A2). 

A2 |Ą2(þ,�  ă)| f 1 

Let us derive the general structure of state observers. 

Consider the following nonlinear system representation for 

S. cerevisiae fermentations in a bioreactor: ą̇ = Ą(ą, Ă) + ∆3;  Ć = /(ą) = ÿą (9) 

With  Ą(ą̂, Ă) = [Ą1(ÿ, þ )Ą2(ÿ, þ )] =[ Ā(ÿ, þ)ÿ + Ā ∙ [ÿ�Ā 2 ÿ]2ĀĀ(ÿ, þ)ÿ + Ā ∙ [þ�Ā 2 þ]]; Ć = [Ć1Ć2] = [ÿþ]; ą = [ą1ą2] =[ÿþ]; ÿ = [1 00 1]; and ą̇ = [ą̇1ą̇2] = [ÿ̇þ̇] 

where  ą ∈ ℜ+1×2is the vector of the state variables; Ă ∈ℜ+1×2 is the control input vector; Ą(ą, Ă) : ∈ ℜ+1×2+1×2 →ℜ+2×1is a nonlinear smooth vector function and Lipschitz in 

and uniformly bounded in Ă; ∆3 is the modeling error; and Ć ∈ ℜ+1×2is the vector of measured states. This proposed (13) 

presents an estimation technique for systems subject to 
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modeling errors ∆3 (parameter uncertainties), which is a 

realistic process situation. 

Remark 2. The modeling error: |∆3| f ÿ, so that, ∆3 is bounded, and this assumption, gives 

opportunity to Assumption 3 (A3) 

A3 |∆3| f ÿ 

For this purpose, it is proposed the following observer8s 
structure and its corresponding convergence analysis. 

The general structure of the state observer for system (9) is: ą̇̂ = Ą(ą̂, Ă); Ć̂ = /(ą̂) = ÿą̂ (10) 

Usually is required, at least that |ă| = |ą 2 ą̂| = |þ 2 þ̂| =0, as ā → >. 

Proposition 1. The following dynamic system is an observer 

for system (9) ą̇̂ = Ą(ą̂, Ă) + ÿă + āĀÿąĀ(ă) (1 2 (ăĀ)2) ; Ć̂ = /(ą̂)= ÿą̂ (11) 

Where ă = ą 2 ą̂ (12) 

The main advantage of this observer9s structure is to couple 
a class of function bounded to 1, i.e., ĀÿąĀ(ă)[1 2(ă/Ā)2] f 1with a discontinuous sign function in order to 

provide smoothness to the corresponding output injection; 

besides, a proportional term ÿ ∙ ă is considered in order to 

provide stability to the estimation procedure, which 

increases the robustness in the states observing. 

2.3 Sketch of proof of proposition 1 

For the demonstration of proof of convergence of the error 

to zero, the error dynamics are considered as follows: ă̇ = ą̇ 2 ą̇̂ = Ą(ą, Ă) 2 Ą(ą̂, Ă) + ∆3 2 ÿă2 āĀÿąĀ(ă) (1 2 (ăĀ)2) (13) 

Taking norm to maximize Eq. (13): |ă̇| f |Ą(ą, Ă) 2 Ą(ą̂, Ă)| + |∆3| 2 ÿ|ă|2 ā |ĀÿąĀ(ă) (1 2 (ăĀ)2)| (14) 

Now, taking into account the following assumption and the 

corresponding function properties: 

Assumption 4 (A4) |Ą(ą, Ă) 2 Ą(ą̂, Ă)| f Ā|ă| (15) 

The Lipschitz constant is Ā >  0 

Therefore Eq. (13) considering assumptions A1-A4, can be 

expressed as: |ă̇| f (Ā 2 ÿ)|ă| + (ÿ 2 ā) (16) 

By solving the above differential inequality:  |ă| f ă0ă(Ā2ÿ)ā + (ÿ 2 ā)Ā [1 2 ă(Ā2ÿ)ā] (17) 

Considering the matrix (Ā 2 ÿ) as a Hurwitz stable matrix. 

For ā → >. 

Then, eq. 17 yields |ă| f (ÿ 2 ā)Ā  (18) 

Remark 3. Note that the proportional term of the observer 

structure provide, as usual, stability to the observer, the 

observer9s gain ÿ acts as a convergence rate parameter to 

lead to the estimation error to the closed-ball with radius 

proportional to (ÿ 2 ā), moreover the estimation error can 

be made as small as desired if ÿ j ā, and the property of ă(Ā2ÿ)ā: if ă(Ā2ÿ)ā is nonsingular , (ă(Ā2ÿ)ā)21 = ă2(Ā2ÿ)ā. 

3. RESULTS AND DISCUSSIONS 

3.1 S. cerevisiae batch and continuous mode cultures 

Different fermentations (Ā =  3) were developed in a batch 

reactor, controlling temperature and pH through the 

instrumentation systems in the bioreactor. A glucose 

consumption rate of 0. 60 ąþ/Ā was observed during the first 

15 hours of the culture. Biomass production was 0.645 ąÿ/Ā/ with a maximum cell growth rate of 0.4147 1/h. After the 

estimation process of the kinetic parameters, a value of 

0.5080 1/h was obtained for the maximum cell growth rate 

(Figure 1). For batch cultures, parameter values were 

obtained by nonlinear regression (data not shown here), 

giving a fit as shown by the solid line in Fig. 2. With the 

nominal value of these parameters, the model was extended 

to continuous operation mode considering the operating 

parameters Ā = 0.1, 0.15, and 0.20 1/h with þÿĀ = 5 and 10 

g/L for different time intervals. The numerical results are 

shown in Figure 3 for D = 0.10, 0.15, and 0.20 1/h, with þÿĀ =  5 ÿą/Ā. 

 

Figure 1. Plot of experimental, data yeast fermentation biomass 

concentration A and glucose concentration B. 
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Figure 2. Comparison of model with experimental results: biomass 

concentration A, substrate concentration B, and residues C. 

 

The dynamic response of the variables in (9) in continuous 

mode is shown in Figure 3 for three dilution rates D, 0.1, 

0.15, and 0.2 1/h. It is observed that the variables reach the 

equilibrium state for t = 30 hours. This is verified graphically 

for D=0.2 1/h and D=0.25 1/h with a substrate feed 

concentration value of 10 g/L (Figure 3A). For these 

operating conditions, the observability matrix was full-

range. Also, for the same initial conditions, the substrate feed 

concentration in the feed stream was perturbed from 10 to 5 

g/L using a step function for a time frequency of 5 hours at 

2) < t<3 (Figure 3B) in order to evaluate the performance of 

the observers in (11) and the appendix. 

For D=0.1 h-1 was used to generate the following phase-

plane plot for model in (9) under case I conditions (see 

Figure 4). Notice that all initial conditions converge to 

equilibrium point x=(ÿ̅, þ̅)=( 13.2 1//, 2.29 ÿą/Ā /). Thus, ÿ1 < 0 and ÿ2 < 0, i.e., ÿ1 = 2Ā(ÿ̅, þ̅) = 20.1 and ÿ2 =2ĀĀ̇(ÿ̅, þ̅) = 20.3515 

 

 

Figure 3. Numerical simulation of the system (23) for different 

initial conditions. 

 

Figure 4. Plot-phase for Contios model, Case I conditions x=stable 

steady-state 

 

Finally, experimentally for yeast growth in a continuous 

reactor with a dilution rate of D = 0.2 1/h, the steady state is 

reached after twenty hours, i.e., after two dilution times 

(Figure 5). The values of the kinetic parameters of the model 

in equation (12) obtained by using the fminsearch function 

of MatLab are those reported previously in this section. 

 
Figure 5. Contonuous processing: Dilution rate D=0.2 h-1 and 

concentration of feed þ� = 5ą/Ā and V=1 L. 

3.2 Proposed observer performance 

In this section, the numerical results of the implementation 

of the observer proposed in (11) to the S. cerevisiae biomass 

production bioprocess (9) are presented and compared with 

the Bastin and Dochain observer (Chen et al., 1990b) (see 

appendix) to estimate the biomass concentration by 

measuring the substrate (glucose) concentration. 

Specifically, equilibrium state three, i.e., only case 3, is 

considered. 

Figs. 6 and 7 illustrate the performance of both observers and 

the system in a simulation performed under the following 

conditions (continuous process): Āÿ�� = 0.5080 h21; ÿ� =0.7039; Ā = 0.5838 A square wave influent substrate 

concentration from 5 to 10 g/L and a constant value for 

dilution rate (operation parameters). Initial conditions for 

system (process model Eq. (9)) ÿ0 = 0.15 ą/Ā and þ0 =10 ą/Ā for system Eq. (11) (asymptotic observer) ÿ�0 =0.15 ą/Ā  and þ̂0 = 10 ą/Ā with three sets of eigenvalues ÿ1 

and ÿ2proposed observer (system Eq. (11)) ÿ�0 = 0.15 ą/Ā  

and þ̂0 = 10 ą/Ā. The numerical values used in our 

simulations for the steady-state solution are: Equilibrium 

point 1 (steady-state solutions): Case 1 Low dilution rate 
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with D = 0.10 1/h and þ�Ā = 10 ą/Ā for nontrivial steady-

state ą̅ = (ÿ̅, þ̅) = āāþĂÿ[13.2137 ą/Ā 2.2902 ą/Ā] 
and the eigenvalues ÿ1 = 20.1 1// and ÿ2 = 20.3515 ą/Ā/ with trivial steady-estate ą̅ = (ÿ̅, þ̅) =āāþĂÿ[0 ą/Ā 10 ą/Ā]; Equilibrium point 2 (steady-state 

solutions): Case 2 Medium dilution rate with Ā = 0.15  1/h 

and þ�Ā = 10 ÿą/Ā for nontrivial steady-state ą̅ = (ÿ̅, þ̅) =āāþĂÿ[11.1858 ą/Ā 3.4719 ą/Ā] and the eigenvalues ÿ1 = 20.15 1// and ÿ2 = 20.3050 ą/Ā/; and  with trivial 

steady-estate ą̅ = (ÿ̅, þ̅) = āāþĂÿ[0 ą/Ā 10 ą/Ā]; Case 

3 Low dilution rate with Ā = 0.20  1/h and þ�Ā = 10 ÿą/Ā 

for ą̅ = (ÿ̅, þ̅) = āāþĂÿ[9.5094 ą/Ā 4.4486 ą/Ā] and 

the eigenvalues ÿ1 = 20.20 1// and ÿ2 = 20.2711 ą/Ā/; 

and  with nontrivial steady-estate ą̅ = (ÿ̅, þ̅) =āāþĂÿ[0 ą/Ā 10 ą/Ā]. For simulation purposes to 

evaluate the performance of the proposed observer, case 3 

was considered. 

 

 

 

4. CONCLUSIONS 

A conclusion section is not required. Although a conclusion 

may review the main points of the paper, do not replicate the 

abstract as the conclusion. A conclusion might elaborate on 

the importance of the work or suggest applications and 

extensions. 
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Appendix A. (Chen et al., 1990a, 1990b) 

Yeast cells Ăÿ�Ăā = Ā(ÿ�, þ̂)ÿ� + Ā ∙ [ÿ�Ā 2 ÿ�] + ā1(ÿ�, þ̂) ∙ ă 

Carbon substrate Ăþ̂Ăā = 2ĀĀ(ÿ�, þ̂)ÿ� + Ā ∙ [þ�Ā 2 þ̂] + ā2(ÿ�, þ̂) ∙ ă 

Where  ă = ą 2 ą̂ 

Initial conditions ÿ�0 (āÿÿă ćăÿā) = 0.15  þ̂0 (āÿÿă ćăÿā) = 10  

Remark 1. Measured on-line. Assume the substrate 

concentration Ā is measured on-line.  

Hence, we are in the situation where:  ă = þ 2 þ̂ is the error and ā1and ā2 are the gains. ÿ�(ÿ, þ) = Ā(ÿ, þ)ÿ = �����ÿ��+� ÿ is reaction rate, so that, it 

governed by the Contois law;  

Definition 2. Model of the specific growth rate. 

Dependence on the substrate concentration Ā(ā) and on the 

biomass concentration ą(ā): Ā(ą, Ā). 

Contois (1959) Ā(ÿ, þ) = Āÿ��þÿ�ÿ + þ   
With Eq. (1), the experimental data, we assume that the 

specific growth rate Ā(ą, Ā) obeys the Contoins law. Where Āÿ�� and ýĀ are constant kinetic coefficients. 

Definition 1. The gains ā1(ą̂, Ā̂) and ā2(ą̂, Ā̂) ā1(ą̂, Ā̂) = 2ÿ1 2 ÿ2 2 Ā(ÿ̃�)Ā + (ÿ̃�)� 2 ĂĀ ā2(ą̂, Ā̂) = 1Ā(ÿ̃�)� {2ÿ1ÿ2 2 (ÿ1 + ÿ2)(Ā 2 (ÿ̃�)�)2+ Ā(ÿ̃�)�(ÿ̃�)Ā} 

Where (ÿ̃�)Ā ≜ �ÿ̃��Ā |�=�� = �������2(���̂+Ā̂)2   and (ÿ̃�)� ≜ �ÿ̃��Ā |�=�� =�����2(���̂+Ā̂)2 

Remark 2. According with the gain ā2(ą̂, Ā̂), note that the 

estimated value Ā̂ must be allowed to be zero in order to 

avoid division by zero in ā2(ą̂, Ā̂). 
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