
Observer-Based Control with

Hardware-in-the-Loop for Stabilization of a

Driverless Two-Wheeled Vehicle
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∗∗∗ UDG: Centro Universitario de los Valles, Carretera Guadalajara -
Ameca Km. 45.5, C.P. 46600, Ameca, Jalisco, México.

Abstract: This paper presents the design of a control system whose objective is to stabilize
a riderless bicycle. This is achieved from two torques applied to the angular positions of the
vehicle. Also, the implementation of hardware in the loop is considered because only one of
the states of the mathematical model is measured. The design of the control system addresses
three important features: considering part of the real system (front frame or handlebars), a
state observer and tacking into account these two parts, the solution of the roll angle variable
φ is addressed with the corresponding differential equation (or hardware in the loop).
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1. INTRODUCTION

In the discipline of automatic control, the dynamic behav-
ior of a two-wheeled vehicle is one of the most interesting
case studies. The nature of this physical system is de-
fined as unstable and dependent on its translational (or
motion) velocity. Previous research defines its behavior
through a mathematical model resulting from an analysis
considering physical and motion laws.
The mathematical model published in (Whipple, 1899) is
developed from physical laws and differential equations of
motion, applying the D’Alembert principle. This article
presents the mathematical model of a two-wheeled vehi-
cle, defining in its dynamics the translational velocity as a
variable parameter, which turns the system into an LPV
(Linear System of Variable Parameters) type.
Previous researches contemplate the objective of stabiliz-
ing the vehicle in its vertical position by means of different
methodologies for the design of control systems, applied
physically or validating the results through simulations.
In (Wang et al., 2019) the design of a LQR controller fo-
cused on the manipulation of the steering of a vehicle and
considering an actuator in the front wheel is presented.
Cerone et al. (2010) designed a control system applied
to a real vehicle, considering variable gains to stabilize it
with different values of translational velocity.
The article by Brizuela-Mendoza et al. (2016) presents the

design of a control scheme using the Fault Tolerant Con-
trol approach with the objective of stabilizing the vehicle
even in the presence of faults. Ŕıos Ruiz (2016) designs
control systems addressing Quasi-LPV models and vali-
dated by means of simulations. In (Baquero Suárez et al.,
2017) the results of an active disturbance rejection control
are reported, whose results were validated by means of a
co-simulation between MATLAB and ADAMS software.
In (Bravo and Rengifo, 2020) presents the design of two
control schemes based on the kinematic model of a robotic
bicycle, aiming to stabilize it in vertical position: the first
controller focuses on the direction of the handlebars and
the second one on smoothing the output values.
On the other hand, hardware-in-the-loop implementation
is key to research development, as it allows for efficient
and safe testing through a system equipped with elec-
tronic devices, whose data provide insights into system
behavior.
In this paper, the case study of a riderless bicycle is
addressed, contemplating the design of a control system
capable of stabilizing it in its vertical position by means
of two torques applied to the angular positions defined in
its mathematical model.
The main contribution of this paper is the implementation
of hardware in the loop and the coupling of this method-
ology in the control system designed and implemented
to the instrumented two-wheeled vehicle. The approxi-
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mation of the particular mathematical model of the in-
strumented bicycle is considered (section 2), where the
difference between other works oriented to the study of
this system is also described: the complete mathematical
model is used with emphasis on the design of the control
law u(t) since previous researches only consider the torque
associated with the handlebar angle (Tδ).
The design of a state observer is also considered, obtaining
the missing information associated with the model. Also,
the solution of the differential equation associated with
the roll angle of the bicycle, whose results are considered
as virtual measurements (section 3).
The coupling between the real system, the observer, and
the φ differential equation is defined as one of the main
contributions of this work. Since the design of the con-
trol laws considers in its design measurements, estimated
states and computed variables (section 4).
Similarly, it is important to clarify that the observer and
the differential equation of φ are designed from the infor-
mation obtained by the instrumentation implemented in
the selected bicycle (section 5) and the resultant of both.

2. MATHEMATICAL MODEL OF A BICYCLE

The analysis and theoretical development of the math-
ematical model of the two-wheeled vehicle are based on
Schwab et al. (2005) and Meijaard et al. (2007). Their
procedure considers the vehicle divided into four subsys-
tems.

Fig. 1. Schematics of the two-wheeled vehicle (From left
to right: lateral view, front view, top view).

Fig. 1 shows the location of the subsystems and the
schematics of the vehicle structure associated with its
mathematical model: φ is the roll angle, which represents
the angle between the general frame and the vertical, δ is
the handle angle, which represents the angle between the
front frame and the perpendicular of the general frame, Tφ

and Tδ are defined as the generalized input forces applied
to the general and front frames, respectively. Finally, the
position and direction of the coordinate system according
to the theory of the mathematical model of the vehicle
analyzed in Meijaard et al. (2007) are shown. Each of the
variables mentioned above will be defined and used later.
Considering all the above, the dynamic behavior of the
vehicle is analyzed through two second-order differential
equations derived from the physical laws of motion. One
equation is associated to the vehicle’s inclination, while
the other addresses its direction, taking into account

translational velocity and gravity. These equations are
then dynamically combined in the following form:

Mq̈ + υC1q̇ + [gK0 + υ2K2]q = f (1)

where q = [φ δ]
⊤

is the vector of angular positions and

f = [Tφ Tδ]
⊤
is the vector of generalized input forces. Tφ

is the torque associated with the roll angle and Tδ is the
torque associated with the handlebar angle. υ represents
the translational velocity and g represents gravity.
Matrices M and C1 encompass parameters associated
with masses and dampings, while K0 and K2 represent
matrices containing stiffness parameters. Each coefficient
within these matrices is derived from mathematical opera-
tions based on the physical and motion laws governing the
vehicle, along with parameters and dimensions sourced
from the CAD model created in SolidWorks.
In table A.1 the dimensions and parameters of the se-
lected two-wheeled vehicle are presented. Based on this,
the matrix coefficients of M , C1, K0 and K2 are defined
with the following values:

M =

[
1.0239 0.1602
0.1602 0.4594

]
, K0 =

[
−3.6400 −0.7059
−0.7059 −0.2414

]

K2 =

[
0 5.9226
0 1.1096

]
, C1 =

[
0 0.5302

−0.3796 0.8999

] (2)

The mathematical model of the two-wheeled vehicle de-
fined in Eq. (1) can be represented in state-space form by
considering the following state variables: φ(t) : Roll angle,

δ(t) : Handlebar angle, φ̇(t) : Angular velocity of roll, δ̇(t)
: Angular velocity of the handlebar.

Then x(t) =
[
φ δ φ̇ δ̇

]⊤
, the mathematical model is:

ẋ(t) = A(v)x(t) +Bu(t)

y = Cx(t)
(3)

with:

A (v) =




0 0 1 0
0 0 0 1

3.5058 0.6422− 5.7184v2 −0.1368v −0.2235v
0.3138 0.3015− 0.4209v2 0.8739v −1.8809v


 ,

B =




0 0
0 0

1.0330 −0.3603
−0.3603 2.3023


 , C =

[
1 0 0 0
0 1 0 0

]

(4)
In Eq. (3), u(t) is the vector containing the generalized
input forces considered for the design of the control law
that stabilizes the vehicle:

u(t) = [Tφ Tδ]
⊤

(5)

By incorporating this input, this paper distinguishes itself
from previous works, which only consider Tδ for stabiliza-
tion. Therefore, the primary contribution lies in utilizing
the complete mathematical model for the design of the
control system.
As evidenced by the matrix A(v), the stability of the
vehicle depends on the translational velocity v(t). Con-
sequently, the system is linear parameter-varying. How-
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ever, in this article, a constant translational velocity is
considered as a first LTI approach to be implemented in
the proposed hardware-in-the loop scheme.
According to (4) and the real instrumented two-wheeler
described later, only the handlebar angle is measured, so
the design of an observer is considered to estimate the
rest of the states of the mathematical model.

3. CONTROL SYSTEM

The hardware implementation in the loop consists of the
solution of the φ differential equation considering the
information generated by the bicycle instrumentation and
the observer.

Fig. 2. General structure of the control system.

A general scheme of the control system coupling dynamics
is shown in Fig. 2: the information obtained from the
real system is used for the design of the observer and
the solution of the φ differential equation. Likewise, both
elements share information to generate the control laws
contemplated in their design, while only the control law
associated with the real system (or physical vehicle) is
applied to it.
The control scheme presented in Fig. 3 describes in detail
the coupling between a part of the real system (the front
frame and the front wheel), a Luenberger observer and the
hardware in the loop (i.e., the φ differential equation).

Fig. 3. The hardware in the loop scheme

3.1 Real system (Front frame and front wheel)

The real system (front frame and front wheel) delivers
only a measured state through an angular position sensor:
the handlebar angle δ.

3.2 State observer

The observer-based control system considers a Luen-
berger observer:

˙̂x = Ax̂+Bu+ L(y − Cx̂) (6)

Its design considers two measured states δ and φe (both
angular positions), obtaining as a result the whole vector
of estimated states:

Notation Parameter

φ̂ Estimated roll angle

δ̂ Estimated handlebar angle
˙̂
φ Estimated angular velocity of roll
˙̂
δ Estimated angular velocity of the handlebar

3.3 Differential equation of φ

The mathematical model of the bicycle defines the φ
differential equation as:

φ̈ = 3.5058 + (0.6422− 5.7184v2)δ − 0.1368v φ̇

−0.2235v δ̇ + 1.0330 Tφ − 0.3603 Tδ

(7)

The solution of the differential equation contemplates two

states: δ and
˙̂
δ being a real state and an estimated state,

having as a result:

Notation Parameter

φe Roll angle equation

φ̇e Angular velocity of roll equation

3.4 New vector of states

In order to highlight the dynamic coupling between the
three elements (real system, observer and φ differential
equation) described above, the new vector of states x̄
used for the calculation of the control law is defined as:

x̄ =
[
φe δ̂ φ̇e

˙̂
δ

]⊤
, where two of its states are generated

from the observer and the rest by the differential equation
of φ.
In general, both part of the real system, the observer
and the differential equation φ communicate dynamically
as follows. The real system delivers only δ, the state
that feeds the observer (in addition to φe) for its design,
and the differential equation φ. On the other hand, the
observer generates the entire vector of estimated states,
of which only those associated with the handlebars are
considered. Finally, the solution of the differential equa-

tion of φ contemplates δ and
˙̂
δ, thus generating φe and φ̇e.

Observing Fig. 3, both control laws (Tφ and Tδ) are con-
sidered in the design of the observer and the differential
equation, while only the generalized input force Tδ is
applied to the real system.

4. DESIGN OF CONTROL LAWS

With all of the above and with the objective of stabilizing
and regulating the position of the vehicle, both control
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laws are defined as follows (for simplicity, the argument
(t) will be omitted in the remainder of this paper):

Tφ = −(K11φe +K12δ̂ +K13

˙̂
φe +K14

˙̂
δ) +K15

∫
(δd − δ)dt (8)

Tδ = −(K21φe +K22δ̂ +K23

˙̂
φe +K24

˙̂
δ) +K25

∫
(δd − δ)dt (9)

Where the elements in color red represent those that are
generated and applied virtually, the elements in color blue
correspond to those generated by the observer and those
in color yellow to the real elements (same logic applied
to the contents in Fig.(3)), thus concluding that in its
dynamics a real part, an estimated part and the hardware
in the loop are considered.
Simplifying to (8) and (9), it follows that

u = −Kx̄+Kδ

∫
(δd − δ)dt (10)

where K is the vector of controller gains, Kδ is the
gain associated with the integral action applied to the
handlebar angle and x̄ is the new vector of states defined
above. Likewise, (δd − δ) represents the error between a
desired angular position of the handlebar angle and the
measured state of the handlebar, respectively.
K and Kδ are part of a single vector of gains calculated
with the place command of MATLAB contemplating the
poles [−1 −1.5 −2 −2.5 −3] seeking to have no oscilla-
tions in its response and to ensure a convergence time
such that the state reaches the programmed references,
considering matrix A and B as augmented, and matrix C
as follows:

A =




0 0 1 0 0
0 0 0 1 0

3.5058 0.6422− 5.7184v2 −0.1368v −0.2235v 0

0.3138 0.3015− 0.4209v2 0.8739v −1.8809v 0
0 −1 0 0 0


 ,

B =




0 0
0 0

1.0330 −0.3603
−0.3603 2.3023

0 0


 , C =

[
1 0 0 0
0 1 0 0

]
(11)

Similarly, the observer structure defined in (6) considers
a vector of gains L whose values are calculated through
the place command of MATLAB contemplating the poles
[−12.1 −12.2 −12.3 −12.4], which were selected in order
to ensure an ideal convergence time to obtain a response
dynamics in conjunction with the designed controller.

5. INSTRUMENTED BICYCLE

The real bicycle selected, and the control system designed
only consider the front frame and the front wheel as a
degree of freedom, so a structure was designed and built
in order to assemble it and keep it suspended, avoiding
that both wheels have contact with the ground and that
the general frame moves (Important feature in system
modeling).

Fig. 4. Main base for bicycle.

Fig. 4 presents the main base that is considered to keep
the vehicle in its upright position, leaving the front frame
as the only subsystem with movement.

5.1 Instrumentation mechanisms

The two-wheeled vehicle motion considerations described
above lead to the design of two important mechanisms:

• Mechanism associated with handlebar angle δ: Its ob-
jective is to locate the sensor in charge of measuring
the angular position of the front frame (handlebar
angle) and the front wheel.

• Mechanism associated with the generalized input
force Tδ: Associated with the same elements as the
previous mechanism, this one contemplates an actua-
tor, whose main task is to manipulate the front frame
and the front wheel in order to steer and stabilize the
vehicle (see Fig. 5).

Fig. 5. Mechanisms designed in SolidWorks.

5.2 Electronic components

With all the above, the instrumentation of the vehicle
only contemplates those elements associated to one of
the states of the mathematical model, in this case the
handlebar angle δ. Therefore, the elements contemplated
for such instrumentation are the following:

• OMRON E6A2 - CWZ3E Rotary ENCODER (IN-
CREMENTAL): Sensor coupled with the mechanism
associated with the handlebar angle to deliver the
angular position of the subsystems (the front frame
and the front wheel) in charge of steering the two-
wheeled vehicle (see Fig. 6a).

• Servomotor DS3225 MG : The actuator coupled with
the mechanism associated with the generalized input
force applied to the handlebar angle allows the

Congreso Nacional de Control Automático 2024,

8-11 de Octubre, 2024. Ciudad de México, México.

317 Copyright© AMCA, ISSN: 2594-2492https://doi.org/10.58571/CNCA.AMCA.2024.054



movement or manipulation of the front frame and the
front wheel, being that one of the pairs considered
in the mathematical model (see Fig. 6b).

(a) Sensor in charge of measuring
the angular position of the han-
dlebars δ.

(b) Actuator to manipulate
the front frame of the vehicle.

Fig. 6. Electronic components for instrumentation.

6. RESULTS

This section shows the results of the control system pre-
sented in Fig. 3 developed in LabVIEW software.
The control system design considers a constant transla-
tional velocity v = 1.271 m/s. Its objective is to stabilize
the vehicle at a desired angular position by means of an
integral action applied to the handlebar angle.

Fig. 7. Handlebar angle δ.

The experimental results obtained from the control sys-
tem applied to the instrumented bicycle are shown in
Fig. 7. The present test contemplates reference changes
from −2◦ to 2◦ programmed in the integral action applied
to the handlebar angle δ, observing that delta perfectly
reaches the desired angular position.

Fig. 8. Error between δd - δ.

In order to validate the above, in Fig. 8 the error between
(δd - δ) is plotted, resulting that during certain periods of

time the value is 0, concluding that delta takes the exact
value at the desired angular position.

Fig. 9. Roll angle equation φe.

Additionally, Fig. 9 shows the variation of the angular
position of the roll φe is presented as a result of the pro-
grammed position changes in the angle of the handlebar
δ. The results show small variations around its operating
point, concluding that the vehicle is stable.

Fig. 10. Control laws Tφ y Tδ.

Fig. 10, on the other hand, presents the control laws
applied to the observer and the φ differential equation,
while only Tδ (generalized input force associated with the
crank) is applied to the real system. Consequently, from
the angular positions programmed to the handlebar angle,
the effect of the control law to reach that reference is
observed.

Fig. 11. Results of δ generated by the observer.

Fig. 11 shows the results of δ generated by the observer. In

this case, δ̂ takes equal values according to the reference
changes, thus validating the observer’s design.
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Fig. 12. Results of φ generated by the observer.

Finally, Fig. 12 presents a comparison of the observer’s
results and the φ differential equation. Note that, the roll
angle product of the observer takes a behavior equal to
that generated by the differential equation of φ.

7. CONCLUSION

This work addressed the design of a control system with
the objective of stabilizing a real two-wheeled vehicle. Its
development involves the approximation of the particular
mathematical model of the selected two-wheeled vehicle,
the design of a state observer from the information ob-
tained from the physical prototype and the consideration
of hardware in the loop for the overall controller design.
From the observed results, it can be assumed that the ve-
hicle is stable, given that the values remain approximately
close to the reference and to its operating point (0◦). With
all of the above, the control system could consider new
features in order to obtain new results.
Finally, the important contributions addressed in this
work are focused on the design of the control laws because
previous researches do not consider the complete math-
ematical model, i.e., they only stabilize the vehicle with
the generalized input force associated to the handlebars
Tδ. In the same way, the implementation of hardware in
the loop through the solution of the differential equation
of Tφ turns out to be a new solution methodology for the
design of control systems.
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Appendix A. PARAMETERS OF THE MODEL

Table A.1. Parameters.
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