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Abstract: This work presents a new estimation scheme for photoacoustic signals and the
absorption profiles associated with these signals, based on a discrete linear time-invariant state-
space model of the Stokes’ equation, which describes the propagation of ultrasound waves in
acoustic attenuating media. Parameter estimation is performed using the N4SID method for
subspace identification, taking advantage of discrete model properties. In addition, the gradient
descent and regularization method is used to improve parameter estimation. The simulation
results validate the scope of the proposed scheme.
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1. INTRODUCTION

The photoacoustic effect occurs when a sample capable of
absorbing optical energy is exposed to a laser, causing its
temperature to increase. As a result, the sample expands
due to the absorbed energy. In its natural search for
thermal equilibrium with the environment, the sample
subsequently contracts. This process generates distur-
bances in the shape of waves in the propagation medium,
which are captured by an array of ultrasound detectors
positioned near the sample (Veloz (2023)). These detec-
tors transmit information to a computer responsible for
reconstructing the optical absorption, ultimately gener-
ating a photoacoustic image (Lang et al. (2019)), see
Fig. 1. The optical absorption profile obtained from the
photoacoustic image provides valuable information about
the distribution of chromophores within the sample. By
analyzing this profile, it is possible to detect the sample’s
internal structures. Therefore, this profile is the key in the
reconstruction of photoacoustic imaging, along with the
measured pressure signal.

Fig. 1. Representation of Photoacoustic effect

⋆ This work was supported by UNAM-PAPIIT TA101423.

This work builds on Lang et al. (2019) proposal to
approach the photoacoustic effect from a State-Space
Model (SSM), but modifies the way of recovering the
absorption profile of a sample from measurements through
subspace identification. In addition, the gradient descent
and regularization method is used to improve parameter
estimation. By making this modification for parameter
estimation, it is possible to work with noisy measurement
data. On the other hand, the SSM allows generating an
output signal that is compared with the measurements to
validate the estimation of the absorption profile. This ar-
ticle is organized as follows: Section 2 describes the model
used and the techniques employed to improve parameter
estimation. Section 3 describes the proposed estimation
scheme. Finally, the simulation results are presented in
Section 4.

2. THEORETICAL BACKGROUND

2.1 Ultrasound detector discretization

The depth in the ultrasound detector is defined by z,
Nz represents the number of divisions in the detector,
∆z represents the spacing between each division, and ∆t

represents the temporal discretization value, see Fig. 2.

2.2 State-Space Model

Starting from the Stokes’ equation, which describes the
propagation and attenuation of the acoustic wave as a
function of depth and time,

∂2p(z, t)

∂z2
−

1

c20

∂2p(z, t)

∂t2
+τ

∂3p(z, t)

∂t∂z2
= −

β

Cp

∂H(z, t)

∂t
, (1)
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Fig. 2. Representation of the discretization

where p(z, t) represents the local pressure at z, c0 is
the speed of sound in the propagation medium, τ is the
relaxation time, CP is the specific heat, and β is the
thermal expansion coefficient of the sample. The vector
pk ∈ R

Nz×1 is defined as:

pk =







p0(z0, t)
p1(z1, t)

...
pNz−1(zNz−1, t)







; k = Nz − 1,

where pk is the set of local pressures at depth z at time
t = k∆t. Meanwhile, H(z, t) is a heating function that
describes the density of optical energy absorbed per unit
of time at a certain depth (Lang et al. (2019)). It can be
written as the product of a position-dependent function
R(z) and a time-dependent function i(t),

H(z, t) = R(z)i(t), (2)

where R(z) is the optical energy absorption and i(t) is the
temporal illumination profile. The central finite difference
method is used to discretize each term of Eq.(1) as:

∂2p(z, t)

∂z2
≈ Gpk, (3)
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,

r = −
βχ

Cp∆t
m, (7)

and
uk = is − is−1, (8)

where G ∈ R
Nz×Nz and is is the continuous laser inten-

sity. While hk is the discretization of Eq.(2) that follows:

hk ≈ χ
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︸ ︷︷ ︸

m

is, (9)

where m ∈ R
Nz×1 and µn ∈ R

Nz×1 for n = 0, ..., Nz − 1
is
the discretized absorption profile of the ultrasound detec-
tor. The term an = e−µn∆z approximately describes the
attenuation of the laser intensity through z.

By substituting equations (3), (4), (5) and (6) into equa-
tion (1), and grouping the coefficients into matrices M ∈
R

Nz×Nz to simplify notation,
M1
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pk−1 = ruk,

M1pk+1 +M2pk +M3pk−1 = ruk, (10)

a linear equation is obtained that relates the pressure
profiles pk, pk−1 and pk+1 with the input uk, which
represents the pressure generation in response to the laser
signal. Solving pk+1 from Eq.(10),

pk+1 =

A11

︷ ︸︸ ︷

(−M−1
1 M2) pk +

A12

︷ ︸︸ ︷

(−M−1
1 M3) pk−1 +

f
︷ ︸︸ ︷

M−1
1 r uk,

pk+1 = A11pk +A12pk−1 + fuk. (11)

Define the state vector xk ∈ R
2Nz×1 as:

xk =

[
pk

pk−1

]

, (12)

to formulate a SSM. Therefore
[
pk+1

pk

]

=

[
A11 A12

I 0

] [
pk

pk−1

]

+

[
f
0

]

uk, (13)

xk+1 = Axk +Buk, (14)

where A11 y A12 ∈ R
Nz×Nz , A ∈ R

2Nz×2Nz , f ∈ R
Nz×1

and B ∈ R
2Nz×1. If c0, τ , ∆t, ∆z ∈ R

+, the matrix A is
stable (Lang et al. (2019)). Given that the measurements
are obtained by the detector at the surface (z = 0),
to complete the model, the following output equation is
defined:

yk = Cxk, (15)

where C ∈ R
1×2Nz with C(1, 1) = 1 and the rest of the

vector is zero. Additionally, considering process noise wk

and measurement disturbances vk, the discrete linear SSM
is represented by the following equations:

xk+1 = Axk +Buk + wk, (16)

yk = Cxk + vk, (17)

where yk is the photoacustic signal. However, it is not
possible to directly construct the input matrix B because
its relationship with the absorption profile in Eq.(9)
requires the vector µn to be previously known.

2.3 N4SID

Hankel matrix is the foundation of subspace identification
algorithms, as this matrix can be easily constructed from
the available input-output data. The block Hankel matrix
is defined as:
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=

[
Hp

Hf

]

, (18)

where Hp ∈ R
li×j , Hf ∈ R

li×j , the subscripts p and f
denote past and future data, respectively. The sequences
of input and output measurements are arranged in block
Hankel matrices U and Y . The number of matrix rows i
is a sufficiently large index defined by the user, meaning
it must be at least greater than the maximum order
of the system to be identified (Overschee and Moor
(1996)). The number of columns j indicates the number
of measurements.

The N4SID algorithm (Numerical algorithms for Subspace
State Space System IDentification) estimates a SSM with
the structure:

xk+1 = Axk +Buk,

yk = Cxk +Duk,

only using uk and yk. The estimation starts by construct-
ing a block Hankel matrix for the input, output, and sys-
tem state following the structure of Eq.(18). Additionally,
for the output, it is important to generate the projection
of the future output space Yf onto the past output space
Yp,

Oi =
Yf

Yp
, (19)

where Oi is the oblique projection of the output space.
Afterwards, a Singular Value Decomposition (SVD) of Oi

is required to stimate the order of the SSM, as follows:

W1OiW2 = USV T , (20)

where W1 and W2 are weighting matrices for the singular
values, U ∈ R

m×n and V ∈ R
n×n are orthogonal

matrices, and S ∈ R
n×n is the diagonal matrix of singular

values.

On the other hand, let be Γi ∈ R
li×n the extended

observability matrix defined as

Γi =
[
C CA CA2 . . . CAi−1

]T
, (21)

and the estimated state sequence

X̂i = (x̂i x̂i+1 · · · x̂i+j−1),

the projection Oi is given by

Oi = ΓiX̂i. (22)

Following the SVD in Eq.(20), Using the singular values
of Oi it is possible to reconstruct Γi, since the output
space is related to the input space, then

Γi = W−1
1 US1/2, (23)

Γi−1 = Γi. (24)

The estimation of X̂i is calculated as follows:

X̂i = Γ 
iOi, (25)

where the symbol  denotes the pseudo-inverse of the
observability matrix. Therefore, for each time instant,

the last row of Γi is removed until reaching Γi−1. Start-

ing from this, the next sequence of states, X̂i+1 =
(x̂i+1 x̂i+2 · · · x̂i+j), is determined as follows:

X̂i+1 = Γ 
i−1Oi+1, (26)

where Oi−1, is formed by shifting the first block row of Yf

to the last row of Yp, following the structure of Eq.(18)
for the output y.

After recovering the observability matrix and the se-
quence of states, the estimation of the state-space system
matrices is performed by formulating the following linear
problem:

[

X̂i+1

Yi|i

]

=

[
A B
C D

] [

X̂i

Ui|i

]

+

[
W
V

]

, (27)

where Yi|i is a block Hankel matrix with only one row of
outputs,W is the process noise, and V is the measurement
disturbance (Pérez-Pacheco et al. (2024)). Considering
that W and V are white noise sequences with zero
mean, uncorrelated with the system states, the solution
to Eq.(27) for the state-space matrices is formulated as a
least squares approximation:

min
L̂

∥
∥
∥
∥

[

X̂i+1

Y i|i

]

− L̂

[

X̂i

Ui|i

]∥
∥
∥
∥

2

F

, (28)

L̂ =

[
A B
C D

]

. (29)

State-space matrices are not computed in their canonical
forms, but rather as complete state-space matrices (Over-
schee and Moor (1994)).

2.4 Gradient descent

Gradient descent is an optimization algorithm that seeks
to estimate the parameter values that minimize a cost
function J(θ). Iteratively, the values of θ are adjusted in
the direction that most reduces the cost function (Ruder
(2016)). In other words, the gradient of the function with
respect to θ is calculated, and the values are updated
according to:

θ = θ − α∇J(θ) (30)

where α is the learning rate, which determines the size of
the adjustment in each iteration.

2.5 Regularization

Regularization is a technique to reduce uncertainty in
parameter estimation, avoiding overfitting in models de-
rived from measurements. It also allows setting previ-
ously known values of the model parameters to maintain
physical validity. Regularization modifies a cost function
by adding a penalty term. Unlike the gradient descent
method, θ is obtained by minimizing the following cost
function:

JR(θ) =
1

N

N∑

k=1

ε2(k, θ) +
1

N
λθTPθ, (31)

where N is the number of measurement data points,
ε(k, θ) is the prediction error between the measurement
and the model estimation, λ is a positive constant that
balances bias (systematic error) and variance (uncertainty
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in the estimates): the higher the value of λ, the greater the
bias and the lower the variance of θ, and P is a positive
definite matrix that helps maintain model stability and
incorporate known information about the parameters
(Ljung (2013)).

3. ESTIMATION SCHEME

3.1 Parametric estimation

Assuming the discretization parameters of the model and
the sample parameters, both condensed in Table 1, are
known, and given a set of measurements of a photoa-
coustic signal y(k) = [y(k0), y(k1), ..., y(kw)]

′ and the
associated laser signal u(k) = [u(k0), u(k1), ..., u(kw)]

′,
where w is the total number of measurements, the estima-
tion of the parameters in the matrix B is formulated using
subspace identification, specifically through the N4SID
algorithm. The parameters are then adjusted using the
gradient descent method by least squares and regulariza-
tion.

Table 1. Parameters required for estimation

Parameter Unit

∆z m
Nz u
∆t s
Ä s
Ç u
c0 m/s

´/CP u

As a prior step to identification, it is necessary to define
an estimated input matrix B̂ ∈ R

2Nz×1 as:

B̂ =

[

f̂
0

]

. (32)

Extracting the vector f̂ from Eq.(32) and using Eq.(7),

f̂ = M−1
1 r̂, (33)

f̂ = M−1
1

(

−
βχ

Cp∆t
m̂

)

. (34)

Solving m̂ from the previous equation,

m̂ = −
Cp∆t

βχ
M1f̂ , (35)

it is possible extract the estimated absorption profile
µ̂n ∈ R

Nz×1 from (9) as follow:

µ̂n =
m̂n

Πn−1
i=0 âi

. (36)

The equation (36) highlights that the reconstruction of µ̂n

completely depends on subspace identification, which in
turn relies on the quality of the available measurements.

It is considered that the generation of photoacoustic sig-
nals (see Fig.1) is a controlled process that begins with a
sample not excited by laser illumination, ensuring that the
initial conditions in the experiment are null, i.e., x0 = 0.
The estimation of the matrix B̂ requires the construction
of the matrices A and C to use subspace identification and
ensure that the values determined by the algorithm retain
physical meaning with the photoacoustic effect. Thanks to

this, the identification algorithm does not require deter-
mining the model order through SVD, and the accuracy of
the estimation depends solely on the amount of available
data and the reduction of noise in the measurements to
achieve convergence. However, the computational load
of the proposed scheme directly depends on the choice
of NZ , as the order of the models is 2NZ . The imple-
mentation of the N4SID algorithm and its adjustment
via gradient descent and regularization was carried out
in MATLAB™ R2023b, using a set of input-output data
[uk yk] to form the block Hankel matrices. This set is
considered as experimental data. The estimated matrix
model follows the structure of equations (16) and (17),
which is rewritten as follows:

x̂k+1 = Ax̂k + B̂u+ wk, (37)

ŷk = Cx̂k + vk, (38)

where B̂ ∈ R
2Nz×1 is initialized in B̂ = 0 and x̂0 = 0.

After solving equation (28) for B̂, with B̂ being the only
unknown (D = 0), the input matrix values are adjusted
according to equations (30) and (31) due to the presence
of noise in the measurements. This noise was considered
as white noise N (0, 0.25) and wk = 0.

3.2 Photoacustic signals estimation

Starting from the matrix B̂, the estimated matrix model is
simulated using uk to generate the estimated photoacustic
signal ŷk.

����

ෝ��
෡� ෝ��

Fig. 3. Diagram of the Estimation Scheme

The estimated photoacustic signal ŷk and reconstruction
of the sample’s absorption profile µ̂n follow the workflow
shown in Fig. 3.

4. SIMULATION EXAMPLES

This section aims to demonstrate the generation and es-
timation of photoacoustic signals from the discrete model
through the simulation of two photoacoustic experiments.
A comparison is made between the experimental pho-
toacoustic signal and the estimated signal for each es-
timated absorption profile. The discretization parameters
and input signal were taken from Lang et al. (2019) and
summarized in Tables 2 and 3. A sampling time, ts, of
0.1 s and a simulation time, tf , of 50 s were considered.
The input signal in Fig.4c represents a short laser pulse,
usually used in Photoacustic.

4.1 Example 1

This experiment aims to demonstrate the performance
of the proposed scheme for parameter estimation and
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Table 2. Model simulation parameters

Parameter Value

∆t 1× 10−9 s
∆z 3× 10−6 m
Nz 20

Table 3. Example simulation parameters

Parameter Value

tf 50 s
ik f(k|6, 2)
xk 0
Ä 77× 10−12 s
Ç 0.03
c0 1500 m/s

´/CP 1/1

photoacoustic signal estimation in the absence of noise
in the measurement data. Figure 4 shows the estimation
of the absorption profile and the estimation error in
each layer, as well as the input signal of the dataset
[uk yk] used to generate the photoacoustic signal from
the estimated matrix model. The absorption profile used
for this experiment implies that the internal structures
of the sample have a high degree of optical absorption,
which facilitates the identification of their distribution.
Figure 4a shows that the estimation of µn is quite good,
and Figure 4b supports this statement.
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Fig. 4. (a): Absorption Profile estimation. (b): Estimation
error of µn. (c): Input signal uk. (d): Photoacustic
Signal estimation without noise

However, in a real experiment, it is not possible to
compare µ̂n, so it is necessary to simulate the system
response ŷk and compare it with the signal yk to validate
the profile estimation, as seen in Fig. 4d. Note that both
yk and ŷk are available signals. Using the compare()
function in MATLAB™, a 100% similarity between the
two signals is obtained, demonstrating that in the absence
of noise in the measurement data, the proposed scheme
has a high level of estimation accuracy.

4.2 Example 2

This experiment aims to demonstrate the advantages of
using a state-space model to represent a physical phe-
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Fig. 5. (a): Absorption Profile estimation without regu-
larization. (b): Photoacustic Signal estimation with
noise
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Fig. 6. (a): Absorption Profile estimation with regulariza-
tion. (b): Photoacustic Signal estimation with noise

nomenon and the effect of regularization in the presence
of noise in the measurements. A lower magnitude absorp-
tion profile is used compared to that in Example 1 (see
Figure 4a) and white noise is added to the measurements
N (0, 0.25) and wk = 0. Additionally, Nz is modified to 50
to obtain a smoother absorption profile. Figure 5 shows
the estimation results for a short pulse as the input signal
without regularizing the parameters adjusted by gradient
descent. Figures 5a and 5b show a very poor estimation of
µk and yk, respectively, due to the Signal-to-Noise Ratio
(SNR) being −40.96 dB. In this case, the gradient descent
method causes overfitting in the parameter estimation
due to the high level of noise in the measurements. The
estimation improves considerably with the use of regular-
ization, with λ = 250, as shown in Figures 6a and 6b.
However, the input signal and absorption level limit the
quality of the results as the yk signal remains corrupted
by noise.

Signal intput modification The state-space represen-
tation of the photoacoustic effect allows modifying the
input signal to achieve a better estimation of the ab-
sorption profile without the need to physically modulate
the laser signal and compromise the sample’s character-
istics. By approximating the behavior of µ̂n (see Figure
6a), the input signal is modified by a sinusoidal signal
uk = sin(0.5ts), representing the prolonged exposure of
the sample to a series of long pulses, as observed in Figure
7c. This modification improves the estimation of the ab-
sorption profile since the SNR reaches a value of 3.98 dB
under the same noise conditions established previously.
Figures 7a and 7b show that the estimation is sufficiently
reliable despite the low absorption level, especially from
layer 30 onward. On the other hand, the estimation error
slightly affects the photoacoustic signal generated by the
model, as seen in Figure 7d. The regularization of the
parameters does not have a noticeable impact on the es-
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Fig. 7. (a): Absorption Profile estimation. (b): Estimation
error of µn. (c): Input signal uk. (d): Photoacustic
Signal estimation with noise

timation of µn or yk, and therefore it is not implemented.
The condition for applying regularization and selecting
the value of λ primarily depends on whether the SNR
value is negative. Additionally, the selection of uk must
make physical sense; otherwise, the signal ŷk will not be
bounded, and the values of µ̂n will not be reliable. Finally,
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Fig. 8. (a): Photoacustic Signal estimation without noise.
(b): Photoacustic Signal estimation with noise

the estimated matrix model, which allowed the extraction
of the estimated profile in Figure 7a, is used to gener-
ate the corresponding photoacoustic signal for a short
pulse as the input signal. Figure 8a shows the measured
photoacoustic signal yk without noise and the estimated
signal ŷk to highlight that the estimation error of µn

directly affects ŷk. Therefore, it is important to reduce
this error to perform tests with different input signals. In
Figure 8b, it can be seen that the photoacoustic signal
generated by the model best fits the signal contaminated
with an SNR of −40.96 dB, compared to Figures 5b and
6b. Note that using the model to generate a photoacoustic
signal associated with a specific input is not merely an
illustrative exercise, as the contaminated signal is actually
the only available information that also allows validation
of the estimation performed with the sinusoidal signal.

5. CONCLUSIONS

A solution to the inverse photoacoustic problem has been
presented from a dynamic systems perspective, capable of
recovering the absorption profile of an optically absorbent

sample and generating a photoacoustic signal very similar
to that captured by the detector. This solution is based
on the SSM derived from the Stokes’ equation proposed
by Lang et al. (2019), which describes the propagation
and attenuation of the acoustic wave. Additionally, due
to finite difference discretization, the model’s matrices
have constant parameters, reducing computational cost
without compromising estimation accuracy. This accu-
racy could be further improved with a more precise nu-
merical method, although at the expense of complicating
the SSM. After analyzing the unknown parameters in the
model and the availability of experimental data, subspace
identification was used to approximate these parameters.
Subsequently, using the gradient descent algorithm, the
parameters were readjusted until a response similar to
the measurements was achieved. The proposed scheme
allows for testing different modulations of the laser sig-
nal to enhance the signal generated by the SSM, and it
facilitates structured subspace identification that focuses
the estimation on a single matrix, thereby achieving a
good estimation of B in high-order systems. However, de-
pending on the SNR value, it was necessary to regularize
the parameters to compensate for the effects of noise. An
alternative method to subspace identification is the use of
a linear regressor approach, but this option is more sen-
sitive to noise in the measurements and requires the im-
plementation of optimization methods. Additionally, this
solution does not leverage the benefits of the SSM. The
experimental results suggest that the proposed scheme
is promising for generating photoacoustic images. All the
experiments presented in this work can be considered the-
oretical results until the estimation scheme is evaluated
with real data from a photoacoustic experiment.

It should be noted that comparing the obtained results
with other methods is beyond the scope of this work.
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