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190084-7@iberoleon.edu.mx,noe.aldana@iberoleon.mx
∗∗ Consejo Nacional de Humanidades, Ciencias y Tecnoloǵıas, C.P.
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Abstract: The present work addressed the problem of autonomous navigation of wheeled
mobile robots, specifically the Differential Driving Robot (DDR). The DDR kinematic model
is nonlinear, which requires adequate automatic control strategies for good performance in
autonomous navigation. The variables of the DDR mathematical model are the robot’s position
expressed in a global Cartesian reference frame, its orientation, its linear speed, and its angular
speed. It was proposed that the navigation problem of a DDR be solved by following a
reference trajectory using model-based nonlinear predictive control. In addition, a potential
field algorithm was added for obstacle avoidance. Experiments were carried out in a dynamic
simulator. Several simulations provided convincing evidence of the feasibility of implementing
a real robot using the proposed approach.

Keywords: Autonomous Navigation, Differential Drive Robot, Nonlinear Model Predictive
Control, Obstacle Avoidance.

1. INTRODUCTION

Nowadays, technology has focused on developing in-
telligent systems with different levels of autonomy to
perform several tasks. For instance, there are multiple
applications for robotics in industry and research areas,
such as robotic arms in car manufacturing or performing
highly accurate surgeries in medicine; mobile robots that
transport products or people in indoor and outdoor
environments, service robots for cleaning tasks, search
and rescue robots in catastrophic circumstances and
others.

In mobile robotics, executing a navigation policy is
necessary so that the robot can travel between two
different locations; this implies avoiding obstacles during
the trajectory’s execution. Multiple strategies for robotic
navigation are reported in the literature; however, some
of these approaches do not guarantee that the robot
can solve these tasks by applying optimal velocities and
generate discontinuities in the velocities of the robot,

⋆ Supported by Universidad Iberoamericana León.

causing abrupt changes in their movements, inducing
damage to the engines. Such as Sliding Modes Control
(SMC), which is robust to external perturbations in the
velocities; nevertheless, it has an oscillatory effect on the
signal of the velocity of the robot, and it can generate
physical damage to the engine of the robot over a long
time of use (Jun and Lin, 2020; Zeng and Di, 2022; Li
et al., 2022).

Although there are SMC schemes that can reduce the
effect of chattering, the system’s responses can be abrupt
yet, compromising the robustness that characterizes these
controllers. While the NMPC approach is more oriented
toward local optimization, SMC tends to be more reac-
tive, especially in applications with critical constraints.
Additionally, the NMPC is a more flexible scheme capable
of scaling to complex and nonlinear systems, integrating
multiple objectives and constraints (Shtessel et al., 2023;
Thi et al., 2023; Chawengkrittayanont et al., 2021). This
motivates the research of autonomous navigation strate-
gies and the development of more robust methodologies
for collision avoidance in human environments. Therefore,
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implementing a control scheme that allows a soft variation
of the robot’s velocities is necessary. This way, physical
damage to the robot and its engines or the environment
resulting from its inertia for movement during obstacle
evasion can be avoided. That is why it is crucial to predict
the movement in the presence of an obstacle by controlling
the robot’s velocities. For these reasons, it is essential
to use a Predictive Control Model (MPC) that, due to
its predictive nature, allows the robot’s speeds to be
smoothed when detecting the obstacle to perform evasion
subsequently. Additionally, it will enable the robot to
avoid the obstacle while still moving toward the target.
The MPC predicts the state over time, allowing the error
in odometry measurements to be averaged, improving the
precision of the robot’s movement.

This manuscript proposes a nonlinear model predictive
controller approach for autonomous navigation and ob-
stacle avoidance of a differential drive robot (DDR). For
that aim, we use the DDR’s kinematics model. We use an
artificial potential field algorithm for obstacle avoidance
to generate virtual repulsive forces between the DDR
and the obstacle. Our approach minimizes pose errors,
optimizes control inputs, and achieves autonomous robot
navigation.

The paper is organized as follows. Section 2 introduces
the kinematic model of DDR; the obstacle avoidance
strategy and the main problem are also presented. Section
3 contains the paper’s main results. Here, we present
a nonlinear model predictive controller in discrete time.
This section is crucial to the paper, as it provides the
methodology employed to develop the controller. Then,
we present the simulation results in Section 4. Finally,
Section 5 gives some conclusions and suggestions for
future research.

1.1 Related work

Extensive literature exists related to the problem of robot
navigation. Some navigation methods focused on the issue
of trajectory planning to avoid collisions with obstacles
(Khatib, 1985; Borenstein and Koren, 1989; Minguez and
Montano, 2004). Other schemes work particularly with
nonholonomic robots, robots with movement restrictions,
e.g., a car that can not move instantly in the perpendic-
ular direction that its wheels are pointing (Bicchi et al.,
1995; Hayet et al., 2014). In some other methods, a set of
appropriate movement commands is determined to select
a command based on a navigation strategy; for example,
in (Martinez et al., 2019) presents an approach where
a Differential Driving Robot (DDR), with a disc form,
can explore unknown and connected environments with a
scheme of hybrid navigation control that combines various
feedback-based controllers with a states machine; besides,
an algorithm called Gap Navigation Tree (GNT) is used
to define if the environment has been explored during the
navigation. The GNT is based on detecting discontinuities
generated by corners in the environment.

Furthermore, in terms of optimal control, we have those
that use MBP-based approaches. In (Bouzoualegh et al.,
2018) presents a work to control a DDR using the dynamic

Fig. 1. Kinematic configuration of a differential drive
robot. The world frame is denoted by FW =
{xW , yW }, and the robot frame FR = {xR, yR}
is fixed to the body robot.

model of the robot. The model of the robot is linearized
using an input-output technique, and based on this model,
the necessary controls are obtained using MPC. They
show the results of the work through simulations. The
authors of (Lages and Vasconcelos Alves, 2006) proposed
an optimal control for a DDR. The Taylor series linearized
the mathematical model of the robot to make it possible
to use predictive control based on the lineal model,
solving the trajectory tracking problem of a DDR and
achieving real-time implementation. In (Mehrez et al.,
2015), nonlinear-MPC (NMPC) is used to compare two
forms of restrictions of the optimization problem: equality
and inequality constraints for trajectory tracking of a
DDR. In (Hedjar, 2022) shows an NMPC for trajectory
tracking of a mobile robot with wheels. They used an
Euler method to transform the nonlinear optimization
problem into a quadratic one. The results were presented
in computer simulations and implemented in a real robot.
The work presented in (Sani et al., 2021) shows an
algorithm based in NMPC for autonomous navigation of
a DDR where static and dynamic obstacles appear along
its trajectory.

2. SYSTEM DESCRIPTION AND PROBLEM
STATEMENT

This paper addresses the control problem of a DDR with
a robust reactive static obstacle avoidance system. In
this section, the kinematic, obstacle avoidance, and the
problem formulation are presented.

2.1 Kinematic model of differential drive robots

The kinematic model of a DDR (see Fig. 1) governs how
wheel speeds map to robot velocities, such as:

Σ :







ẋ = v cos θ,

ẏ = v sin θ,

θ̇ = ω,

(1)

where the state variable x = [x, y, θ]⊺ denotes the
position and the heading angle of the robot in the world
frame FW . The control variable u = [v, ω]⊺ stands for
the linear velocity and the angular velocity.
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2.2 Obstacle avoidance using Artificial potential field
algorithm

A LIDAR (light detection and ranging) sensor detects
an obstacle’s position and size. The LIDAR detects the
coordinates of the center of the obstacle (xobs, yobs) in
the frame FR, and the diameter of the obstacle dobs.

The artificial potential fields approach was applied in the
obstacle avoidance task. It consists of generating virtual
forces from the center of the obstacle position to the
outside, called repulsive forces. In this case, a function in
which the repulsive force will increase exponentially as the
distance between the object and the obstacle decreases
was chosen. The next repulsive potential force was added:

F =
Fmax

1 + eα(β∥ pW
rob

− pW
obs∥−γ)

, (2)

where Fmax is a saturation on the force, α, β, and γ
are gains that modify the behavior of the force curve.
pW
rob − pW

obs is the shortest vector from the center of
the obstacle to the center of the robot.

2.3 Problem formulation

Fig. 2. This figure graphically defines an autonomous
navigation problem. The robot goes from an initial
pose x = [x, y]⊺ to a target pose xd = [xd, yd]

⊺

following a desired trajectory.

Consider the system described by Fig.2 with the model
Σ in (1). The available signals are the robot position
[x, y]

⊺
, and the heading angle θ. The problem involves

finding a control law to bring state x to a user-predefined
trajectory xd.

3. CONTROL

The main task of the NMPC is to find a control variable
u to stabilize the system Σ in (1). One must find a control
u to achieve x → xd.

The NMPC can control a system that is typically a
discrete-time model. At the same time that it controls the
system, it satisfies a set of constraints on the states and
controls. NMPC obtains a sequence of optimal controls
by solving an optimization problem that minimizes an
objective function. The first value of the controls obtained
by solving the numerical optimization problem is applied
to the system. Furthermore, an optimal trajectory of the

controlled system can be predicted. The trajectory and
the optimal controls are calculated numerically, consider-
ing the constraints given in a time window. The process
is repeated from the system’s current state to obtain a
new sequence of controls and a new optimal trajectory.
The system kinematics (1) have been discretized with
the forward Euler method with sampling period Ts = 0.1
seconds.

Thus, the discrete NMPC can be formulated by solving
the following constrained nonlinear optimization problem:

min
x

J(x),

subject to
g1(x) = c1,
g2(x) ≥ 0,

(3)

where J(x) is the cost function, g1(x) = c1 is a hard
equality constraint, and g2(x) ≥ 0 is an inequality
constraint. In this case, NMPC uses a model of the system
being controlled, given by (1), to predict and optimize
the control signals in some prediction window called the
horizon. At each sampling time k, involves minimizing
the cost function concerning the control sequence u (k) =
[u (k) , u (k + 1) , · · · , u (k + nu − 1)]

⊺
, where nu ≥ 1 is

the control horizon.

The cost function to minimize with respect to u (k) is:

J =

nu−1
∑

i=0

∥u ([k + 1] + i)∥
2
R

+

ny
∑

i=1

∥x (k + i)− xd (k + i)∥
2
Q (4)

+

ny
∑

i=1

Fmax

1 + eα(β∥ pW
rob

(k+i)− pW
obs∥−γ)

, (5)

where ny ≥ 1 is the prediction horizon; x (k + i) are
the predicted states; u ([k + 1] + i) are the predictive
controls; pW

rob (k + i) are the predicted robot´s positions
in the frame FW ; and xd (k + i) denotes the reference

state. The term ∥·∥
2
W denotes the square norm of a vector

weighted by a matrix W . In (4) R ∈ R
2×2, and Q ∈ R

3×3

are diagonal matrices. Notice that (5) is only used when
the LIDAR detects an obstacle. The cost function (4) is
subject to the hard equality constraints represented by
the discretized system kinematics (1), i.e.,

x (k + 1) = f (x (k) ,u (k)) , (6)

where x (k) = [x (k) , y (k) , θ (k)]
⊺
. The inequality con-

straints correspond to the min and max controls

umin ≤ u (k) ≤ umax. (7)

The NMPC finds the optimal sequence of controllers u (k)
by solving the optimization problem:

min
u(k)

J
(

u (k) ,x (k) , pW
obs, ny, nu

)

, (8)

subject to:
{

x (k + 1) = f (x (k) ,u (k)) ,

umin ≤ u (k) ≤ umax.

which leads to the optimal sequence of control inputs
u (k). Typically, the system only applies the first ele-
ment u (k) from the control sequence. The minimization
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Table 1. Simulation parameters.

Parameter Description Values

Ts Sampling time 0.1
R Controls weight matrix diag(0.002, 0.002)
Q States weight matrix diag(15.0, 15.0, 0.1)
ny Prediction horizon 15
nu Control horizon 15
Fmax Force of the saturation 20
α Gain of the force curve 100
β Gain of the force curve 0.5
γ Gain of the force curve 1

problem is then reinitialized in the subsequent iteration,
leading to the computation of a new sequence of optimal
control inputs. This loop continues until the desired
objective is accomplished.

4. SIMULATION RESULTS

The results presented in this section are divided into two
parts using two obstacles. First, simulation results are
presented only using Python. The second part shows re-
sults obtained with two obstacles using ROS in its Python
version and Gazebo simulator. In both experiments, we
have also used CasADi (Andersson et al., 2019) library
as a solver for the optimization problem. This is an open-
source tool for nonlinear optimization. The experiments
run on an Intel 2.70 GHz i5 Core processor. We have
considered the physical parameters of a Tiago++ (Pal
Robotics, Pujades, Barcelona, Spain). The initial pose
of the Robot in the motion plane is always taken as
q0 = [0m, 0m, 0 deg]⊺, while the final pose is denoted
by qd. Table 1 presents the manually tuned parameters
selected for the controller simulation.

We implemented the method on a Jetbot platform
equipped with a Jetson Nano board. However, the
Jetbot’s odometry system showed limitations in
accurately capturing the robot’s pose data. Therefore, we
plan to implement the method using a motion capture
(MOCAP) system to improve pose estimation accuracy.
Due to this, we only present the results in simulations on
Python and ROS.

Fig. 3 shows an experiment to reach the desired pose
qd = [4m, 4m, 0.78525rad]⊺ on the top-left of the figure
obstacles, altogether with the desired trajectory and the
real trajectory, are shown in the x, y plane. umin =
[−0.75, −0.981747]⊺ and umax = [0.75, 0.981747]⊺. The
diameter of the obstacles is 0.38m, and their position
is at (1.5m, 1.4m) and (3.0m, 2.5m). The desired pose
is reached with good final accuracy in position and
orientation around 9 seconds. As can be seen, a smooth
trajectory for the pose is obtained despite the obstacle
avoidance. In the remaining sub-figures, the evolution
of the x-coordinate, y-coordinate, and yaw orientation
converges to the target. Fig. 4 presents the evolution of
the robot’s velocities and pose errors (right). On the left,
we can observe the variations in angular velocity as the
robot avoids the obstacles. The linear velocity remains
constant until the robot reaches the target.

In Fig. 5, the results of an experiment to reach
the desired pose qd = [3m, 3m, 0.78525rad]⊺.

umin = [−0.6, −0.981747]⊺ and umax = [0.6, 0.981747]⊺.
The diameter of the obstacles is 0.42m, and their position
are at (1.5m, 1.5m) and (2.5m, 0.5m). The trajectory of
the robot is depicted at the top of the figure. As can be
seen, the goal was reached with good accuracy, and the
robot navigated between the two obstacles. The evolution
of the pose errors converges to zero around 6.5seconds;
see left-bottom of the figure. The controls can be seen
in the right-bottom of the figure, and it can observe the
abrupt variation of the angular velocity when the robot
passes through the obstacles.

5. CONCLUSION

This work presented the autonomous navigation of a
differential drive robot and obstacle avoidance employing
only the LIDAR sensor mounted in the robot. Further-
more, designing a robust obstacle avoidance control for
the robot using the nonlinear model predictive control,
particularly an artificial potential field algorithm, was
successfully implemented. The simulation results prove
that the proposed nonlinear model predictive control
accurately tracks the desired pose at low convergence
rates.

Future work includes implementing the navigation algo-
rithm in a real robot and developing a visual model pre-
dictive control that does not require the robot’s odometry
and uses only a single monocular camera mounted on the
robot without compromising the accuracy and time of the
model.
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