
A Steady-State Methodology For Leak

Diagnosis in Multi-branched Pipelines
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Abstract: This work proposes a general methodology to deal with the problem of leak
diagnosis in a multi-branched pipeline. To achieve this, the flow rate and pressure measurements
at the ends of the pipeline are assumed to be known, as well as the flow rate leaving each pipeline
branch with a known position. The key of the proposed methodology consists of estimating the
known position of each branch of the pipeline and generating a residual from the discrepancy
between the estimated and the real position, due to the presence of a leak. Due to the sensitivity
of the residuals to variations of flow and pressure, the sign of this set of residuals indicates
the section in which the leak is located, and, knowing this, it is possible to localize it precisely
through a simple mathematical expression using only known values. In particular, we present
the equations for the cases of pipelines with two and three branches.

Keywords: Fault diagnosis, Residual, Monitoring, diagnostic model, Leak detection and
isolation, branched pipeline.

1. INTRODUCTION

A branched pipeline system involves a main pipeline (or
trunk) that splits into two or more branches to dis-
tribute fluid from a central source to multiple reservoirs
or equipment at different locations. This configuration is
common in water supply networks, irrigation systems,
and industrial fluid distribution. As with all distribu-
tion systems, branched pipelines are susceptible to leaks
due to various factors, including aging infrastructure,
pressure variations, joint and connection failures, ground
movement, manufacturing defects, and external damage.
Therefore, diagnosing leaks in branched pipelines is essen-
tial for ensuring their integrity and safety. To address this
challenge, several methodologies have been developed,
utilizing approaches such as model-based approaches,
transient-based methods, and data-based methods.

A recently presented model-based approach in the litera-
ture addresses the leak diagnosis problem in three stages
to simplify the localization of a single leak in a pipeline
with multiple branches: (1) leak detection, (2) leaky sec-
tion search, and (3) leak localization. This method utilizes
head loss and flow rate balances to effectively detect and
locate the leak (Torres et al., 2021). Another approach for
leak detection based on a physical model was presented
by Anfinsen and Aamo (2022). This method estimates
parametric uncertainties caused by leaks using adaptive
observer techniques. It is formulated by mapping the pipe
system model into a system of coupled, linear hyperbolic

partial differential equations (PDEs) . A recent model-
based methodology proposes a straightforward mass bal-
ance approach for leak detection, which subsequently ac-
tivates an isolation process. This method introduces a loss
function that incorporates both measured and estimated
values to identify the candidate branch where the leak
is occurring. Finally, the exact leak location is estimated
as the distance from the upstream point of the identified
candidate branch to the leak point (Navarro-Dı́az et al.,
2024).

Leak detection in branched pipelines can also be achieved
using transient-based methods (TBMs) that analyze pres-
sure and flow measurements at the inlet and outlet bound-
aries of the pipe system. Pan et al. (2022) presented
an efficient transient-based method that has been de-
veloped for polymeric pipe parameter identification and
leak detection in single and branched pipelines. This ap-
proach leverages transient wave analysis for viscoelastic
parameter identification and leak detection in water-filled
polymeric pipes. Ko et al. (2024) presented a detection
approach using a high-order polynomial-based transient
model to handle nonlinear valve maneuvers. This model
significantly enhances transient simulations compared to
traditional orifice-based approximations.

The organization of this article is as follows: Section 2
details the mathematical modeling for a pipeline with
a branch and briefly reviews a steady-state method for
detecting and localizing leaks in such pipelines. Section
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3 extends the modeling to pipelines with two and three
branches and provides the equations used for leak local-
ization. Section 4 presents numerical results for the case
of a leak in a two-branch pipeline. Finally, Section 5 offers
conclusions and suggestions for future work.

2. MATHEMATICAL MODELING OF THE FLUID
IN A PIPELINE

Consider the following one-dimensional nonlinear model
of distributed parameters for a generic fluid in a pipeline
section (Chaudry (1979)):

∂Q(z, t)

∂t
+ gA

∂H(z, t)

∂z
+ µQ(z, t)|Q(z, t)| = 0 (1)

∂H(z, t)

∂t
+

b2

gA

∂Q(z, t)

∂z
= 0 (2)

which can be obtained by assuming a slightly compress-
ible fluid and negligible convective changes in velocity.

The following variables are used in this document: Q(z, t)
represents the volumetric flow (m3/s), and P (z) denotes
the pressure head (Pa). The term h(z) indicates the sea
level, while H(z, t) is the piezometric head, defined as
P (z)/ρg + h(z), measured in meters (m). The variable ρ
stands for density (kg/m3), and zi ∈ (0, Li) is the spatial
coordinate of a section i, measured in meters (m). The
time coordinate is denoted by t ∈ (0,∞) (s). The cross-
sectional area of a section is represented by A (m2), and
Qbi is the flow of the lateral branch i (m3/s). The position
of the branch junction i is given by zbi (m), while D
refers to the diameter of a pipeline section (m). Gravity
acceleration is denoted by g (m/s2), µ = f/2DA and f is
the friction coefficient, which is dimensionless. The wave
speed in the fluid is represented by b (m/s). The length
of section i is given by Li (m), and the complete pipeline

length is L =
∑n+1

i=1 Li (m). The number of pipe sections
is denoted by n, and ri represents the residual for leak
detection (m).

A pipeline of length L, with n branches, is composed of
n + 1 sections of length Li, each one represented by (1-
2), according to the profile and pipeline specifications.
Hence, the dynamics of the complete pipeline would be
represented by the n+ 1 couples of equations (1-2). This
fact will be quite used in this document.

2.1 Steady-state model for a pipeline

According to González et al. (2017), under the assumption
that the fluid is in a steady state, from (2) one gets

∂Q(z, t)

∂z
= 0 ⇒ Q is constant. (3)

By combining (1) and (2) under the above condition, one
obtains the ordinary differential equation

dH(z)

dz
+ µQ|Q| = 0 (4)

The analytical solution of (4) is then given by

H(z) = −µ(Q)z +H(0) for 0 ≤ z ≤ L (5)

with µ(Q) = µQ|Q|, and H(0) being the piezometric head
at the beginning of the section. Defining the boundary

conditions of the pipeline in terms of the pressures (piezo-
metric head) at the extremes, it follows:

H(z = 0) := Hin H(z = L) := Hout, (6)

and, by substituting these variables in (5), one gets

Hin −Hout = µ(Q)L. (7)

In the case of a pipeline with n − 1 branch junctions (n
sections) with the same parameters; since the boundary
conditions between sections are related by

H(i,out) = H(i+1,in), (8)

and using the expression (7), one gets the model

H(1,in) −H(n,out) =

n
∑

i=1

Liµi(Qi) (9)

in terms of the piezometric variable along a general
pipeline of n sections. This pressure profile will be used
in the next sections for leak diagnosis purposes.

2.2 Leak localization in a pipeline section

Consider the stage of a leak in a pipeline section, as shown
in Fig. 1.
In several research works, it has been reported that

Fig. 1. A leaking pipeline.

the leak position, zL, can be estimated through the
expression:

zL =
µ(Qout)L+Hout −Hin

µ(Qout)− µ(Qin)
. (10)

As it was reported in González et al. (2017) and Torres
et al. (2020), the estimated value of zL can be used as
a leak indicator signal for a branched pipeline by the
simple idea that, in the absence of leakage, when applying
Eq. (10) will result in the known position of the branch
junction. This fact is explained in the next section.

2.3 Leak detection and location in a branched pipeline

In this section, we use the mentioned fact that in a
branched pipeline, without leaks, if we apply Eq. (10), the
known position of the branch will be obtained. To remark
on this idea, consider the stage of a branch junction
in a pipeline, as it is shown in Fig. 2. According to
Wylie and Streeter (1978), any component connected to
a pipeline -a valve, a pump, a branch, or a leak, for
example- breaks the continuity of the variablesQ(z, t) and
H(z, t), the condition (2) is not met and new boundary
conditions generated by the junction have to be satisfied
(Mahgerefteh et al. (2006)).
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Fig. 2. A pipeline with a branch junction.

As González et al. (2017) mentioned, the separation
losses terms due to friction and flow direction across a
junction can be neglected. Moreover, the assumption that
a junction without fluid storing the continuity of the three
lines is ensured if

Qin −Qb −Qout = 0, (11)

where Qb is the flow of the branch junction. Then, for a
pipeline with a branch junction, the differential equation
(4) becomes

dH(z)

dz
− µ(Qin) = 0; for 0 ≤ z ≤ zb

dH(z)

dz
− µ(Qout) = 0; for zb < z ≤ L,

(12)

which describes the pressure head at any point z with a
branch junction at zb.

Since the set (12) has the same form as (4), their solutions
have the form of (5). Therefore, considering the boundary
conditions

BC1: H(z = 0) = Hin,

BC2: H(z = L) = Hout,

BC3: Qin = Qout +Qb,

the solutions of the set (12) evaluated at the extremes of
the section reduce to

Hin −Hb

zb
− µ(Qin) = 0

Hb −Hout

L− zb
− µ(Qout) = 0.

(13)

The variable zb associated with the position of the branch
junction can then be determined from (13) by algebraic
operations, obtaining

zb =
µ(Qout)L+Hout −Hin

µ(Qout)− µ(Qin)
, (14)

which is clearly identical to Eq. (10).
Because zb is associated with a fixed junction of the
pipeline, any deviation of its estimation is a residual
(Isermann (2006)) which indicates a discrepancy in the
normal behavior of the fluid. Then, we can detect abnor-
mal scenarios by using the residual

r(t) = zb
∣

∣

0
− ẑb(t), (15)

where ẑb(t) is estimated through (14).
As was remarked in González et al. (2017) after a sen-

sitivity analysis, the signal of (15) is not arbitrary but
indicates the direction (upstream or downstream) of the
leakage section of the duct. Then, the use of (14) for leaks’
detection is a key fact that will be exploited for multi-
branch cases in the following sections.

Once the existence of a leak is known, it is necessary to
locate it. In this sense, as we can see in Figs. 3-4, the corre-
sponding leak could be located upstream or downstream
of the branch. In both cases, the pipeline can be modeled
as a three-section duct with new boundary conditions in
between. For the upstream case, as in (13), in steady state

Fig. 3. Upstream leak in a pipeline with a branch junction.

Fig. 4. Downstream leak in a pipeline with a branch
junction.

conditions, the solution of the mathematical description
of the pipeline becomes

Hin −HL

zL
− µ(Qin) = 0

HL −Hb

zb − zLu

− µ(Q2) = 0

Hb −Hout

L− zb
− µ(Qout) = 0.

(16)

with Q2 = Qout +Qb, which can be solved for zLu
as

zLu
=

Hout −Hin + µ(Qout)(L− zb) + µ(Q2)zb
µ(Q2)− µ(Qin)

. (17)

Equivalently, for the downstream case, we have
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Hin −Hb

zb
− µ(Qin) = 0

Hb −HL

zL
− µ(Q2) = 0

HL −Hout

L− zb − zL
− µ(Qout) = 0.

(18)

with Q2 = Qin −Qb, which can be solved for zL as

zLd
=

Hout −Hin + µ(Qin)(zb) + µ(Qout)(L− zb)

µ(Qout)− µ(Q2)
.

(19)
Then, Eqs. (17)-(19) represent the upstream and down-
stream leak position respectively. In a complementary way
with Eq. (14), we use this expression for leak detection
and localization in the event of one leak in a branched
pipeline, keeping in mind the idea of applying the method
in a multi-branched pipeline, which will be discussed in
next sections.

3. MULTI BRANCHED PIPELINE MODELS FOR
LEAK DIAGNOSIS PURPOSES

In the last section, as was reported in González et al.
(2017), the problem of leak diagnosis in a pipeline with
one branch junction was solved. This was achieved by
using flow and pressure measurements of the ends and the
knowledge of the position and flow in the branch. In that
case, the leak can be located upstream or downstream
of the branch, but; What happens if we have two or
more branches? Will it be possible to systematize a
methodology to detect and locate a leak regardless of the
number of branches? This section seeks to answer this
question. Let’s start by analyzing the models of the fluid
in the pipeline for the cases of two and three branches,
obtaining the leak indicator signals (residues) and their
position in each case.

3.1 Mathematical models for two branches in a pipeline

Consider initially the stage of a pipeline with two
branches, which in case of a leak, can be located in three
possible sections, as shown in Fig. 5. As we did before, to
obtain a fluid model of this branched pipeline, boundary
conditions at the intersection point are required Chaudry
(1979).

First, we are interested in residual generation for this new
scenario. It can be seen that the case of two branches with
no leaks is equivalent to having a three-section pipeline.
Then, from (1)-(2), in steady state conditions, this stage
can be modeled as

dHi(zi)

dzi
− µ(Qin) = 0; for 0 ≤ zi ≤ zb1

dHi(zi)

dzi
− µ(Q2) = 0; for zb1 < zi ≤ zb2 ,

dHi(zi)

dzi
− µ(Qout) = 0; for zb2 < zi ≤ L,

(20)

where the corresponding solutions can be obtained, as in
(13):

Fig. 5. Possible leak cases in a two-branched pipeline.

Hin −Hb1

zb1
− µ(Qin) = 0

Hb1 −Hb2

zb2
− µ(Q2) = 0

Hb2 −Hout

L− zb1 − zb2
− µ(Qout) = 0,

(21)

then, having in mind to use the estimation of the known
positions of the branches as in (15), from (21) we obtain

zb1 =
Hout −Hin + µ(Q2)(zb2) + µ(Qout)(L− zb2)

µ(Qout)− µ(Qin)
(22)

and

zb2 =
Hout −Hin + µ(Qin)zb1 + µ(Qout)(L− zb1)

µ(Qout)− µ(Q2)
,

(23)
which represent the corresponding branch positions in the
considered stage.

3.2 Mathematical models for three branches in a pipeline

Through an analogous procedure, the three branches
scene -as shown in Fig. 6-9-, when the pipeline is free
of leaks, the fluid in the pipeline can be modeled as in
(20), where the corresponding solutions are represented
by

Hin −Hb1

zb1
− µ(Qin) = 0

Hb1 −Hb2

zb2
− µ(Q2) = 0

Hb2 −Hb3

zb3
− µ(Q3) = 0

Hb3 −Hout

L− zb1 − zb2 − zb3
− µ(Qout) = 0,

(24)

with Q2 = Qin −Qb1 and Q3 = Qout +Qb3 .
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From 24, assuming again that the system is in steady-
state conditions, the positions of each branch can be easily
obtained, resulting in:

zb1 =
∆H + µ(Q2)zb2 + µ(Q3)zb3

µ(Qout)− µ(Qin)

+
µ(Qout)(L− zb2 − zb3)

µ(Qout)− µ(Qin)
, (25)

zb2 =
∆H + µ(Qin)zb1 + µ(Q3)zb3

µ(Qout)− µ(Q2)

+
µ(Qout)(L− zb1 − zb3)

µ(Qout)− µ(Q2)
, (26)

and

zb3 =
∆H + µ(Qin)zb1 + µ(Q2)zb2

µ(Qout)− µ(Q3)

+µ(Qout)(L− zb1 − zb2)

µ(Qout)− µ(Q3)
, (27)

with ∆H = Hout−Hin. As we mentioned in past sections,
a sensitivity analysis and simulation tests, show that the
sign of the residuals generated by these expressions (22-
23 and 25-27) indicates invariably the region (pipeline
section) in which the abnormal condition or leak is
located.

3.3 Leak localization

Once the section in which the leak is located is known, it
is necessary to obtain a more precise location of it. This is
done by adding a section of pipe to each of the previously
analyzed models and following the same methodology,
from which we obtain:

For the two branches stage:

zL1
=

∆H + µ(Q2)zb1 + µ(Q3)zb2 + µ(Qout)z3
µ(Q2)− µ(Qin)

, (28)

zL2
=

∆H + µ(Qin)zb1 + µ(Q3)zb2 + µ(Qout)z3
µ(Q3)− µ(Q2)

, (29)

and

zL3
=

∆H + µ(Qin)zb1 + µ(Q2)zb2 + µ(Qout)z3
µ(Qout)− µ(Q3)

, (30)

for a leak located in the first, second, or third section,
respectively, with z3 = L− zb1 − zb2 .

For the three branches stage.

zL1
=

∆H + µ(Q2)zb1 + µ(Q3)zb2 + µ(Q4)zb3
µ(Q2)− µ(Qin)

+µ(Qout)(L− zb1 − zb2 − zb3)

µ(Q2)− µ(Qin)
(31)

with Q2 = Qout +Qb1 +Qb2 +Qb3 ,

zL2
=

∆H + µ(Qin)zb1 + µ(Q3)zb2 + µ(Q4)zb3
µ(Q3)− µ(Q2)

+µ(Qout)(L− zb1 − zb2 − zb3)

µ(Q3)− µ(Q2)
, (32)

with Q2 = Qin − Qb1 , Q3 = Qout + Qb2 + Qb3 , and
Q4 = Qout +Qb3

zL3
=

∆H + µ(Qin)zb1 + µ(Q2)zb2 + µ(Q4)zb3
µ(Q4)− µ(Q3)

+µ(Qout)(L− zb1 − zb2 − zb3)

µ(Q4)− µ(Q3)
, (33)

with Q2 = Qin − Qb1 , Q3 = Qin + Qb1 + Qb2 , and
Q4 = Qout +Qb3

and

zL4
=

∆H + µ(Qin)zb1 + µ(Q2)zb2 + µ(Q3)zb3
µ(Qout)− µ(Q4)

+µ(Qout)(L− zb1 − zb2 − zb3)

µ(Qout)− µ(Q4)
, (34)

with Q2 = Qin − Qb1 , Q3 = Qin − Qb1 − Qb2 , and
Q4 = Qin − Qb1 − Qb2 − Qb3 for a leak located in the
first, second, third or fourth section, respectively, with
z3 = L− zb1 − zb2 .

Fig. 6. Leak in the first section in a three-branched
pipeline.

Fig. 7. Leak in the second section in a three-branched
pipeline.

4. RESULTS

In this section, simulation test are presented to illustrate
the efficiency of the leak detection methodology. To do
this, a 200 m of length pipeline is considered, where the
parameters of the simulated system are: Hin = 20 m,
Hout = 5.7 m g = 9.81 m/s2, D = 0.1016 m, b =
1284 m/s and f = 0.022.

For the two branches stage, as in Eq. 15, it is possible to
generate:

r1(t) = zb1 − ẑb1(t), (35)
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and
r2(t) = zb2 − ẑb2(t), (36)

as leak indicator signals.

As you can see in Table 1, cases 1 and 2 correspond to a
leak located downstream of both branches. So that, r1(t)
and r2(t) are both negative. In tests 3 and 4, the leak is
simulated between the branches and it can be seen that
r1(t) is negative while r2(t) is positive. Finally, in tests
5 and 6 it has been simulated a leak upstream of both
branches and, in consequence, r1(t) and r2(t) are both
positive, indicating the leaking section.

Table 1. Residual generation for a two-
branched pipeline

# zL zb1
ẑb1

r1 zb2
ẑb2

r2

1 130 50 72.09 −22.09 100 112.18 −12.18

2 190 50 77.35 −27.35 100 121.39 −21.39

3 60 50 61.94 −11.94 150 112.18 37.82

4 140 50 85.68 −35.68 150 135.56 14.44

5 10 100 49.73 50.27 150 61.92 88.08

6 90 100 98.21 1.79 150 131.61 18.39

Fig. 8. Leak in the third section in a three-branched
pipeline.

Fig. 9. Leak in the fourth section in a three-branched
pipeline.

5. CONCLUSION

A steady-state approach to detect and locate leaks in a
steady state in a branched pipeline has been proposed.
The requirements to do that are the measurements of
pressure and flow at the extremes of the pipeline and the
flow through the known extractions (branches). The keys
of the method are:

(1) The position error of the known branch junction if
abnormal conditions occur is used as a residual to
indicate an abnormal condition.

(2) The equations to calculate the leak position up-
stream or downstream of a specific branch junction.

Although it has not been completed in this work, it is
expected to demonstrate that the sign of the residue
generated through mass balance is invariant to the num-
ber of branches, which would result in a great industrial
application due to the low cost and the simplicity of its
implementation.
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