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Abstract: Attitude determination and control systems in nano-satellites require reliable
verification systems capable of reproducing the conditions that the system may encounter
in space, such as weightlessness, electromagnetic disturbances, etc. In this regard, testing
benches commonly use air suspension systems, which require precise initial positioning. For this
purpose, mass balance models are employed, allowing the system to reproduce or be controlled
under precise and controlled disturbances, closely aligning with the design guidelines set by
international space agencies.
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1. INTRODUCTION

Attitude Determination and Control System (ADCS) are
a fundamental part of a satellite mission, as they are re-
sponsible for all manoeuvres related to the orientation of
the satellite in space. This includes pointing the satellite
to a specific location on Earth, conducting interplanetary
observations, and orienting the satellite’s solar panels
toward the sun (Paluszek, 2023; NASA, 2018; Markley
and Crassidis, 2014). Due to this, it is necessary to ensure
the proper functioning of the ADCS through validation
tests, with Hardware-in-the-loop tests being the preferred
method. However, having the appropriate infrastructure
to perform the necessary tests to validate that the system
works correctly is itself a challenge that encompasses
three fundamental elements: a Helmholtz cage, a low-
friction system, and a disturbance generation system. For
the purposes of this work, emphasis will be placed on the
low-friction environment generation system. Additionally,
we will address the challenges that may arise from set-
ting up the initial conditions for verifying the satellite’s
ADCS. A balance system for the test plate is proposed as
a solution to this issue.

1.1 Low-friction environment

In space, a satellite undergoes multiple physical phenom-
ena, among which microgravity is one that needs to be
⋆ The authors acknowledge partial economical support by projects
20242752, 20240894, 20241163, 20241077 and 20240811, as well as
EDI and PIFI grants, provided by Secretaŕıa de Investigación y
Posgrado, Instituto Politécnico Nacional.

simulated on the ground to validate the attitude control
systems. To this end, multiple solutions are proposed,
ranging from using fluids to help maintain the satellite
at a constant height above the container in which it is
placed, to air bearings, which are by far the most widely
used according to the literature (Zhao et al., 2023; El wafi
et al., 2024; Gaber et al., 2020; Panyalert et al., 2023).
The term “air bearing” refers to the use of pressurised
air to generate a thin layer of air between two surfaces,
allowing them to move relative to each other without
touching. For use in ADCS, spherical air bearings are
commonly employed (see Fig. 1), which utilise a concave
and a convex smooth surface, allowing rotation with three
degrees of freedom (Modenini et al., 2020; Prinkey et al.,
2013). The air layer typically has a thickness between 10
and 150 micrometers. This thin layer of air allows the con-
cave and convex surfaces to move relative to each other
without contact, creating a low-friction environment and
simulating the friction-less environment of space.

Air bearing systems pose a challenge, primarily due to
the materials used for the construction of both the plate
and the bearing. In this regard, it has been observed
that having a balanced system for verification testing is
necessary (Kwan et al., 2015; Prinkey et al., 2013; Zhao
et al., 2023). Currently, many research centres perform
this balancing using unconventional methods, leaving
room for unconsidered errors and making characterisation
difficult.
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Fig. 1. Tabletop air bearing.

1.2 Test bench design

Multiple test bench designs have been proposed, most of
which are characterised by the inclusion of an air bearing,
a disturbance generation system, and a Helmholtz cage.
For the purposes of this study, Fig. 2 presents a test bench
featuring a balancing system with hanging masses on a
rigid bar that move across the plane.

Fig. 2. Test bench.

In the Hardware-in-the-loop (HIL) verification systems
discussed in the literature (Shim et al., 2023; Farissi et al.,
2019), a recurrent issue is the initial configuration of the
system. This problem arises because, although interna-
tional standards require CubeSat developers to place the
geometric centre as close as possible to the satellite’s
centre of mass (with a deviation of no more than ±2 cm
for 1U CubeSat), the challenges of manufacturing and
integrating the satellite often result in a centre of mass
that, while within the specified limits, causes imbalances.
These imbalances lead to unwanted disturbances when
the satellite is placed on the test plate for verification
testing. This design is characterised by a worm screw
mechanism that displaces the masses and balances the
system, which is suspended by the air bearing. In order
to effectively address the system, a simplified model will
be presented for this study (see Fig. 3).

2. EULER-LAGRANGE MODELLING

With the aim of modeling the system using the Euler-
Lagrange formulaism, a kinematic analysis is previously

Fig. 3. Simplified model

carried out to find the positions of the masses after certain
rotations, always considering the plane. Subsequently,
upon finding the positions of the masses based on the two
angles of rotation (or inclination), we begin to analyze
for the moment the positions of the mass as well as the
inclinations of the system.

2.1 Kinematic Analysis

The final position of the model will be determined using
transformation matrices; for this, the rotations of the
system are determined (see Figure 4 and Fig. 5).
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Fig. 4. System’s side view.

In Figure 6, the variables U1, U2, U3 and U4 are the
lengths that are determined from the movement of the
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Fig. 5. Second side view of the system.
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Fig. 6. System’s top view

worm screw; on the other hand, the angles α and ϕ
They are the inclinations of the model, in combination.
Compiling rotations for the system for a rotation in the
X-Y axes. It is worth mentioning that the model considers
that the pendulating masses of the system are equal.

Rotx−y = Rotx(α) ·Roty(ϕ) (1)

Rotx−y =

[

1 0 0
0 Cα −Sα

0 Sα Cα

][

Cφ 0 Sφ

0 1 0
−Sφ 0 Cφ

]

=

[

Cφ 0 Sφ

SαSφ Cα −SαCφ

−CαSφ Sα CαCφ

]

(2)
This rotation will affect each of the positions of the

masses, therefore the position of each of the masses is
determined according to its initial position with respect
to the inertial reference frame. The position of masses
one, two, three and four are described below where the
subscript indicates the mass referenced in the inertial
reference frame located at the centre of the air bearing.
[

x1

y1
z1

]

=

[

Cφ 0 Sφ

SαSφ Cα −SαCφ

−CαSφ Sα CαCφ

][

x1i

y1i
z1i

]

=

[

−rSφ

−u1Cα+ rSαCφ

−u1Sα− rCαCφ

]

(3)
[

x2

y2
z2

]

=

[

Cφ 0 Sφ

SαSφ Cα −SαCφ

−CαSφ Sα CαCφ

][

x2i

y2i
z2i

]

=

[

−rSφ

−u2Cα+ SαCφ

u2Sα− rCαCφ

]

(4)
[

x3

y3
z3

]

=

[

Cφ 0 Sφ

SαSφ Cα −SαCφ

−CαSφ Sα CαCφ

][

x3i

y3i
z3i

]

=

[

−u3Cφ+ rSφ

−u3SαSφ− rSαCφ

u3CαSφ+ rCαCφ

]

(5)
[

x4

y4
z4

]

=

[

Cφ 0 Sφ

SαSφ Cα −SαCφ

−CαSφ Sα CαCφ

][

x4i

y4i
z4i

]

=

[

u4Cφ+ rSφ

u4SαSφ− rSαCφ

−u4CαSφ+ rCαCφ

]

(6)

2.2 Euler-Lagrange model

From the positions found in the Equation (3), (4), (5)
and (6) the norm 2 of the squared velocity is found by
performing the corresponding derivatives

(7a)

||v1||
2

2
= r2φ′2 cos2(φ) +

(

r
(

α′ cos(α) cos(φ)−

sin(α)φ′ cos(φ)
)

− cos(α)U1
′ +

U1α
′ sin(α)

)2

+
(

−r
(

α′ sin(α)(− cos(φ))−

cos(α)φ′ sin(φ)
)

− sin(α)U1
′ − U1α

′ cos(α)
)2

(7b)

||v2||
2

2
= r2φ′2 cos2(φ) +

(

r
(

α′ cos(α) cos(φ)−

sin(α)φ′ cos(φ)
)

+ cos(α)U2
′ −

U2α
′ sin(α)

)2

+
(

−r
(

α′ sin(α)(− cos(φ))−

cos(α)φ′ sin(φ)
)

+ sin(α)U2
′ + U2α

′ cos(α)
)2

(7c)

||v3||
2

2
=
(

−rα′ sin(α) cos(φ)−

r cos(α)φ′ sin(φ) + cos(α)U3
′ sin(φ)−

U3α
′ sin(α) sin(φ) + U3 cos(α)φ

′ cos(φ)
)2

+
(

−rα′ cos(α) cos(φ) + r sin(α)φ′ sin(φ)−

sin(α)U3
′ sin(φ)− U3α

′ cos(α) sin(φ)−

U3 sin(α)φ
′ cos(φ)

)2

+
(

rφ′ cos(φ) +

U3
′(− cos(φ)) + U3φ

′ sin(φ)
)2

(7d)

||v4||
2

2
=
(

−rα′ cos(α) cos(φ) +

r sin(α)φ′ sin(φ) + sin(α)U4
′ sin(φ) +

U4α
′ cos(α) sin(φ) + U4 sin(α)φ

′ cos(φ)
)2

+
(

−rα′ sin(α) cos(φ)− r cos(α)φ′ sin(φ)−

cos(α)U4
′ sin(φ) + U4α

′ sin(α) sin(φ)−

U4 cos(α)φ
′ cos(φ)

)2

+
(

rφ′ cos(φ) +

U4
′ cos(φ)− U4φ

′ sin(φ)
)2

We now start to find the kinetic energy of the system
which is described by the Equation 8

T =
1

2
m

(

r2ϕ′2 cos2(ϕ) +
(

r (α′ cos(α) cos(ϕ)−

sin(α)ϕ′ cos(ϕ))− cos(α)U1
′ + U1α

′ sin(α)
)2

+
(

−r (α′ sin(α)(− cos(ϕ))− cos(α)ϕ′ sin(ϕ))−

sin(α)U1
′
− U1α

′ cos(α)
)2
)

+
1

2
m

(

r2ϕ′2 cos2(ϕ) +
(

r (α′ cos(α) cos(ϕ)− sin(α)ϕ′ cos(ϕ)) + cos(α)U2
′
−

U2α
′ sin(α)

)2
+
(

−r (α′ sin(α)(− cos(ϕ))−

cos(α)ϕ′ sin(ϕ)) + sin(α)U2
′ + U2α

′ cos(α)
)2
)

+

1

2
m

(

(

−rα′ sin(α) cos(ϕ)− r cos(α)ϕ′ sin(ϕ) +

cos(α)U3
′ sin(ϕ)− U3α

′ sin(α) sin(ϕ) +

U3 cos(α)ϕ
′ cos(ϕ)

)2
+
(

−rα′ cos(α) cos(ϕ) +

r sin(α)ϕ′ sin(ϕ)− sin(α)U3
′ sin(ϕ)−

U3α
′ cos(α) sin(ϕ)− U3 sin(α)ϕ

′ cos(ϕ)
)2

+
(

rϕ′ cos(ϕ) + U3
′(− cos(ϕ)) + U3ϕ

′ sin(ϕ)
)2
)

+

1

2
m

(

(

−rα′ cos(α) cos(ϕ) + r sin(α)ϕ′ sin(ϕ) +

sin(α)U4
′ sin(ϕ) + U4α

′ cos(α) sin(ϕ) +

U4 sin(α)ϕ
′ cos(ϕ)

)2
+
(

−rα′ sin(α) cos(ϕ)−

r cos(α)ϕ′ sin(ϕ)− cos(α)U4
′ sin(ϕ) +

U4α
′ sin(α) sin(ϕ)− U4 cos(α)ϕ

′ cos(ϕ)
)2

+
(

rϕ′ cos(ϕ) + U4
′ cos(ϕ)− U4ϕ

′ sin(ϕ)
)2
)

(8)
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On the other hand, the potential energy (See Equation 9)
of the system is determined by the position of the masses
in their respective axes in Z (See Equation 3, 4, 5 and 6)

(9)
V = −gm(−r cos(α) cos(ϕ)− U1 sin(α))−

gm(U2 sin(α)− r cos(α) cos(ϕ))−

gm(r cos(α) cos(ϕ) + U3 cos(α) sin(ϕ))−

gm(r cos(α) cos(ϕ)− U4 cos(α) sin(ϕ))

The Lagrangian of the system is then constructed

L = gm(−r cos(α) cos(ϕ)− U1 sin(α)) + gm(U2 sin(α)−

r cos(α) cos(ϕ)) + gm(r cos(α) cos(ϕ) +

U3 cos(α) sin(ϕ)) + gm(r cos(α) cos(ϕ)−

U4 cos(α) sin(ϕ)) +
1

2
m

(

r2ϕ′2 cos2(ϕ) +

(

r (α′ cos(α) cos(ϕ)− sin(α)ϕ′ cos(ϕ))−

cos(α)U1
′ + U1α

′ sin(α)
)2

+
(

−r (α′ sin(α)(−

cos(ϕ))− cos(α)ϕ′ sin(ϕ))− sin(α)U1
′
−

U1α
′ cos(α)

)2
)

+
1

2
m

(

r2ϕ′2 cos2(ϕ) +

(

r (α′ cos(α) cos(ϕ)− sin(α)ϕ′ cos(ϕ)) + cos(α)U2
′
−

U2α
′ sin(α)

)2
+
(

−r (α′ sin(α)(− cos(ϕ))−

cos(α)ϕ′ sin(ϕ)) + sin(α)U2
′ + U2α

′ cos(α)
)2
)

+

1

2
m

(

(

−rα′ sin(α) cos(ϕ)− r cos(α)ϕ′ sin(ϕ) +

cos(α)U3
′ sin(ϕ)− U3α

′ sin(α) sin(ϕ) +

U3 cos(α)ϕ
′ cos(ϕ)

)2
+
(

−rα′ cos(α) cos(ϕ) +

r sin(α)ϕ′ sin(ϕ)− sin(α)U3
′ sin(ϕ)−

U3α
′ cos(α) sin(ϕ)− U3 sin(α)ϕ

′ cos(ϕ)
)2

+

(

rϕ′ cos(ϕ) + U3
′(− cos(ϕ)) + U3ϕ

′ sin(ϕ)
)2
)

+

1

2
m

(

(

−rα′ cos(α) cos(ϕ) + r sin(α)ϕ′ sin(ϕ) +

sin(α)U4
′ sin(ϕ) + U4α

′ cos(α) sin(ϕ) +

U4 sin(α)ϕ
′ cos(ϕ)

)2
+
(

−rα′ sin(α) cos(ϕ)−

r cos(α)ϕ′ sin(ϕ)− cos(α)U4
′ sin(ϕ) +

U4α
′ sin(α) sin(ϕ)− U4 cos(α)ϕ

′ cos(ϕ)
)2

+

(

rϕ′ cos(ϕ) + U4
′ cos(ϕ)− U4ϕ

′ sin(ϕ)
)2
)

(10)

Remembering the structure of the Euler-Lagrange expres-
sion

d

dt

∂L(q)

∂q̇
−

∂L(q)

∂q
= 0 (11)

For each of the generalised coordinates (α, ϕ, U1, U2, U3

and U4) the system is then described by the Equations
12, 13, 14, 15, 16 and 17.

1

2
m

(

2 sin(ϕ)
(

gU3 sin(α)− gU4 sin(α) +

r cos2(α)ϕ′
(

U1
′
− U2

′
)

+

r(U1 − U2)
(

sin2(α)ϕ′2
− cos2(α)ϕ′′

))

+

2gU1 cos(α)− 2gU2 cos(α) + 4r2α′′
− r2 sin(2α)ϕ′′ +

sin(2ϕ)
(

r2 sin(2α)
(

ϕ′′ + 2ϕ′2
)

+

2α′
(

ϕ′
(

−4r2 + U3
2 + U4

2
)

+ rU3
′
− rU4

′
)

+

2rα′′(U3 − U4)
)

− cos(2ϕ)
(

r2 (sin(2α)ϕ′′
− 4α′′) +

2U3α
′
(

U3
′
− 2rϕ′

)

+ 2U4α
′
(

2rϕ′ + U4
′
)

+ U3
2α′′ +

U4
2α′′

)

+ 2r cos(ϕ)
(

−U1
′′ + cos2(α)ϕ′

(

−U1
′ +

(U2 − U1)ϕ
′ + U2

′
)

+ sin2(α)(U2 − U1)ϕ
′′ + U2

′′
)

+

4U1α
′U1

′ + 2U1
2α′′ + 4U2α

′U2
′ + 2U2

2α′′ +

2U3α
′U3

′ + U3
2α′′ + 2U4α

′U4
′ + U4

2α′′
)

= 0

(12)

1

2
m

(

cos(ϕ)
(

2g cos(α)(U4 − U3) +

r
(

sin(2α)
(

U1
′′ + 2α′2(U2 − U1)− U2

′′
)

+

α′(3 cos(2α)− 1)U1
′ + 2α′′ sin2(α)(U2 − U1) +

α′(1− 3 cos(2α))U2
′
))

− r2α′′ sin(2α)− 2r2α′2 cos(2α) +

sin(2ϕ)
(

2r2 sin(α)
(

α′′ cos(α)− 2 sin(α)ϕ′2
)

+

α′2
(

2r2(cos(2α) + 2)− U3
2
− U4

2
))

+ 8r2ϕ′′ +

2r cos(α) sin(ϕ)
(

sin(α)
(

−U1
′′ + 2α′2(U1 − U2) +

U2
′′
)

+ cos(α)
(

3α′
(

U2
′
− U1

′
)

+ α′′(U2 − U1)
))

− 2rU3
′′
− r cos(2ϕ)

(

2r sin(α) (α′′ cos(α)− 2 sin(α)ϕ′′)

− 4rα′ sin(2α)ϕ′ + 2α′2(r cos(2α) + U3 − U4)
)

+

2rU4
′′ + 4U3U3

′ϕ′ + 2U3
2ϕ′′ + 4U4U4

′ϕ′ + 2U4
2ϕ′′

)

= 0

(13)

(14)m

(

g sin(α) +
1

2
r
(

−2α′′ cos(ϕ) +

α′ϕ′
(

2 cos2(α) cos(ϕ)− (cos(2α)− 3) sin(ϕ)
)

+

sin(2α)
(

ϕ′′(cos(ϕ)− sin(ϕ))− ϕ′2(sin(ϕ) +

cos(ϕ))
))

+ U1
′′
− U1α

′2

)

= 0

(15)m

(

−g sin(α) +
1

2
r
(

2α′′ cos(ϕ) +

α′ϕ′
(

(cos(2α)− 3) sin(ϕ)− 2 cos2(α) cos(ϕ)
)

+

sin(2α)
(

ϕ′′(sin(ϕ)− cos(ϕ)) +

ϕ′2(sin(ϕ) + cos(ϕ))
))

+ U2
′′
− U2α

′2

)

= 0

(16)−m
(

g cos(α) sin(ϕ) + α′2 sin(ϕ)(r cos(ϕ) +

U3 sin(ϕ)) + rϕ′′
− U3

′′ + U3ϕ
′2
)

= 0
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(17)
m

(

g cos(α) sin(ϕ) +

α′2 sin(ϕ)(r cos(ϕ)− U4 sin(ϕ)) +

rϕ′′ + U4
′′
− U4ϕ

′2
)

= 0

3. CONCLUSIONS

In this study, we have successfully developed a com-
prehensive model for a balancing system designed for
1U CubeSat HIL testing of ADCS. Our approach em-
ployed a rigorous kinematic description using rotation
matrices, which served as the basis for the subsequent
Euler-Lagrange formulation. The resulting six equations
predominantly contain angular elements, highlighting the
system’s complex, nonlinear dynamics. This insight is
vital for understanding the balancing system’s behaviour
under various conditions. Looking forward, we propose
three key areas for future work: first, linearising the
system could significantly enhance its analysis and po-
tentially lead to simplified control strategies; second, the
development of an active control system for balancing
the CubeSat remains an important research direction;
and third, an alternative modelling approach focusing
on locating and tracking the system’s centre of mass
could provide additional insights. As the space industry
continues to evolve, particularly in the realm of small
satellites, such detailed modelling approaches will play
a crucial role in advancing our capabilities in satellite
design and testing.
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