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Abstract: We consider the problem of optimal investment in an incomplete market with
borrowing, random and possibly unbounded coefficients, and the power utility from terminal
wealth. We use the Heston model for stochastic volatility, and the quadratic-affine model for
interest rates. The resulting problem is an example of optimal stochastic control problem with
a nonlinear system dynamics which is due to borrowing, the square-root non-linearity of Heston
model, and the quadratic non-linearity of the interest rates. Explicit closed-form solution is
obtained by a certain piece-wise completion of squares method. The resulting optimal control
law is of linear state-feedback form the gain of which can be in up to three different regimes.
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1. INTRODUCTION

Let (Ω,F , (F(t), t ≥ 0),P) be a complete filtered probabil-
ity space on which an m-dimensional standard Brownian
motion (W (t), t ≥ 0) and an m̃-dimensional standard

Brownian motion (W̃ (t), t ≥ 0) are defined. We further

assume that W and W̃ are independent, and that F(t)

is the augmentation of σ{W (s), W̃ (s): 0 ≤ s ≤ t} by all
the P-null sets of F . If E is an Euclidean space, then we
denote by L∞(0, T ;E) the set of all E-valued uniformly
bounded functions. Consider a two asset financial market
consisting of a bond and of a stock, the prices of which B
and S, respectively, are:



dB(t) = B(t)r(t)dt, t ∈ [0, T ],
dS(t) = S(t)[µ(t)dt+ V ′(t)dW (t)], t ∈ [0, T ]
B(0) > 0, S(0) > 0, are given,

(1)

and for some T > 0. The interest rate r, the appreciation
rate of the stock µ, and the m-dimensional volatility of
the stock V , are random processes in general and such
that equations (1) have unique strong solutions. In this
market, consider an investor that has an initial wealth y0,
and holds vB(t) number of shares in the bond and vS(t)
number of shares in the stock at time t, i. e. the investor’s
wealth (or the value of investor’s portfolio) at time t is
y(t) := vB(t)B(t) + vS(t)S(t). The investor is said to hold
a self-financing portfolio if:

dy(t) = vB(t)dB(t) + vS(t)dS(t). (2)

By substituting the differentials of B and S from (1) into
(2), and knowing that vB(t)B(t) = y(t) − vS(t)S(t), we
obtain:

dy(t)=[r(t)y(t)+(µ(t)−r(t))u(t)]dt+u(t)V ′(t)dW (t), (3)

where u(t) := vS(t)S(t). The well-known optimal invest-
ment problem with expected utility from terminal wealth,
as one of fundamental mathematical finance problems, is
the following optimal stochastic control problem:

{
max
u(·)∈B

E [U(y(T ))] ,

s.t. (3),
(4)

for some suitable admissible set of controls B and a utility
function U (see, for example, Korn (1997), Kartzas and
Shreve (1998), Duffie (2010), for a textbook account).
If the coefficients r, µ, and V are deterministic, and
U(x) = xγ/γ with γ ∈ (0, 1), then this problem is known
as the Merton problem, and it admits an explicit closed-
form solution in a linear wealth-feedback form (see, for
example, Kartzas and Shreve (1998), Korn (1997), Merton
(1992)). A more general market model than (1) is the one
where an investor can borrow at a rate R that is higher
than the bond rate r. The borrowed amount ζ in this case
is:

ζ(t) := [u(t)− y(t)]+ := max[0, u(t)− y(t)], t ∈ [0, T ],

as it is not reasonable to borrow with the higher rate R
and at the same time invest in the bond with a lower rate
r. The equation of investor’s wealth (3) now becomes:

dy(t)=[r(t)y(t)+(µ(t)−r(t))u(t)]dt−(R(t)− r(t))ζ(t)dt

+u(t)V ′(t)dW (t) = [r(t)y(t) + (µ(t)−r(t))u(t)]dt
−(R(t)−r(t))[u(t)−y(t)]+dt+u(t)V ′(t)dW (t). (5)
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The optimal investment (and consumption) problem with
borrowing at the higher rate R was introduced in Flem-
ing and Zariphopoulou (1991) for the market with con-
stant coefficients. In Cvitanić and Karatzas (1992), this
problem in a market with random coefficients is con-
sidered, and explicit solution to the optimal investment
problem with logarithmic utility is obtained, whereas for
the power utility it was assumed that the coefficients
are deterministic. In the recent series papers Alasmi and
Gashi (2023), Alasmi and Gashi (2024), Aljalal and Gashi
(2022b), Aljalal and Gashi (2022a), Aljalal and Gashi
(2022d), Aljalal and Gashi (2022c), Aljalal and Gashi
(2023), several cases of the optimal investment problem
in market with borrowing, random interest rates, and the
power utility have been considered, and it was succeeded in
obtaining an explicit closed-form solution in the following
cases: in Aljalal and Gashi (2022b) the interest rate is
assumed to be quadratic-affine with independent source
of uncertainty as compared to the stock; in Aljalal and
Gashi (2022c) this was generalised further to permit for
a general class of such coefficients; in Aljalal and Gashi
(2022d) the Hull-White model for the interest rate was
used which has the same source of uncertainty as the stock;
in Aljalal and Gashi (2022a) the market with a Markovian
switching coefficients is considered; whereas in Alasmi and
Gashi (2023), Alasmi and Gashi (2024), Aljalal and Gashi
(2023), markets with certain combined random interest
rate models are introduced.

Although the previously mentioned works have consid-
ered several market models with borrowing and ran-
dom coefficients, they do not cover the important case
of a market with volatility V having the Heston model
(see, for example, Heston (1993), Shreve (2004), Desmet-
tre et al. (2015), Bergomi (2015), Rouah (2015), Rouah
(2013), Mikhailov and Nögel (2004))). In order to define
this model, let η denote the solution to the following
nonlinear stochastic differential equation of Cox-Ingersoll-
Ross (CIR) type (for t ∈ [0, T ]):

{
dη(t) = [κ(t)(θ(t)− η(t))]dt+

√
η(t)σ̃′(t)dW (t),

η(0) = η0 > 0, is given,
(6)

where 0 < κ(·) ∈ L∞(0, T ;R), 0 < θ(·) ∈ L∞(0, T ;R),
σ̃(·) ∈ L∞(0, T ;Rm), and σ̃′(t)σ̃(t) > 0 for all t ∈ [0, T ].
The Heston volatility model is now defined as:

V (t) := σ(t)
√
η(t), t ∈ [0, T ],

where σ(·) ∈ L∞(0, T ;Rm), and σ′(t)σ(t) > 0 for all
t ∈ [0, T ]. The wealth equation (5) now becomes (for
t ∈ [0, T ]):

dy(t) =
[
r(t)y(t) + a(t)u(t)− b(t)[u(t)− y(t)]+

]
dt

+ u(t)
√
η(t)σ′(t)dW (t), y(0) = y0, (7)

where a(t) := µ(t)− r(t), b(t) := R(t)− r(t), for t ∈ [0, T ].
In this paper, we consider the problem of optimal in-
vestment in a market with borrowing, and the Heston
stochastic volatility model. Moreover, our assumptions on
the other market coefficients are as follows. Consider the
following n-dimensional factor process (for t ∈ [0, T ]):{

dx(t) = [A(t)x(t) +B(t)] dt+ C(t)dW̃ (t),
x(0) = x0 ∈ R

n, is given,
(8)

where A(·) ∈ L∞(0, T ;Rn×n),B(·) ∈ L∞(0, T ;Rn), C(·) ∈
L∞(0, T ;Rn×m̃). We assume that the interest rate r is
defined as (for t ∈ [0, T ]):

r(t) := x′(t)D2(t)x(t)+x
′(t)D1(t)+D0(t)+β(t)η(t), (9)

where D2(·) ∈ L∞(0, T ;Rn×n) and symmetric, D1(·) ∈
L∞(0, T ;Rn),D0(·) ∈ L∞(0, T ;R), and β(·) ∈ L∞(0, T ;R).
We further assume that (for t ∈ [0, T ]):

a(t) := ϕ(t)η(t), b(t) := ξ(t)η(t), (10)

where 0 < ϕ(·) ∈ L∞(0, T ;R), 0 < ξ(·) ∈ L∞(0, T ;R)
(see, for example, Liu (2007) for a similar assumption
on a). The model (9) with β(t) = 0, t ∈ [0, T ], is
the well-known quadratic-affine interest rate model (see,
for example, Liu (2007), Date and Gashi (2013), Gashi
and Zhang (2023), Hua et al. (2023), Alasmi and Gashi
(2023), Aljalal and Gashi (2022b), Aljalal and Gashi
(2022d), Aljalal and Gashi (2023)), Algoulity and Gashi
(2023), and by considering a not-necessarily zero β, i.e. by
permitting for the interest rate r to be influenced by the
additional factor η, the model (9) is a generalisation of the
quadratic-affine interest rate.

The cost functional that we consider is the following power
utility from terminal wealth:

J(u(·)) := − 1

γ
E [yγ(T )] , γ ∈ (0, 1). (11)

which, due to its minus sign, is to be minimized. The
optimal investment problem to be solved is the following
optimal stochastic control problem:

{
min

u(·)∈A
J(u(·)),

s.t. (7),
(12)

where A is a suitable set of admissible controls to be
defined precisely in the next section. Despite the con-
siderable progress on the optimal investment problem in
a market with borrowing that we previously mentioned,
none of those works fully covers problem (12). For example,
the existence result of Cvitanić and Karatzas (1992) only
applies to complete markets (i.e. to the case of m = 1)
and no explicit solution is given. We use a certain piece-
wise completion of squares method to find the solution
in an explicit closed form. This approach has been suc-
cessfully used in Alasmi and Gashi (2023), Alasmi and
Gashi (2024), Aljalal and Gashi (2022b), Aljalal and Gashi
(2022a), Aljalal and Gashi (2022d), Aljalal and Gashi
(2022c), Aljalal and Gashi (2023), to find the solution
to optimal investment problem with borrowing in market
models that do not cover the one considered in the present
paper. An added difficulty here is the poof of admissibly for
optimal control, which is more involved due to the Heston
stochastic volatility model. The solution turns out to be of
a linear state-feedback form despite the fact that dynamics
of y, r, and η are nonlinear. In §2 we give the precise
formulation of admissible set A and derive the solution to
problem (12).

2. SOLUTION TO THE OPTIMAL INVESTMENT
PROBLEM WITH POWER UTILITY

In order to complete the formulation of problem (12),
we now give the definition of admissible set of controls
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A. Consider the following nonlinear backward ordinary
differential equation:

{
ġ + 0.5g2σ̃′σ̃ − gκ+ γβ − γN = 0, t ∈ [0, T ],
g(T ) = 0.

(13)

Here N is a certain function of g defined as (t ∈ [0, T ]):

N(t) :=





−Ψ2(t)

2ρ(t)
if Ψ(t)

ρ(t) ≤ 1,

1

2
ρ(t)−Ψ(t) if 1 < Ψ(t)

ρ(t) ≤ 1 + ξ(t)
ρ(t) ,

− (Ψ(t)− ξ(t))
2

2ρ(t)
− ξ(t) if Ψ(t)

ρ(t) > 1 + ξ(t)
ρ(t) ,

where ρ(t) := (1 − γ)σ′(t)σ(t) and Ψ(t) := ϕ(t) +
σ′(t)σ̃(t)g(t). As Ψ is a linear function of g, equation (13)
has an at most quadratic growth in g.
Assumption 1. The nonlinear backward ordinary differ-
ential equation (13) has a unique global solution.

In the special case of σ′(t)σ̃(t) = 0 for t ∈ [0, T ], equation
(13) reduces to a Riccati backward ordinary differential
equation (see, e.g., Rami and Zhou (2000) and Rami et al.
(2001), for sufficient conditions under which Assumption
1 holds). Further consider the following Riccati backward
ordinary differential equation (for t ∈ [0, T ]):

{
Ḣ2 +H2A+A′H2 + 2H2CC

′H2 + γD2 = 0,
H2(T ) = 0,

(14)

Assumption 2. The Riccati backward ordinary differen-
tial equation (14) has a unique global solution.

Sufficient conditions for this assumption to hold can be de-
rived from the results in Rami and Zhou (2000) and Rami
et al. (2001). As an example, if D2(t) = 0 for t ∈ [0, T ],
then by inspection we conclude that H2(t) = 0, t ∈ [0, T ],
is the unique solution to (14). Furthermore, we introduce
the following backward ordinary differential equations (for
t ∈ [0, T ]):

{
Ḣ1 + 2H2B +A′H1 + 2H2CC

′H1 + γD1 = 0,
H1(T ) = 0,

(15)




Ṗ + γPD0 + PH ′

1B + P tr (C ′H2C)
+Pgκθ + PH ′

1CC
′H1/2 = 0,

P (T ) = −γ−1.
(16)

As (15) and (16) are linear in H1 and P , respectively, our
Assumption 1 and Assumption 2, ensure the existence of
unique global solutions for these equations.

The admissible set of controls A is defined as the set of
all R-valued adapted processes u under which the wealth
equation (7) has a unique and strictly positive strong
solution, i.e. y(t) > 0 a.s. for all t ∈ [0, T ], and the
following integrability conditions hold:

E

[∫ T

0

PeZyγ
√
η

(
γ
u

y
σ′ + gσ̃′

)
dW

]
= 0, (17)

E

[∫ T

0

PeZyγ (2x′H2 +H ′
1)CdW̃

]
= 0. (18)

Here the process Z is defined as the following quadratic
affine form in x (for t ∈ [0, T ]):

Z(t) := x′(t)H2(t)x(t) + x′(t)H1(t) + g(t)η(t).

The strict positivity requirement on the wealth y avoids
investor’s bankruptcy, whereas the above integrability con-
ditions ensures that certain stochastic integrals appearing
in the proof of Theorem 2.1 have a zero expectation. This
completes the formulation of problem (12) to be solved
below.

The expected value and the variance-covariance matrix of
the factor process (8) are denoted as (for t ∈ [0, T ]) :

µx(t):=E[x(t)], Σx(t) = E[(x(t)− µx(t))(x(t)− µx(t))
′].

These are solutions to the following forward differential
equations (see, for example, Kloeden and Platen (1992)):

µ̇x = Aµx +B, µx(0) = x0,

Σ̇x = AΣx +ΣxA
′ +Bµ′

x + µxB + CC ′, Σx(0) = 0,

In order to state our assumptions under which we solve
problem (12), as well as its solution, we introduce the
function M as (for t ∈ [0, T ]):

M(t) :=





Ψ(t)

ρ(t)
if Ψ(t)

ρ(t) ≤ 1,

1 if 1 < Ψ(t)
ρ(t) ≤ 1 + ξ(t)

ρ(t) ,

Ψ(t)− ξ(t)

ρ(t)
if Ψ(t)

ρ(t) > 1 + ξ(t)
ρ(t) .

Assumption 3. Let q1, q2, p1, p2 > 1 be such that q−1
1 +

q−1
2 = 1 and p−1

1 + p−1
2 = 1. The following hold:

(i) Σx(t) > 0, Σ−1
x (t)− 32 H2(t) > 0 for t ∈ [0, T ],

(ii) 4κ(t)θ(t) ≤ σ̃′(t)σ̃(t) for t ∈ [0, T ],

(iii) O(t)t

∫ t

0

e

∫
s

0

κ(τ)dτ
σ̃′(s)σ̃(s)ds < 2 for t ∈ [0, T ],

where O(t) := sup
s∈[0,t]

[m2(−16gκ+ 128g2m1σ̃
′σ̃)],

(iv) G(t)t

∫ t

0

e

∫
s

0

κ(τ)dτ
σ̃′(s)σ̃(s)ds < 2 for t ∈ [0, T ],

where G(t):=sup
s∈[0,t]

[8γp2q2α+ 32γ2q1q2p
2
2Mσ′σ]

with α(t) := β + ϕM − ξ[M − 1]+ − 1
2M

2σ′σ,

(v) E

[
exp

(
8γp1

∫ t

0

Fds
)]

<∞ for t ∈ [0, T ],

where F (t) := x′(t)D2(t)x(t) + x′(t)D1(t) +D0(t).

All of the above assumption are in terms of known func-
tions and processes, and can thus be verified for each
concrete market example. These are more involved than
in the previous works that use quadratic-affine interest
rates (see Alasmi and Gashi (2023) and Aljalal and Gashi
(2022b)) due to the Heston volatility model.
Theorem 2.1. There exists a unique solution to the
optimal investment problem (12). This solution is given
as:

u∗(t) =M(t)y(t), t ∈ [0, T ].

The optimal cost functional is J (u∗(·)) = yγ0P (0)e
Z(0). ✷

Prior to giving the proof of this theorem, which is our main
result, we derive sufficient conditions for the finiteness of
E[eλη(t)], where λ ∈ R. Let m1, m2 > 1 be such that
m1

−1+m2
−1 = 1. Also let ℓ(t) := m2(−λκ+λ2m1σ̃

′σ̃/2),
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and define the function Q as:

Q(t) := sup
s∈[0,t]

ℓ(s), t ∈ [0, T ]

Lemma 2.2. If 4κ(t)θ(t) ≤ σ̃′(t)σ̃(t) and

Q(t)t

∫ t

0

e

∫
s

0

κ(τ)dτ
σ̃′(s)σ̃(s)ds < 2,

then E

[
eλη(t)

]
<∞.

Proof. As the implicit solution of (6) is

η(t) = η0 +

∫ t

0

κ(θ − η)ds+

∫ t

0

σ̃′√ηd,

we can write E
[
eλη(t)

]
as:

E

[
eλη(t)

]
= e

(
λη0+λ

∫
t

0

κθds

)
E

[
exp

(
− λ

∫ t

0

κηds

+λ

∫ t

0

σ̃′√ηdW
)]

= e

(
λη0+λ

∫
t

0

κθds

)
E

[
exp

(
− λ

∫ t

0

κηds− 1

m1

∫ t

0

−λm1

×σ̃′√ηdW − 1

2m1

∫ t

0

(λm1
√
η)2σ̃′σ̃ds+

1

2m1

×
∫ t

0

(λm1
√
η)2σ̃′σ̃ds

)]

≤ e

(
λη0+λ

∫
t

0

κθds

) {
E

[
exp

(∫ t

0

ℓηds

)]} 1

m2

×
{
E

[
exp

{(−1

2

∫ t

0

(λm1
√
η)2σ̃′σ̃ds

−
∫ t

0

−λm1
√
ησ̃′dW

)}]} 1

m1

≤ e
λη0+λ

∫
t

0

κθds

{
E

[
exp

(
Q

∫ t

0

ηds

)]} 1

m2

<∞,

where the first inequality above is due to the Hölder
inequality, the second due to the supermartingale property,
and the third due to Theorem 4.1 of Yong (2004). ✷

Proof of Theorem 2.1 By Itô’s formula, the differential of
yγ is:

dyγ = yγ [γr + γaν − γb[ν − 1]+ + γ(γ − 1)σ′σην2/2]dt

+yγνγ
√
ησ′dW,

where ν(t) := u(t)/y(t), t ∈ [0, T ]. Further, as H2 is
symmetric, the differential of Z by Itô’s formula is:

dZ =

{
x′

[
Ḣ2+H2A+A′H2

]
x+x′

[
Ḣ1 + 2H2B+A′H1

]

+ [H ′
1B + tr (C ′H2C) + gκθ] + [ġ − gκ]η

}
dt

+ [2x′H2 +H ′
1]CdW̃ + gσ̃′√ηdW.

Again by Itô’s formula, the differential of PeZ is:

d(PeZ) = eZ
{
Ṗ + P

[
x′(Ḣ2 +H2A+A′H2)x+ x′(Ḣ1

+2H2B +A′H1) +H ′
1B + tr(C ′H2C) + gκθ + [ġ − gκ]η

+
1

2
(2x′H2 +H ′

1)CC
′(2x′H2 +H ′

1)
′ +

1

2
g2σ̃′σ̃η

]}
dt

+PeZ(2x′H2 +H ′
1)CdW̃ + PeZgσ̃

√
ηdW.

By Ito’s product rule, the differential of yγPeZ is:

d
(
yγPeZ

)
= (dyγ)PeZ + yγd

(
PeZ

)
+ (dyγ)d

(
PeZ

)

= yγeZ
{
Pγη

[
ϕν − ξ[ν − 1]+ +

1

2
(γ − 1)ν2σ′σ

+νσ′σ̃g

]
+ x′

(
PḢ2 + PH2A+ PA′H2 + 2PH2CC

′H2

+γPD2)x+ x′
(
PḢ1 + 2PH2B + PA′H1 + 2PH2CC

′H1

+γPD1) + Ṗ + PH ′
1B + P tr (C ′H2C) + γPD0

+Pgκθ +
P

2
H ′

1CC
′H1 + Pη

[
ġ − κg + γβ +

1

2
g2σ̃′σ̃

]}
dt

+yγPeZ (2x′H2 +H ′
1)CdW̃ + yγPeZ

√
η(γvσ′ + gσ̃′)dW.

By integrating both sides of the above equation from 0
to T , and then taking the expectation, we obtain the
following for any admissible control (note that due to the
integrability requirements (17) and (18) the expectation of
stochastic integrals are zero):

−1

γ
E[yγ(T )] = yγ0P0e

Z0 + E

[ ∫ T

0

yγeZ
{
Pγη

[
ϕν

−ξ[ν − 1]+ +
1

2
(γ − 1)ν2σ′σ + νσ′σ̃g

]
+ x′

(
PḢ2

+PH2A+ PA′H2 + 2PH2CC
′H2 + γPD2)x+ x′

(
PḢ1

+2PH2B + PA′H1 + 2PH2CC
′H1 + γPD1) + PH ′

1B

+Ṗ + P tr (C ′H2C) + PγD0 + Pgκθ +
P

2
H ′

1CC
′H1

+Pη

[
ġ − κg + γβ +

1

2
g2σ̃′σ̃

]}
dt.

An integral representation of J for all admissible controls
is thus:

J(u(·)) = yγ0P0e
Z0 + E

[ ∫ T

0

yγeZ
{
Pγη

[
ϕν − ξ[ν − 1]+

+
1

2
(γ − 1)ν2σ′σ + νσ′σ̃g

]
+ Pη

[
ġ − κg + γβ

+
1

2
g2σ̃′σ̃

]}
dt. (19)

The terms of the integrand in the above representation of
J that depend on ν are defined as:

f(ν) :=
ρ

2
ν2 − ψν + ξ [ν − 1]

+
.

By a piece-wise completion of squares, we write f(ν) as a
piece-wise quadratic function:
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f(ν) =

[
1

2
ρ

(
ν − ψ

ρ

)2

− ψ2

2ρ

]
I(ν(t)≤1)

+

[
ρ

2

(
ν − ψ − ξ

ρ

)2

− (ψ − ξ)2

2ρ
− ξ

]
I(ν(t)>1),

where I(·) is the indicator function. This piece-wise
quadratic representation of f(ν) permits us to derive the
following:

min
ν
f(ν) = N,

and the corresponding minimizer is ν∗ = M . We can now
obtain the following lower bound for the cost functional
(19) for any admissible control:

J(u(·)) = yγ0P0e
Z0 + E

{∫ T

0

eZyγη

[
− Pγ(f(ν)−N)

+ P (ġ − κg + β +
1

2
g2σ̃′σ̃′ − γN)

]
dt

}
≥ yγ0P (0)e

Z(0).

This lower bound is achieved if and only if ν∗(t) = ν(t) =
M(t) a.e. t ∈ [0, T ] a.s., or equivalently, if and only
u∗(t) = M(t)y(t) a.e. t ∈ [0, T ] a.s.. The corresponding
optimal cost functional is thus J(u∗(·)) = yγ0P (0)e

Z(0).
To show that u∗(·) ∈ A, we first introduce the following
processes (for t ∈ [0, T ]):

Π(t) := r(t) + a(t)M(t)− b(t)[M(t)− 1]+,

= x′(t)D2(t)x(t) + x′(t)D1(t) +D0(t) + β(t)η(t)

+ ϕ(t)η(t)M(t)− ξ(t)η(t)[M(t)− 1]+,

Σ(t) :=M(t)σ(t)
√
η(t),

Y (t) := y0

{
exp

[∫ t

0

(Π(t)− Σ′(t)Σ(t)/2) ds

+

∫ t

0

Σ′(t)dW (t)

]}
.

As u∗ is of linear state-feedback form and M(·) ∈
L∞(0, T ;R), it follows (in the same way as in the proof
of Lemma 3.1 of Alasmi and Gashi (2023)) that under u∗

the wealth equation (7) has a unique strong solution given
explicitly as y(t) = Y (t), which in particular means that
y(t) > 0 a.s. for all t ∈ [0, T ]. Moreover, the requirements
(17) and (18) hold if the integrands appearing there are
square-integrable processes. It is thus sufficient to show
that:

E
[
e2Zy2γx′x

]
<∞, t ∈ [0, T ], (20)

E
[
e2Zy2γη

]
<∞, t ∈ [0, T ]. (21)

An upper bound on the left-hand side of (20) is:

E
[
e2Zy2γx′x

]
≤ E

[
1

2
e4Zy4γ +

1

2
(x′x)

2
]

≤ 1

8
E

[
e16(x

′H2x+x′H1)
]
+
1

8
E
[
e16gη

]

+
1

4
E
[
y8γ

]
+
1

2
E

[
(x′x)

2
]
. (22)

By Lemma 2.2, and Assumption 3 (ii) and (iii), we con-
clude that the second term E

[
e16gη

]
of (22) is finite. The

fourth term E

[
(x′x)

2
]
of (22) is finite since all moments of

x are finite (see, for example, Theorem 1.6.16 of Yong and

Zhou (1999)). The first term E

[
e16(x

′H2x+x′H1)
]
of (22)

is also finite. Indeed, due to Assumption 3 (i), we have
x(t) ∼ N(µx(t),Σx(t)), and since Σ−1

x (t)−32H2(t) > 0, it
follows that the first term of (22) finite. To show that the
third term of (22) is finite, we compute E

[
y8γ

]
as:

E
[
y8γ

]
= y8γ0 E

{
exp

[
8γ

∫ t

0

(Π− Σ′Σ/2) ds

+8γ

∫ t

0

Σ′dW

]}

≤ y8γ0

{
E

[
exp

(
8γp1

∫ t

0

(x′D2x+ x′D1 +D0)ds

)]} 1

p1

×
{
E

[
exp

(
8γp2

∫ t

0

η(β + ϕM − ξ[M − 1]+

−M2σ′σ/2)ds+ 8γP2

∫ t

0

Mσ′√ηdW
)]} 1

p2

≤ y8γ0

{
E

[
exp

(
8γp1

∫ t

0

(x′D2x+ x′D1 +D0)ds

)]} 1

p1

×
{
E

[
exp

(
8γp2

∫ t

0

ηαds− 1

q1

∫ t

0

(−8q1p2γMσ′√η)dW

− 1

2q1

∫ t

0

q21(8γP2M
√
η)2σ′σds+

1

2q1

∫ t

0

q21(8γP2M
√
η)2

×σ′σds

)]} 1

p2

≤ y8γ0

{
E

[
exp

(
8γp1

∫ t

0

(x′D2x+ x′D1 +D0)ds

)]} 1

p1

×
{
E

[
exp

(
8γp2q2

∫ t

0

ηαds+ 32q1q2p
2
2γ

2

∫ t

0

Mησ′σds

)] 1

q2

×
[
E

(
exp

{
− 1

2

∫ t

0

q21(−8p2γ

×M√
η)2σ′σds

−q1
∫ t

0

(−8p1γMσ′√η)dW
})] 1

q1

)]} 1

p2

≤ y8γ0

{
E

[
exp

(
8γp1

∫ t

0

Fds

)]} 1

p1

×
{
E

[
exp

(∫ t

0

ηhds

)]} 1

p2q1

≤ y8γ0

{
E

[
exp

(
8γp1

∫ t

0

Fds

)]} 1

p1

×
{
E

[
exp

(
G

∫ t

0

ηds

)]} 1

p2q1

.

The first term in last inequality above is finite due to
Assumption 3 (v), whereas the second term is finite due to
Assumption 3 (ii), Assumption 3 (iv), and Lemma 2.2. We
conclude that (23) is finite, and thus complete the proof
that condition (20) holds. Note that the only difference
between conditions (20) and (21) is that (20) contains the
term x′x whereas (21) the term η. Since all moments of
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η are finite, we can show that condition (21) holds in the
same way as we did in our proof that (20) holds. ✷

3. CONCLUSIONS

We have solved the optimal investment problem with
power utility from terminal wealth in a market with
different interest rates for borrowing and lending, the
volatility follows the Heston model, and the interest rate
is a certain generalised version of the quadratic-affine
model. This is an optimal stochastic control problem with
nonlinear system dynamics and unbounded coefficients.
An explicit closed-form solution is obtained as a linear
wealth-feedback control law the gain of which can be in
one of possibly three regimes (see the definition of M
and u∗). The consideration of this problem in the more
general setting of multi-asset markets and investors that
can consume, would be more challenging and is currently
open.
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