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Abstract: A detection and identification method for high resistance connection faults and
open phase fault in Brushless DC motors is presented. The method uses the current and speed
residuals to detect the type of fault, the faulty phase and the severity of the fault in the case
of high resistance connection. The residuals are made by comparing the measured signals and
their estimates. These estimates are obtained with an observer which reconstructs the stator
currents using only the rotor position signal. An observability analysis is included to show that
it is possible to reconstruct the currents from the position measurement. Numerical simulations
are presented to validate the proposed fault detection scheme.
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1. INTRODUCTION

The stator faults in an electric motor, shown in Figure 1,
can be classified as: 1) Open phase faults, 2) short circuit
faults (turn-to-turn, phase-to-phase or coil-to-coil) and 3)
high resistance connection (HRC) (Kudelina et al., 2020).
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Fig. 1. Stator faults in a star connected BLDC motor

A high resistance connection is a fault caused by damage
in the insulation of electrical connections or in the motor

windings. It originates by poor soldering work, aging,
corrosion, etc. This fault can be overlooked at its incipient
state but if the contact resistance reaches a high level, the
heat could brake open the insulation which could lead to
open circuit faults (Wang et al., 2022). Therefore, these
two faults are related and the open phase fault can occur
after a HRC fault. This fault has been already studied for
the induction motor, as in the work by Yun et al. (2009)
among many other authors, but very few works, which
are going to be discussed later on in this introduction,
has been designed for BLDC trapezoidal motors.

HRC fault is modeled by adding a resistance in one of the
stator phases to represent the asymmetry caused by this
fault in the stator phases. Because it causes an imbalance
in the stator currents, its effects can be perceived in
the speed and torque signals. In this sense, the article
by Gupta et al. (2021) presents an analysis of this fault
using a dynamical model of the Brushless DC motor
(BLDC), assuming: 1) that only permanent magnet is
responsible of back emf in the stator windings, 2) there
is not magnetic saturation. The author’s conclusion was
that HRC fault creates an asymmetry in the currents
which leads to speed and torque ripples, it also mentions
that the phase voltage is not significantly altered by this
fault. Moreover, the fundamental frequency of the faulty
current reduces and the torque signal presents a 2nd, 4th

and 6th harmonic under HRC fault.

HRC fault has been commonly detected using voltage
drop measurement or infrared thermography (Yun et al.,
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2009). The drop measurement is made by a human oper-
ator with a voltmeter where the voltage drop is measure
between the voltage source and the motor terminals.
Therefore, this technique is inexpensive but it can be
unreliable. The infrared thermography measures the tem-
perature distribution using a thermal imaging camera to
search for hot spots in the motor control system. This
technique is highly reliable but expensive. Consequently,
develop a reliable and cost-effective fault diagnosis and
detection methods for the HRC fault is necessary.

Regarding HRC detection, the work by Wang et al. (2022)
proposes a two-step method, where it is assumed that:
1) there is not magnetic saturation, 2) there are not
other faults in the motor and 3) a balanced resistance
network is connected in parallel with the motor to avoid
influence from the inverter. The detection stage uses
the spectrum of the Zero Sequence Voltage Component
(ZSVC) to extract a fault indicator. It is shown that under
HRC fault the voltage spectrum includes the faulty phase
fundamental frequency component. On the other hand,
the identification stage uses the ZSVC along with the
current signals. It is shown that under fault, the ZSVC
and the current signal have a synchronous trip which is
used to construct an indicator. When a HRC fault occurs
the indicator is less than zero for the faulty phase. The
fault degree is obtained by calculating the magnitude
of the voltage fundamental component. However, these
results where obtained assuming that it is possible to
access to the neutral point. Also, additional circuitry is
necessary to guarantee that only permanent magnet is
responsible of back emf, i.e., isolation from the inverter
is assumed. Finally, the analysis is only useful for star
connected BLDC motors.

Another method is presented in Gupta et al. (2024)
where an input current based method is proposed. In the
mentioned work it is assumed that: 1) six step control
is used and therefore 2) Hall effect sensors are used for
position measurement. First, it is shown that the input
current can be used to detect HRC fault. Second, two
condition indicators, variance and range of the input
current along with a current moving window, are used
to detect the fault. Next, additional information of the
Hall effect sensors is used to indicate the faulty phase.
Therefore, if the input current is already measured, not
additional sensors are needed. Moreover, this method can
be used for delta and star connected BLDC motors.

In this work, a model-based method is proposed to detect
the HRC fault in a reliable manner, while indicating the
severity of the fault by using the commonly available
sensors. The scheme proposed is an observer based one,
where the fault firms are obtained by proposing current
and speed residuals. These residuals are the comparison
between the measured and the estimated variables. Some
of the highlights of this fault detection method are:

• It uses the already installed sensors i.e., encoder and
stator current sensors.

• Also, it can detect an open stator phase fault and a
HRC fault using the same residuals.

• It is shown that the current residual of the faulty
phase increases as the HRC resistance increases,
therefore this method can indicate the severity of
the HRC fault.

• Moreover, this method can be implemented online
using an integration moving window.

The paper is organized as follows, Section 2 recalls
the mathematical model of the BLDC motor. Section 3
presents an observability analysis to found out if it is po-
ssible to reconstruct the stator phase currents using only
the rotor position measurement. Section 4 presents the
observer design and the proposed fault detection method.
Section 5 shows the method validation via simulations.
Finally, Section 6 includes the conclusions of this work.

2. PRELIMINARIES

2.1 Brushless DC motor mathematical model

In a BLDC motor, with Y-configuration, the windings
are connected to a central point and power is applied to
the remaining end of each winding. This means that the
stator windings phases are balanced, which implies that
the stator currents satisfy the following expression

i1 + i2 + ...+ im = 0 , (1)

with m the number of stator phases. The motor has Ns

stator slots and Np rotor poles. It is assumed that stator
windings are identical, i.e. the resistance and inductance
parameters are the same for each phase.

The mathematical model of a balanced m-phases brush-
less DC motor as described by Chiasson (2005) is

D
di

dt
= keωE(θ)−Ri+ u (2a)

dθ

dt
= ω (2b)

J
dω

dt
= −kmE

T (θ)i+ τp(t) (2c)

where i ∈ R
m is the vector of stator currents, u ∈ R

m is
the vector of voltage inputs, ω ∈ R is the angular velocity,
ke ∈ R the back electromotive force constant, km ∈ R

the torque constant, R ∈ R
m×m is a diagonal matrix

accounting for the winding resistances where the stator
resistance is r, τp(t) ∈ R is the load torque, J ∈ R is the
rotor inertia, and D ∈ R

3×3 is the inductance matrix is
defined as

D =

[

L +M 0 0
0 L +M 0
0 0 L +M

]

, (3)

with L ∈ R the stator phase inductance an M ∈ R

the mutual inductance between stator phases. With this
matrix definition it is implied that the phase currents are
balanced.

On the other hand, the back–electromotive force vector is
defined as
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with e(θ) given by

e(θ) =
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where e
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)

and e

(

θ −
4π

3

)

are defined using (5)

with the respective phase displacement.

3. OBSERVABILITY ANALYSIS

For the model (2a)-(2c), the first question to arise when
designing an observer for either estimation or fault de-
tection is if the states are observable given some measur-
able outputs. In this work, a fault detection approach is
proposed based on the continuous generation of residual
terms resulting from comparing model-based estimation
currents with those measured directly and filtered by a
low-pass filter. The following observability analysis will
be carried out with the following considerations: 1) only
rotor position is measured and 2) the load torque τp is
zero. This simplification is made since τp is not a control
input and thus if the simplified system is not observable,
we cannot make the complete system observable by ma-
nipulating it. Due to the nonlinear nature of the model,
we will employ nonlinear observability tools in order to
obtain (hopefully) a global result. Let us construct the
observation space O as follows(Isidori, 1996, Sec 2.3):

Let h(x) = θ be the output and x ∈ R
5 the state defined

by x = [θ ω i1 i2 i3]
T
. The system model can be put in

the form ẋ = f(x) + g(x)u, with

f(x) =





ω
1
J

(

− kmE
T (θ)i

)

D−1
(

keωE(θ)−Ri
)



 (6)

g(x) =
1

L+M











0 0 0
0 0 0
1 0 0
0 1 0
0 0 1











. (7)

From these vector fields, one can construct the co–
distribution associated with the observation space

Ωo =











dh
dLfh
dL2

fh
dL3

fh
dL4

fh











, (8)

where Lfh denotes the Lie derivative of h with respect
to the vector field f and Ln

fh denotes the n-th order
Lie derivative. In this case, Ωo is a 5 × 5 matrix with
rank 4. In fact, by examining the determinant of this
matrix, it can be seen that it is not full rank unless the
phase resistances, i.e. the elements of the diagonal in R
are all different, which is not the case in most brushless
DC motors. Furthermore, by including higher-order Lie
derivatives in the co–distribution does not make Ωo full-
rank. In turn, it is very difficult to examine all the possible
combinations of Lie derivatives of the vector fields f and
g, e.g. dLfLgLfh.

One natural step at this point is to investigate if the
system is uniformly observable, i.e. if the observability
depends on the input u. To examine this case, we em-
ploy the method used first in Ibarra-Rojas et al. (2004).
The method consists, in general terms, in comparing the
states of two identical systems, with identical inputs and
outputs, but starting from different initial conditions.
Then one search for the solutions that satisfy the implicit
differential equation. Those solutions are called indistin-
guishable trajectories and if one can define an input that
satisfies such solutions, that input is called a bad input.
For the model (2a)-(2c), the two identical systems are

dθj
dt

= ωj (9a)

dωj

dt
=

1

J

(

− kmE
T (θj)ij

)

(9b)

dij
dt

= D−1
(

keωjE(θj)−Rij + uj

)

, (9c)

with j = a, b. From the method it must be θa ≡ θb and
ua ≡ ub. Therefore, by subtracting systems a and b, one
obtains

0 = ωa − ωb (10a)

dωa

dt
−

dωb

dt
=

1

J

(

− kmE
T (θj)(ia − ib)

)

(10b)

dia
dt

−
dib
dt

= D−1
(

ke(ωa − ωb)E(θj)−R(ia − ib)
)

.

(10c)

From the above equations, the solution that satisfy the
stated conditions is given by

ET (θj)(ia − ib) = 0 (11a)

D

(

dia
dt

−
dib
dt

)

+R(ia − ib) = 0 . (11b)
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Therefore, it can be concluded that there are solutions
different from the trivial solution, but they do not de-
pend on the input, and thus the system is at least
uniformly detectable. Furthermore, these solutions de-
cay exponentially to zero, since D and R are positive
definite matrices. The fact that the system is uniformly
detectable can be corroborated locally by employing the
Hautus lemma (Sontag, 2013, Sec 7.1) as follows: Let
A = ∂f(x)/∂x|x=0. It can be checked, by employing a
symbolic computation software (Wolfram Mathematica)
that λ = 0 is an eigenvalue of A. Therefore by checking
the rank of the matrix

[

λI −A
C

]

=

[

−A
C

]

, (12)

which is 5, the local detectability of the nonlinear sys-
tem (2a)-(2c) with θ as the only output is established.

4. PROPOSED METHOD

As already mentioned in the introduction, the HRC fault
effects can be detected by monitoring the stator currents
and speed. The first part of the fault detection scheme
design is to propose an observer to obtain an estimate
of the stator currents and speed. The estimated variables
are obtained from a Luenberger type observer of the form,
with θ the measured variable:

˙̂x1 = x̂2 +K1x̃1 (13a)

˙̂x2 = −
km
J

ET (x1)x̃3 + τp +K2x̃1 (13b)

˙̂x3 = −D−1(kex̃2E
T −Rx̃3 + u) +K3x̃1 (13c)

where x̂1 = θ̂, x̂2 = ω̂, x̂3 = î, the estimation error
is x̃1 = x1 − x̂1 and the observer gains are K1,K2,K3.
The second part of fault detection method design is to
define the residuals which are the comparison between
the measured and the estimated variables.

r1 = i1 − x̂31 (14a)

r2 = i2 − x̂32 (14b)

r3 = i3 − x̂33 (14c)

rω = ω − x̂2 (14d)

where x̂3 = [x̂31, x̂32, x̂33]. The BLDC motor is in its
nominal state (or healthy state) when the motor is opera-
ting without faults. Given the observer is designed using
the balanced BLDC motor model in its nominal state the
currents residuals are all equal (r1 = r2 = r3 = rn) with
rn the residual value in the nominal state. But, when an
HRC fault occurs in phase j its residual will increase with
respect to the nominal value (rj > rn), see Table 1. It is
important to mention that this increment is proportional
to the severity of the fault.

On the other hand, in the nominal state the speed residual
is equal to its nominal value (rω = rnω). This residual also
increases from its nominal value in the case of HRC fault

Table 1. Signature matrix for faulty phase
identification.

Phase 1 2 3

r1 > rn rn rn
r2 rn > rn rn
r3 rn rn > rn

(rω > rnω). But, in the case of an open phase fault the
residual value is greater than the residual value in the
case of HRC fault, therefore this residual can be used to
identify the type of fault, see Table 1.

Table 2. Signature matrix for fault identifica-
tion.

Operation Nominal Open phase fault HRC fault

rω rnω >> rnω > rnω

For online detection an identification of open phase fault
and HRC fault it is possible to use a integral window as
the one implemented in the article by De La Guerra et al.
(2016).

5. SIMULATION RESULTS

In this section, a numerical validation of the fault de-
tection method is presented. Simulations were made in
Mathworks Matlab–Simulink using the parameters of the
ME0913 BLDC motor, which can be found in Table 3.

Table 3. BLDC motor parameters.

Parameter Value

Rated Voltage 120 [V]
r 2.4 [Ω]
L 9.5 [mH]
M 3/7L
ke 0.4886 [V/rad/s]
km 0.6601 [Nm/A]
J 0.0024 [kgm2]
b 0.000095 [Nm s]

A cascade PI controller was programmed with gains
Kpm = 100, Kim = 300, Kpe = 0.2114, Kie = 7759.9
and sampling time of T = 0.0001 [s], the speed reference
value is ωd = 60[ rad/s]. The HRC fault was programmed
by adding an additional resistance, rHRC , in phase 2.
The open phase fault was programmed by multiplying
the third current phase by zero from time t = 6 [s] till the
end of the simulation.

5.1 Nominal operation

The nominal operation states are shown in Figure 2 and
the residual in this setting can be seen in Figure 3. The
RMS value for the residuals under nominal operation is
shown in Table 4.
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Fig. 2. BLDC states in healthy operation
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Fig. 3. Residuals in healthy operation

Table 4. RMS value for residuals in nominal
operation

Phase r1 r2 r2 rω
RMS 0.3213 0.3222 0.3210 0.4459

5.2 Open phase fault

The operation with an open phase fault in phase 3, that
occurs in t = 6 [s], is shown in Figure 4 and the residual
in this setting can be seen in Figure 5. The RMS value
for the residuals under open phase operation is shown
in Table 5 where all the RMS values of the residual are
greater than the nominal value but it is clear that the one
for the third phase has increased the most.
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Fig. 4. BLDC states in Open phase fault
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Fig. 5. Residuals with open phase fault

Table 5. RMS value for residuals in open phase
fault in phase 3

Phase r1 r2 r2 rω
RMS 1.7969 2.3097 4.8002 16.3834

5.3 High Resistance Connection fault

The operation with an HRC fault in phase 2 is shown in
Figure 6 and the residual in this setting can be seen in
Figure 6 and Figure 7. In particular, Figure 6 shows the
residual when rHRC = 30%r while Figure 7 shows the
residual when rHRC = 90%r, comparing these Figures it
is clear that the residual of the faulty phase, in green,
increases as the fault resistance rHRC increases. The
RMS value for the residuals under HRC fault operation
is shown in Table 6 where all the RMS values of the
residual are greater than the nominal value but it is clear
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that the one for the second phase has increased the most.
Moreover, the value for the residual increases as the value
of the HRC resistance increases.
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Fig. 6. Residuals with HRC fault, rHRC = 30%r
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Fig. 7. Residuals with HRC fault, rHRC = 90%r

Table 6. RMS value for residuals in HRC fault
in phase 2

rHRC r1 r2 r2 rω
10%r 0.3178 0.3546 0.3174 0.1905
30%r 0.3376 0.5797 0.3300 1.0494
45%r 0.3756 0.7940 0.3578 1.8073
60%r 0.4294 1.0162 0.3995 2.5906
75%r 0.4963 1.2383 0.4525 3.3922
90%r 0.5714 1.4572 0.5139 4.2073

With respect to the fault identification, the RMS value
of the speed residual is bigger for the open phase fault
than for the HRC fault has can be seen by comparing
Figure 6 and Figure 7. Thus, this difference in the speed

residual can be used to identify the fault affecting the
BLDC motor.

6. CONCLUSIONS

An identification method for HRC faults and open phase
fault in Brushless DC motors is proposed in this article.
An observability analysis was carried out which establi-
shes detectability of the system when measuring only the
rotor position. The numerical simulations validates the
method by employing the proposed signature matrices.
Although the validation is made offline, a straightforward
online implementation can be made by employing a
moving integral window. As future work, we will study
a threshold selection methodology for fault identification.
The HRC fault severity identification will be explored,
and the experimental validation will be pursued as well.
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