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Abstract: We consider an optimal control problem for linear stochastic systems with multiple
state delays. By formulating a general quadratic-linear cost functional, we provide an explicit
solution involving coupled Riccati and partial differential equations. The derived optimal control
law is in an affine feedback form with respect to the current state, the delayed state, and the
integral of past state values. Additionally, we demonstrate the application of this solution to an
optimal investment problem with logarithmic utility in market with interest rate influenced by

a multi-delayed factor process.
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1. INTRODUCTION AND PROBLEM
FORMULATION

Let (2, F, (F(t), t > 0),P) be a complete filtered probabil-
ity space on which a one-dimensional standard Brownian
motion (W(t), t > 0) is defined. We assume that F(t) is
the augmentation of o{W(s): 0 < s <t} by all the P-null
sets of F. Consider the following linear stochastic control
system with a single state-delay (for t € [0,T1]):
dx(t) = [A"z(t) + ATz (t — h) + B*u(t)]dt
{ +[A"2(t) + Ajz(t — h) +B*U(t)de(t)7 (1)
z(s) =n(s), s€[—h,0],
Here 0 < h € R is the system delay; the constant
coefficients A*, A, A*, A7 € R"*" and B*,B* € R"*™
are given; the n-dimensional initial value 7 is assumed
to be a continuous function on the interval [—h,0]; and
the adapted m-dimensional control process u is such that
equation (1) has a unique strong solution for the n-
dimensional system state  on the interval [0, T] (see Mao
(2007) for some sufficient conditions that ensure this). We
associate with (1) the fTollowing quadratic cost functional:

I(u(+)) ::E{ /0 [ ()Q*x(t) +u' () R u(t)]dt

is given.

+x’(T)H*9c’(T)}7 (2)

for constant symmetric coefficients Q*, H* € R™*" and
R* € R™*™_ In Liang et al. (2018), the optimal control
problem min I(")
{ u(-)EA* (3)
st (1)

for some suitable admissible se of controls A*, was con-
sidered and explicit closed-form solution obtained. The

solution turns out to be of feedback form in the system
state, the delayed state, and the integral of past system
state values. The coefficients of such a control law are
determined by the solution to certain system of coupled
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Riccati and partial differential equations, the solvability
of which is assumed (see Liang et al. (2018) for details).
This is an interesting result as not only it gives the solu-
tion in an explicit feedback closed-form, which is rare in
optimal control, but it does so for the important class of
systems with state-delay, which, as is well-known, appear
in many applications and have been studied extensively
for decades. The solution to (3) in an open-loop form can
be obtained from the result of Chen and Zhang (2023).
For some other related results, see, for example, Chen and
Wu (2010), Huang et al. (2012), Kong and Chen (2016), Li
et al. (2018), Li et al. (2020), Wu and Shu (2017).

In this paper, we generalise the problem (3) and find its
solution in an explicit feedback closed-form. This general-
isation involves the inclusion of additive noise, the system
and cost coefficients that can be time-varying, the criterion
of general quadratic-linear form, and a two-period state
delay is also included. More precisely, let L>°(0,T; E) de-
note the set of E-valued uniformly bounded functions, and
L2f(0, T; E) the set of E-valued square-integrable adapted
processes (with F being an Euclidean space). Consider the
following linear stochastic control system with up to two-
period state-delay (for ¢ GQ[O,T]):

dz(t) = [A(t)x(t) + Y Ai(t)z (t — ih) + B(t)u(t)
i=1 2

+C(t)} dt + [A(t)x(t) + Y Ai(t)z (t — ih) (4)

+B(t)u(t) + C(t) | dW (t),

z(s) =¢(s), s€[—2h,0],
Here the n-dimensional initial value ¢ is assumed to be
a continuous function on the interval [—2h,0], whereas
for the other coefficients we assume that: A(-), 4;(-), A(-),
Ai(-) € L*=(0, T;R™™); B(:), B(-) € L*(0,T;R™™);
C(), C(-) € L*(0,T;R™), where ¢ = 1,2. It is clear

is given.
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that (4), as compared to (1), is more general since the
coefficients can be time-varying, additive noise is included,
i.e. C is not necessarily zero, a disturbance C' is permitted
in the system, and there is an up to two-period state-delay.
Further, we consider the followmg cost functlonal

J(u(t)):—IE{/OT{ —l—ZZx (t — ih)

i=1 j=1
2

X Quy (1) (t = Gh) + ' (OR()u(t) + /(1) S Lui(1)
9 i=1

z(t—ih)+ Y @ (t—ih) Lai(t)a(t) + 2/ () Z(2)
=1 2
ZF, x(t — ih) +Zb’

+u' () F(t)z(t)
x (t —ih) + S(t)’u(t)} dt + 2" (T)Hz(T }
)
)
)

Here Q). Qu() € L™(0,T:8%), Li(), Ly() €
LOO(OvT;Rnxn)v R() € LOO(OvT;Sm)v F()7 Fl( €
L=(0,T;R™ ™), Z(), bi() € L*(0,T;RY), S() €
L=(0,T:R™), H € S", f € R, Ly(t) = Lh,(t) for

t € [0, 7], where S™ denotes the set of real-valued symmet-
ric n x n matrices. The cost functional (5) is considerably
more general than (1) since: the coefficients can be time-
varying; it contains quadratic terms in the delayed state
z(t — ih), i = 1, 2; various cross products between the
state, delayed state, and control appear; and linear terms
in the state and control are included. Thus, the cost func-
tional (5) represents a general quadratic-linear criterion.
The optimal regulator problem to be considered is:

min J(u(-

{u(_)eA (u()) o
s.t. (4),

where A := L%(0,7;R™) (which in particular ensures
the existence of a unique strong solution of (4), see. for
example, Mao (2007)). The motivation for considering this
problem is two fold. Firstly, it is an important optimal
control problem that is more general than the existing
ones, and for which the explicit closed-form solution is
derived. This solution turns out to be of an affine feedback
form with respect to the system state, the delayed state,
and the integral of past system state values. Our approach
to finding the solution is a certain generalisation of the
approach of Liang et al. (2018), and is given in §2 below.
Secondly, examples of problem (6) appear in optimal in-
vestment. Indeed, the inclusion of additive noise permits
for consideration of certain well-known interest rate mod-
els, such as the Hull- White model (see, for example, Shreve
(2004), Musiela and Rutkowski (2006)), and the linear cost
appears in an application given in §3. In what follows,
we omit the argument ¢ whenever convenient for notation
simplicity.

2. SOLUTION TO THE OPTIMAL REGULATOR
PROBLEM

In order to state the solution to optimal regulator problem
(6), we introduce two sets of linear and Riccati ordinary
differential equations that are coupled with a system of
partial differential equations. Firstly, on the intervals t €
[T — 2h,T], 0 € [t,T], s€ [t,T),i=1, 2, j =1, 2
consider the equations:
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R:=R+BPB>0 ()
P(T) = H,
¢ +qA+2C'P+2C'PA-2G,R™'G1 + Z =0, )
(1) =1/,

{P+PA+AP+Q G'R7'G,+ A/PA =0,

_— _
— GBR Gy =0, (9)

N, (t,0 _
{ 8157&) + 2C" Ny (t,0) — 2GL R G3;(t,0) = 0,
b; + qu + QA:PC — QGgiR71G0 - Nli(t, t) =0,
(10)
{ w + 24 Nai(t,0) — 2GR Gaa(t,0) = 0,
2ALP 4+ 2ALPA — 2N}, (t,t) — 2G5, R™*Gy + 2L}, = 0,
(11)
8N37;j(t, 9) -0
{ o (12)
Qij + N3ij (t,t) — G,QZ-R7 Goj; + A;PAJ' =0,

aN ij t7 70 =_
% - gi(t’ S)R 1G3j(t70) =0,
AjNo;(t,0)—Ny;(t,t,0)—Go R~ Gs;(t,0) = 0,
ANy, (t,0) =Ny (t,0,t) — Gy (t,0) R G = 0,
(13)
where
Gy :=0.5B'q+B'PC+055, G,:=B'P+B PA+05F,
Go; := B/PAi + 0.5F;, Ggi(t, 0) := Bl]\/vgi(t7 9)
Secondly, on the intervals ¢ € [0,T — 2h], 8 € [t,t + h],
s€eft,t+h],i=1, 2, j =1, 2, consider the equations:

P+Q—G\R "Gy + 2Ny (t,t +h)
+A/PA+1747:FPA+N311(tt+h)—O (14)
R:=R+B'PB>0,
P(T — 2h) = P(T — 2h),
{ k+3C+C'PC—GyR Gy = (15)
k(T — 2h) = k(T — 2h),

7 +7A+2C'P—-2G,R G, + Nj, (t,t +h)+Z =0,
q(T —2h) = q(T' — 2h),
(16)
N1, - - ~
ONy(8,9) _ 2C' NS (t,0) — 2GR G'3:(t,0) = 0,
A5 + by — Ni(t, 1) — 2G5 R Go = 0,
N1i(T —2h,z) = N1i(T — 2h,z) for ze€ [T —2h,T),
_ (17)
ONo;(t, 0 - = o1~
%+2A’Ngi(t,9)— 2GR Gi(t,0)=0,
2ALPA+2A P — 2Ny, (t,t) — 2G5, R Gy + 2Lo; = 0,
NQZ( — 2h, z) Noi(T — 2h, 2) for =z € [T —2h,T],
B (18)
8ng( 0) —0,
Qij — Naij(t,t) — G R 'Goj + A{PA; = 0,
Naa(t,t +h) +N321(t t+h)=0,
Niyo(t,t +h) + Niy(t, t + h) =0,
N3oa(t,t +h) =0,
Ngm(T*Qh,Z) :Ngw(T*Qh,Z) for ze€ [T*2h,T],
(19)
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8NL t,S,g = =
Mng](t O)R~ Gy A(t,

Njij(t,t,0

s) =0,
E 1G3](t 9)*0
(6,0 R Gy =0,

_ ot
AiN; (t,0) - ) -
N (t,0)A; — Ny, (t,0,1)
Nuii(t,t + h,0) +N411(t
Naoo(t,t+ h,0) + Niool(t,
Nyai (t,t+ h,0) + Nipo(t,
Ny;; (T —2h, 6 z) = (T—-
—2h, T,

H:z:‘cz:,cz: |
vII Il
o

Ny vl € [T —2h,T]

and z € [T
(20)

where

Gy :=0.5B'g+B'PC+055, G,:=BP+B PA+05F,

GQi = B/PAL + 0.5F;, GBi(t, 0) := B/Ngi(t, 0).

The system of coupled equations (7)-(20) is more general

than the ones that appear in Liang et al. (2018). We raise

their solvability as our standing assumption below, and

give an example in §3 to illustrate the reasonableness of

this assumption.

Assumption 1. The system of coupled equations (7)-(20)

has a unique solution.

Theorem 1. There exists a unique solution u* to the

optimal regulator problem (6). If T — 2h < 0, then the

solution is given by: )
u* (t) =-R! Go + Glx(t) + Z GQ,‘Z‘(LL — Zh):|
i=1

T 2
*1/ > Gsilt, 0)x(0 — ih)db,
toi=1
If T —2h > 0, then the solutz’onzis given by:
u*(t) = —E71 |i‘G0 + Gll'(t) + Z Ggiiﬂ(t — Zh):|

€ [0,T].

2 g
_5712/ Glailt, 0)2(0 — ih)do, t € [0, T — 2A],
t

u (t)=—-R"

2
GO + GlSC(t) —+ Z Ggix(t — Zh):|

T 2
ffrl/ > Gailt, 0)x(0 — ih)db,
toi=1

Proof. We only consider the case of T — 2h > 0, as the
case of T—2h < 0 is very similar and simpler. Thus, let T'—
2h > 0. We split (5) in two parts as J(u(-)) = E[J1 (u(-))]+

E[J2(u(-))] where:
T—2 2 2
:]E{/O h[x (t)Q(t)ﬂc(t)—F;j;m (t — ih)

X Qi (1) (t = jh) + ' (R(t)u(t) + (1) Yy Lui(t)
i=1
x (t —ih) +Zx/ (t —ih) Lo (t)z(t) + 2 () Z(t)
=1 2
(0> Filt

+u'(t)F x(t)
=1

+Zb’ t—zh+s't)()}}

x (t —ih)
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€ [T —2n,T).

T 2 2
Jo(u(-)) ::E{/T_ZIJm'(t)Q(t)x(t) + Y 4l (t—ih)

i=1 j=1
2

xQij(t)x (t — jh) +u' () R(t)u(t) + 2'(t) Z Ly (t)
xz (t —ih) + Z @' (t —ih) Lo; () z(t) + 2 (1) Z(t)

+u () F (1) (t) ZF x(t — ih) +Zb’
x (t —ih) + S (t)u(t )} dt + z'(T)Hz(T)
+ f’x(T)’]—'(T - 2h)}.

For t € [T — 2h,T], we define the process va(t, x(t)) as:

/ 2; N/, (,0)

— ih)df

va(t,z(t)) ==k + ¢'x(t) +
xz (0 —ih)df + ' (t /ZNgltﬁ
/Zx (0—ih) N3, (t,0)z d9+/zzgv (0—ih)

T 27,—%]1

/ZZZ‘ (0 —jh)

=1 j=1

XNgij(t,e) (9 ]h d@ +
X Nu;ij(t, s, 0)x(s —zh)d@ds
By It6’s formula, the differential of va(t, :r(t)) is:

dvy(t, 2(t)) = kdt + ¢ x(t)dt + ¢’ [Ax +ZA

xx(t —ih) + Bu(t) + C} dt+ ¢ [Ax(t) + Z A;

xa (t — ih) + Bu(t) + (7] AW + 2/ (t)Px(t)dt + {A:c(t)
+> Agx (t—ih) + Bu(t) + C} /Pm(t)dt + [[lm(t)

—
3

+> At — ih) + Buf(t) + é} /P:r(t)dW +a'(t)P

x {Ax(t) + 3 Ag (t —ih) + Bu(t) + C} dt + 2/ (t)P

—
2

X {flx(t) + Z Az (t —ih) + Bu(t) + C} aw +

+ Z A;x (t — ih) + Bu(t) + (7} /P LAm(t) +

2

xz (0 — m) dodt — > " N{,(t,t)a (t —ih) dt + 2/ (t)

=1
ZNQltt

/ aNgz ONi(t,0)

z(t— z’h) dt + {Am(t) + Z Azt — ih) + Bu(t)

i=1

+C] / /tT i Noi(t,0)x (0 — ih) dodt + {Ax(t) + i A;

(0 — ih) dodt — 2/ (
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I 2T 2
xm(t—ih)—}—Bu(t)—&-C‘}/ ZN%(t,a)m(a—ih)dedW

/ Zx 0 — ih) azv%(t 0 w(t)dodt — 3o (¢ — ih)

=1

X Ny (t, t)x(t)dt +/ z' (0 —ih) Néi(t,e)de {Ax(t)

+2Axt71h)+3u()+0]dt+/ a' (0 —ih)

i=1

x N, (t, e)de [Ax(t) + Z Az (t —ih) + Bu(t) + é] dw

=1
/ (0 — ih) wx(a—jh)dwt
’L 1] 1 ¢
—sz (t — ih) Naij(t,t)x (t — jh) dt
=1 5=1
T
+/ / ZZx (0 — jh) aN‘*lﬂétse)( — ih)do
= 1] 1
xdsdt—/ ZZw (0 — jh) Ny;;(t,t,0)x (t —ih) df
z 1] 1
xdt—/ sz (t — jh) Nui;(t, 0, t)x(0 — ih)d6dt
=1 j=1

The cost functional Jo(u(-)) can be written as:
T 2 2
Jo(u(-)):=E {/T_%[x’(t)Q(t)x(t) +) N o (t—in)

i=1 j=1
XQuj(t)a (t = Jh) + 1/ (OR@u(t) + 2'(1) Y Lus(®)

xx (t —ih)+ Y a (t—ih) Lai(t)n(t)+a' (£) Z(t) + v (¢)
X F(t)z(t)+u'(t) > Fi(t)

i=1

x (t —ih)

x (t —ih) +Zb’

LS (t)u(t)] dt + 2’ (T)Ha(T) + f'=(T)|F(T - 2h)}. (21)

The terms of (21) that depend explicitly on the control u

[u(t) + )+ é Gosalt — ih)
+ /tT 22; Glai(t, 0)2(0 — ih)d@)} B {u(t) YR
L Cha(t) + 2; Goia(t — ih) + /t : z: Gai(1,0)
<6 ih)de)} - [Go L Chalt) + 22: Gosa(t — ih)

T 2 / r
+/ ZGm(t,G)x(G—ih)dG] R™! {Go-l—Gl:c(t)
+ZG2, (t —ih) + / ZG& (t,0)x fih)da},

R71 (Go + Glm(t

1 <GO
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where the last equality is due to the completion of squares.
The cost functional Jz(u(-)) can now be written as:

Jg(u(-)):v2(T—2h,x(T—2h))+E{ /T L{[u(t)

T—2h

)+ ZGzﬂ(t — ih)
/T ZG& (t,0)x ih)dﬁ)}/ﬁ[u(tﬂé

2h11

+G(t) +ZG22 (t —ih) /ZG&M

(6 — ih)d@)} + [kz +¢C+C'PC— GgR—lao]

+[q’ + ¢ A+2C'P+20'PA - 2G)R ‘*1G1+Z] x(t)

()[P+AP+PA+APA+Q G\ R™'G1]x(t)
2

+ZZ$ t* Zh)[Q” - Ngij(tﬂf) + A;PAJ - Gl27,

i=1 j=1

+R71 (GO —+ Gll'(t

1 (GO

2
X R™'Gojla(t — jh) + Y af (t —ih) [b; + Ajq + 24]

—
¢ 2

xPC — 2G5 R™'Go — Ny;(t, 1) + Y _ ' (t — ih) [2A;P
i=1
— QGéiR_lGl] .I‘(t)

T 2 ) B
+w'(t)/ Z [ZA/N2i(t,0) + 2w — 2G| R™!

+2APA — 2N}, (t,t) + 2L},

-, ot
x Gs;(t,0)] z (6 — ih) df + / > " [2C" Na(t, 0)

ON1;i(t,0)
ot

—l—Zm t—zh/ Z [AINo;(t,0) — Gh R Gs(t,6)

— 2GR G3ilt, 6’)} x (0 —ih) do

— Ny (t,t, 0)] = (

0 — jh) d9+/ sz 0 —ih)

=1 5=1

Ny (t,0,1)]
PN&](t 9)}

x N5 (t,0)A; - G4 R

x(tfjh)d9+/ sz (60 — ih)

1G31(t 6) —

i= lj 1 ot
T
x(G—jh)dH—i—// sz (6—jh) {M‘“Ja(”e)
t =1 j=1

_ng(ty O)R™'G3(t,s)|x (s —ih) deS} dt

= vo(T — 2h,z(T — 2h)) —I—IE{ /T [u(t) +R!

T—2h

<G0+G1x 2027 (t—ih) + / ZG31t9
/
xz(6 — ih)dG) R{ (t)+ R~ <Go + Ghz(t)
2
+ZG2ix(t ih) / ZG3Z (t,6)
i= T—h2 j=1

xx(@—zh)d@) dt‘}'( —2h)}
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For t € [0,T — 2h], we define the process vy (¢, z(t)) as:
’Ul(t x(t)) =k +q'z(t) + 2’ (t) Px(t)

t+h
+Z/ NI, (t,0)x(0 — ih)do + 2/ (t)
xZ/ Noi(t,0)z —md9+§:/
x N, (t,0)x d9+ZZ/

21]1

(6 — jh) d9+22/t+h/

i=1 j=1
% Nuij(t, s,0)x(s — ih)dfds.

By 1t6’s formula, the differential of vy (¢, 2(¢)) is:
2

dvy (t,2(t)) = kdt + {z(t)dt + [Ax(t) + Z A,

0 —ih)

— ’Lh Ngu (t 9)

—jh

x (t —ih) + Bu(t) + C] dt + ¢ {Ax(t) +) A4

xx (t —ih) + Bu(t) + é] AW + 2/ (t) Pz (t)dt + [Ax(t)

+> " Agx (t —ih) + Bu(t) + C} /Px(t)dt + {Ax(t)
i;l ,

+3° A (t — ih) + Bu(t) + C’} Px(t)dW + 2/ (t)P
1=1 )

X {Aw(t) + Z Az (t —th) + Bu(t) + C} dt + ' (t)

=1
2

xP[Ax Z

x (t —ih) + Bu(t) + C_']dW

{ )+ ZA

X {Az(t) + Z Agx (t —ih) + Bu(t) + C‘} dt
[/”Zh ;N{égt 0)

(t —th) +Bu }

+
E

z (0 —ih)d0 + Ny, (t,t +h)

i=1

xa(t — (i — 1)h) — N.,(t, )z (t—ih)}dt—i—{Aw(t)

Z @ (t —ih) + Bu(t } / Noi(t,6)
=l 2

><(6—zh)d6dt+[Am Z  (t —ih) + Bu(t)

] / Noilt, 0) (6 — ih) dOdW + 2/ (¢)

2 t+h ]
s / ONa;(t,0)

_ !/
TR (0 — h)dodt + z'(t)

2
dt—$ Z

i=1Y1
2

XY Ny (t,t+ h)a(t —

i=1

(i—1)h
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t+h N/
x (t —ih) dt+2/ (0 —ih) %(f’e)x(t)dedt
+Z{
X Nb(t,t)x }dt+2/

+ Z Ajx(t —ih) + Bu(t) + C
0)

(i — 1)R)Ny; (t, t + h)x(t) — 2’ (t —ih)

t+h
—ih) N3, (t,0) [Ax(t)

dodt
i=1

+Z/
+Bu(t) +C} d6dW+ZZ { /t o /(0 — ih)

y wm(a — )0 + 2t — (i — 1)h)
Ny (1 4+ Bt — (G — 1)) — (¢ — i) Ny ()

t—gh}dtJrZZ[/Hh/Hh (0 — jh)

i=1 j=1
L ONu;(t,5,0) t+h

or @ (s~ ih)dods + |

t+h
X Nuij (.t + h, 0)z(t — (i — 1)h)d — /

X Nugj (t,t,0)a (t — ih) dO + o' (t — (j — 1)h)
t+h _
N4ij (t,e,t‘i’h)x

0 —ih) N5, (t,

Z z(t —ih)

}
s

' (0 — jh)

(0 —jh)

(6 —ih) do
t+h
—a' (t = jh)
t

Note that vy (T — 2h, x(T — 2h)) = vo(T — 2h, x(T — 2h)).
The terms of E[J (u(-))+v1(T—2h, x(T—2h))] that depend
explicitly on control u can now be2 written as:

{u(t) +R! [Go + Gra(t) + Zj Goix(t — ih)
+ 22: /t P G026 ih)d@} }/R{u(t)
ZGQZ (t —ih)

+ 22: /Hh Giai(t, 0)x(0 — ih)d@} } = {Go +Ga(t)

NMJ‘ (t, 9, t)(L‘ (9 — Zh) d9:| dt.

{Go + Gll'

t+h ’
+ZGQI (t —ih) +Z/ Gai(t, 0)x —ih)d&]
R {G‘o 4 Grat) + Z Gon(t — ih)
2 t+h
+ G3i(t,0)x(6 — ih)do|.
y[ e |
We thus have:
E[J1(u(+)) + 01 (T = 2h, (T — 2h))] = v1(0, z(0))
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AL e

(Go + Gl’L’

G3i(t,0)x(0 — ih)do

g
)]

xg[u(t) (Go + Gya(t)

ZGQZZL (t —ih)

+ 22: /Hh Gsi(t,0)z(0 — ih)dG)} + ' (t) [15 +Q

+§115,£ ~-G\R™

+N311 (t,t +h) ] x(t) + 22: 22: o' (t —ih) Qi

—Nsij(t,t) + AjPA; — : ’1 T 11G2]] x(t — jh)

+ 22: o (t —ih) [QA;P — 2G5 R™'Gy — 2Ny, (t, 1)
i=1

+2L’2l} z(t) + 2'(t) {é + A'g+2PC +2A'PC

Gy + PA+ AP+ 2Ny (t,t +h)

2
—2GYR7'Go+ Z + Ny (.t + h)} +3 4! (t—ih)
i=1

% [b + 2A4LPC + Alq — Nly(t,t) — 2G4 RG]

2 t+h N
+x’(t)z /t |:2A/N2i(t,9) +26N2égf’ %
i=1

2 t+h
—2G R G3i(t, 9)] v (0—ih)do+> / {20'
i=1Y1

aN{i(ta 6)

XNQi(t, 9) + — 2GIE_1G3i(t, 0):|

t+h
0 — ih) d9+22x t—m/ [A;sz(t,e)

i=1 j=1

—GhR™'Gs;(t,0) — Njy;(t,t, 9)]3: (6 — jh)do

2 t+h
+Z/
i=171

xR 'Gaj + Nbi(t, 9)AJ} x(t — jh)do

2
2’ (0 —ih) [Z Ny (8,0,t) — G (t,0)

=1

2 G ON3;(t,0)
+ / 0 —ih) =292 0 (0 — jh) d6
Z;; © (0 —ih) =3 ==x (0 — jh)
thh ptth ON4i;(t,s,0
S [ [ [P
=1 j=1
—Gh;(t,0)R™ "Gt s)} x (s —ih) dods + k + 27 C
+C’PC — 66E7160 + x'(t) [NQQ(t7t+ h)

+Noo(t,t + h) + Naoy (t, ¢ + h) + Naio(t,t + h)]
xx(t —h) + Niy(t,t + h)x(t — h) +2'(t — h)

B t+h
XNgQQ(t t+ h) ( h) +/ /(9 h)
[Na11(t,t + h,0) + Njpq (8,0, + h)]z(t)do

t+h
+/ 2'(0 — 2h)[Nao2(t, t + h,0)
t
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t+h
+Nigo(t,0,t + h)]x(t — h)do + / (0 —h)

_ _ t
X[Na21(t, t + h,0) + Njpy (¢, 0, + h)]z(0 — h)do
t+h - _
+/ @' (t)[Na21(t,0,t + h) + Njoy (t,t + h, 0)]
t

(6 — 2h)d0}dt (23)
From (22) and (23) it follows that for any u(-) € A we
have:

J(u() = vl(O, 2(0)) + E{ /OT% {u(t) + R <G‘0 (24)

t+h

t— -l- Z/ 631 t,0
R71 (éo —+ Glx(t)

a(t — ih) +Z/ Gai(t,0)x (G—Zh)de)}dt}

/T T o)+ R

xx(t —ih) + /tT 22: G3i(t,0)x(0 — z‘h)d@)} R {u(t)
Z Gosa(t — ih)

+/tT§:G3i(t,9)x(9 - ih)d")} dt‘f(T - zh)}}

> v1(0,z(0)).

This lower bound is achieved if and only if u(t) = u*(t)
for a.e. t € [0,T] a.s.. O
3. APPLICATION TO OPTIMAL INVESTMENT
As an application of Theorem 1, we solve an optimal
investment problem in a market with a stochastic interest
rate. A similar problem was considered in Algoulity and
Gashi (2023) and Gashi and Hua (2023) where the
Cox-Ingersoll-Ross (CIR) interest rate model was used.
However, different from Algoulity and Gashi (2023) and
Gashi and Hua (2023), here we introduce a general class
of interest rate models with a factor process that is the
solution to a stochastic differential equation with delay
in both the drift and diffusion (which, in particular, is
not fully covered by the models of Sheu et al. (2018)).
Consider a market of a bank account with price Sy and of
a stock with price S, which are solutions to the following

equations (for ¢ € [0,T)):

{ dSo(t; - So(t%’(t)dt,

(GO +G1$ +ZG21

<G0 + Glx

dSy (t) = Sy () [pu(t)dt + o(t)dW (t)]

S0(0) >0 and S1(0) >0 are given,
with the interest rate r, the appreciation rate p, and the
volatility ¢ to be defined precisely below. If the investor,
who has an initial wealth of yg, holds wvg,(t) and wvg, (t)
number of shares time ¢ in the bank account and in
the stock, respectively, then his/her wealth is y(t) =
Vg, (£)So(t) + vs, (£)S1(t). We define a(t) := wvg, (¢)S1(t)
and consider the self-financing portfolio with equation (for
which see, for example, Korn (1997),Karatzas and Shreve
(1998)):
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dy(t) = [ry(t) + (u — r)a(t)]dt + ou(t)dW. (25)
As in Algoulity and Gashi (2023), Gashi and Hua (2023),
we assume (p — r)(-) € L*®(0,T;R), and 0 < o(:) €
L>(0,T;R). But different from Algoulity and Gashi
(2023), Gashi and Hua (2023), we define the interest rate
as r(t) := x1(t), where the factor process x1 is the solution
to the following stochastic differential equation with delay

(for t € [0,77): 2
dzi(t) = ole Z a;x1(t —ih) + B} (26)
=1
—|— o (t Zazml (t —ih) + B]
i=1
Here o, a;,a,a;, 8,8 € R and 21(s) = £(s), s € [-2h,0],

with £ being a one-dimensional continuous function. Some
special cases of this interest rate model appear in Sheu
et al. (2018). The optimal investment problem with loga-
rithmic utility is:
Y { max_Ellog(y(1))],
u(-)eA .

s.t. (25), &0

where A is the space of control processes % under which
(25) has a unique and positive strong solution. If we define
v(t) = a(t)/y(t), and z2(t) = y(t) + f(j 0.50%v2%(s)ds,
then it can be shown (similarly to Algoulity and Gashi
(2023), Gashi and Hua (2023)) that (27) is equivalent to
the problem of minimizing

T
Jw(-)) =E / 0.50%v%(s)ds — zo(T) | , (28)
0
with respect to v and subject to (3) and
dxg = [x1(t) + (u — r)v(t)]dt + ov(t)dW, 2(0) = logyo.

However, this is an example of optimal regulator problem
(6) withn =2, m=1,

6(s) = W ] o) = [0

0g Yo

R=0.50% f =0 —1].
If we further assume, for example, that 2h < T < 3h,
then in this case the solutions to equations (7)-(13) on
the intervals ¢t € [T — 2h,T), 0 € [t,T], s € [t,T]
are: P(t) = 0, q(t) = eYT0f k() = ft (¢C -
0.25¢' BR™1B'q)ds, Nj,(t,0) = ¢'(0)A;, Noy(t,0) = 0,
Ns;;(t,0) =0, Naj;(t,s,0) = 0. The solutions to equations
(14)-(20) on the intervals ¢t € [0,T — 2h], 0 € [t,t + h],
s € [t,t+ h] are: P(t) =0, q(t) = eA (T=2h=0¢(T — 2h) +
ftﬁh —A'(t— s+h)A/qu k() k(T —2h) + [‘T 2h —§C+
0.25¢ BR™'B'q)ds, Ni;(t,0) = ALq(0), Nalt, 9) =0,
Ns;i;(t,0) = 0, Nuj;(t,s,0) = 0. As Assumption 1 holds,
it follows from Theorem 1 that the control process that
minimizes (28) is v*(t) = —0.5R™'B’'q for t € [0, T — 2h],
and v*(t) = —0.5R~1B'q for t € [T — 2h,T]. The solution
to problem (27) is therefore @*(t) = v*(¢)y(t) for t € [0, T].
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4. CONCLUSIONS

We have solved a general version of the optimal regulator
problem for linear stochastic systems with state-delay and
the quadratic-linear criterion. The unique solution is ob-
tained in an explicit closed-form as an affine feedback on
the system state, its delayed value, and its past values. Its
applicability is illustrated with an example from optimal
investment. The consideration of systems with multiple in-
put delays in our setting would generalise a result of Liang
et al. (2018), and it is thus an interesting future problem.
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