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Abstract: This work proposes a discrete-time output regulator for nonlinear descriptor
systems. The approach consists in two parts: 1) the design of a convex nonlinear stabilizer
computed by means of the so-called non-quadratic Lyapunov functions, 2) the design of a
linear regulator computed through the so-called Francis equations for descriptor models; the
designing conditions of both parts are in terms of linear matrix inequalities. The effectiveness
of the proposal is illustrated via numerical examples.
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1. INTRODUCTION

The output regulation is an important problem within the
design of control systems, aiming to ensure that the out-
put of a system asymptotically tracks a desired reference
while rejecting disturbances (Isidori, 1995). The idea can
be traced back to (Francis, 1977), this work presents the
mathematical theory for the solution of multivariable lin-
ear systems, referred as the Francis equations. Some years
after, Isidori and Byrnes (1990) extended the solution for
nonlinear systems, by means of a set of nonlinear partial
differential equations called Francis-Isidori-Byrnes (FIB);
these conditions are difficult to solve. Therefore, several
approaches tried to tackled this issue by means of Takagi-
Sugeno (TS) models (Takagi and Sugeno, 1985) as they
are seem as convex combination of linear models; addi-
tionally, part of the controller can be designed through
linear matrix inequalities (LMIs) (Boyd et al., 1994).

In the context of TS/LMI approaches, some results have
been presented for continuous-time models (Castillo et al.,
2003; Bernal et al., 2012) for standard state-space con-
figurations; Lin and Dai (1996) have results for linear
descriptor systems, the extention to nonlinear descrip-
tor systems have been done by (Poblete et al., 2022;
Hernandez-Cortes et al., 2024); these works treat only
TS models in continuous-time. Concerning discrete-time
standard systems there are few works (Castillo et al.,
1993; Castillo-Toledo and Meda-Campaña, 2004).

Generally speaking, the regulator consists on two parts:
one for asymptotic stabilization at the origin and other
guaranteeing asymptotic tracking of references Isidori

(1995). This paper provides LMI conditions for the design
of both parts.

Contribution: This paper develops LMI conditions for the
output regulation of discrete-time nonlinear descriptor
systems. The stabilization part of the controller is de-
signed by means of non-quadratic approaches similar to
those presented in (Guerra and Vermeiren, 2004; Estrada-
Manzo et al., 2015). As for the part that guarantees track-
ing is borrowed from (Poblete et al., 2022) and adapted
for discrete-time systems.

Organization: The rest of the paper is organized as
follows: Section 2 states the problem and gives some
mathematical tools for the main developments. Section
3 presents LMI conditions for the design of the nonlinear
control law that guarantees asymptotic tracking of refer-
ences generated by an exosystem. Section 4 illustrates the
performance of the proposal via two numerical examples,
and finally, Section 5 closes the paper with some conclu-
sions and future work.

2. PRELIMINARIES AND PROBLEM STATEMENT

Consider the following discrete-time descriptor system:

E(xt)xt+1 = f(xt, ut), yt = g(xt), (1)

where xt ∈ R
n is the state vector, ut ∈ R

m is the input
vector, yt ∈ R

o is the ouput vector, t ∈ N is the current
sample. The vector field f(·, ·) : R

n × R
m 7→ R

n and
g(·) : Rn 7→ R

o are assumed to be smooth and bounded
for all x ∈ Ω ⊂ R

n, 0 ∈ Ω; E(·) : R
n 7→ R

n×n, with
rank(E(xt)) = n, ∀x ∈ Ω.
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The task is to design a control law such that the closed-
loop performs output regulation, i.e., the output tracks a
reference (generated by an exosystem).

In what follows, a methodology for obtaining an exact
convex rewriting of (1) is given; such convex representa-
tion is useful in order to derive LMI conditions for the
controller.

2.1 Exact Takagi-Sugeno models

Consider (1) and assume that

f(xt, ut) = A(xt)xt +B(xt)ut and g(xt) = C(xt)xt

where the entries of A(xt), B(xt), C(xt) are well-defined
in the region Ω. Thus, the sector nonlinearity methodol-
ogy (Ohtake et al., 2001) begins by grouping all the p non-
constant terms found in E(xt), A(xt), B(xt), and C(xt)
in the premise vector z(xt) ∈ R

p. Then, as each entry of
z(xt) is bounded ∀x ∈ Ω, we compute zi(xt) ∈ [z0i , z

1
i ].

Now, it is time to define the so-called weighting functions

wi
0(xt)=

z1i − zi(xt)

z1i − z0i
, wi

1(xt)=1−wi
0(xt), (2)

which hold the convex sum property for x ∈ Ω, that is,

wi
0(xt) + wi

1(xt) = 1 and wi
0(xt) ≥ 0, wi

1(xt) ≥ 0.

Hence, the non-constant terms can be expressed as convex
sums of their bounds:

zi(xt) = wi
0(xt)z

0
i + wi

1(xt)z
1
i .

Thanks to convexity 1 , the following scheduling functions
can be constructed

hi(xt) = w1
i1
(xt)w

2
i2
(xt) · · ·w

p
ip
(xt),

i ∈ {1, 2, · · · , 2p}, i1, i2, . . . , ip ∈ {0, 1} and the set of
indexes [i1i2 · · · ip] is such that a p-digit binary repre-
sentation of (i − 1) is obtained. For example, if p = 3,
for h6(xt) = w1

1(xt)w
2
1(xt)w

3
0(xt) we have the set [110].

By construction the scheduling functions hold the convex
sum property too:

2
p

∑

i=1

hi(z(xt)) = 1 and hi(z(xt)) ≥ 0, i ∈ {1, 2, ..., 2p}.

Finally, system (1) is exactly represented by TS model:

2
p

∑

i=1

hi(z(xt))Eixt+1=

2
p

∑

i=1

hi(z(xt)) (Aixt +Biut) ,

yt =
2
p

∑

i=1

hi(z(xt))Cixt,

(3)

where the vertex are computed such as

(Ai, Bi, Ci, Ei)=(A(xt), B(xt), C(xt), E(xt)) |hi=1,

for i ∈ {1, 2, ..., 2p}.

1 For instance, consider z1(xt) =
∑

1

i1=0
w

1

i1
(xt)z

i1

1
and

z2(xt) =
∑

1

i2=0
w

2

i2
(xt)z

i2

2
, it follows z1(xt) + z2(xt) =

∑

1

i1=0
w

1

i1
(xt)

∑

1

i2=0
w

2

i2
(xt)(z

i1

1
z
i2

2
) and z1(xt)z2(xt) =

∑

1

i1=0
w

1

i1
(xt)

∑

1

i2=0
w

2

i2
(xt)(z

i1

1
z
i2

2
).

2.2 Some Properties and Notation

The following results are going to be employed for the
derivation of the main developments in this paper.

Property 1. (Bernal et al., 2022) Let be A, B of
appropriate dimensions with B = BT > 0. Then the
following holds

(A−B)TB−1(A−B) ≥ 0 ⇐⇒ATB−1A ≥ A+AT −B.

Lemma 1. (Oliveira and Skelton, 2001) Consider a vector
x ∈ R

n, Q = QT ∈ R
n×n and W ∈ R

m×n such that
rank(W) < n, the following expressions are equivalent

1.χTQχ < 0, ∀χ ∈ {χ ∈ R
n, χ ̸= 0,Wχ = 0}.

2.∃M ∈ R
m×n : MW +WTMT +Q < 0.

Generally, designing controllers/observers via TS models
yields inequalities involving double/triple convex-sums;
thus, in order to obtain LMI conditions the scheduling
functions must be removed. Several schemes exist in the
literature (Wang et al., 1996; Tuan et al., 2001; Liu and
Zhang, 2003). In this paper, the following adaptation of
(Tuan et al., 2001) is employed:

Lemma 2. (Relaxation Lemma). Let matrices of appro-
priate sizes Υk

ij = (Υk
ij)

T , (i, j, k) ∈ {1, 2, . . . , 2p} and
the following inequality

2
p

∑

i=1

2
p

∑

j=1

2
p

∑

k=1

hi(z(xt))hj(z(xt))hk(z(xt+1))Υ
k
ij < 0,

holds if the following LMIs
2

2p−1
Υk

ii+Υk
ij+Υk

ji<0, ∀(i, j, k) ∈ {1, 2, . . . , 2p}. (4)

hold too.

In order to make readable the paper, the following nota-
tion is used: In matrix expressions, an asterisk (∗) denotes
the transpose of the symmetric element, this is:

[

A BT

B C

]

=

[

A (∗)
B C

]

;

for in-line expressions, it stands for the transpose of terms
on its left side, i.e., A+B+AT+BT+C = A+B+(∗)+C.
As for convex expressions: single convex sums are shorten

as Υh =
∑2

p

i=1
hi(z(xt))Υi, the inverse of a convex sum

is Υ−1

h =
(

∑2
p

i=1
hi(z(xt))Υi

)

−1

, delayed convex sums

Υh+ =
∑2

p

k=1
hk(z(xt+1))Υk, and double convex sum are

simplified as Υhh =
∑2

p

i=1

∑2
p

j=1
hi(z(xt))hj(z(xt))Υij ;

hence (3) can be shortly written as

Ehxt+1 = Ahxt +Bhut, yt = Chxt.

2.3 Output regulation theory

Consider a linearization around the origin of system (1):

Ext+1 = Axt +But, yt = Cxt (5)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
o×n, and E ∈ R

n×n

are known matrices, the exosystem is

ωt+1 = Sωt, (6)
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with ωt ∈ R
q being the state of the exosystem and

S ∈ R
q×q is such that it has all its eigenvalues on

the imaginary axis (Isidori and Byrnes, 1990). Roughly
speaking, the objective of output regulation is to design a
controller that ensures that the tracking error et = yt−rt
holds

lim
t→∞

et = 0.

where rt = Qωt, Q ∈ R
o×q is the reference output

generated by the exosystem (6); this is possible under
certain conditions:

• The pair (A,B) is stabilizable.
• The exosystem should be Poisson stable.

Hence, the task it to find gains F ∈ R
m×n, Π ∈ R

n×q,
and Γ ∈ R

m×q such that

• A+BF is asymptotically stable.
• xss(t) = Πω(t) and uss(t) = Γω(t).

Following the results given by Lin and Dai (1996), the
traditional FIB equations are adapted for the descriptor
system (5), therefore the output regulation problem has
solution if and only if the following holds:

EΠS = AΠ+BΓ

0 = CΠ−Q.
(7)

If the previous set of equations is satisfied, the control law
is

ut = Fxt − FΠωt + Γωt. (8)

The next section states the main results of the paper, that
is, to provide LMI conditions for the design of a nonlinear
gain F(xt) (which generalizes the linear one F ) and the
linear mappings Π and Γ.

3. MAIN RESULTS

The task is to design a nonlinear control law

ut = F(xt)xt −F(xt)Πωt + Γωt, (9)

which is a generalization of (8) in the sense that stabiliz-
ing part is nonlinear. Thus, the design is carried out in two
parts: the first one is concerned with the stabilization part
F(xt) while the second involves the linear mappings Π
and Γ. An scheme summarizing the approach is depicted
in Figure 1.

Fig. 1. Diagram of the proposal.

For the stabilization part, let us resume the convex
descriptor model (3), for which the following nonlinear
control law is to be designed:

ut = F(xt)xt, F(xt) = FhH
−1

h , (10)

where

Fh=

2
p

∑

j=1

hj(z(xt))Fj and H−1

h =





2
p

∑

j=1

hj(z(xt))Hj





−1

,

with Fj ∈ R
m×n, Hj ∈ R

n×n, j ∈ {1, 2, . . . , 2p}; note
that Fh and Hh are convex and depend on the same
scheduling functions of (3). The proposed control law
is the so-called non-PDC (Estrada-Manzo et al., 2014;
Bernal et al., 2022). The closed-loop system yields

Ehxt+1 = (Ah +BhFhH
−1

h )xt,

which can be conveniently expressed as

[

Ah +BhFhH
−1

h −Eh

]

[

xt

xt+1

]

= 0; (11)

note that it has the form Wχ = 0 in Lemma 1. With this
in mind, the following result can be stated:

Theorem 3. The origin x = 0 of the system (1), under the
control law (10), is asymptotically stable if there exist
matrices Pj = PT

j ∈ R
n×n, Hj ∈ R

n×n, Fj ∈ R
m×n,

j ∈ {1, 2, . . . , 2p} such that Pj > 0 and LMIs (4) are
satisfied with

Υk
ij =

[

Pj −HT
j −Hj (∗)

AiHj +BiFj Pk − EiPk − PkE
T
i

]

, (12)

for (i, j, k) ∈ {1, 2, . . . , 2p}.

Proof. Consider a Lyapunov function candidate:

V (xt) = xT
t P

−1

h xt, Ph > 0, (13)

Pj=PT
j ∈ R

n×n, j ∈ {1, 2, . . . , 2p}. Its variation is

∆V (xt) = xT
t+1P

−1

h+ xt − xT
t P

−1

h xt < 0. (14)

In order to use Lemma 1, the above inequality can be
expressed as

∆V (xt) =

[

xt

xt+1

]T [

−P−1

h 0
0 P−1

h+

] [

xt

xt+1

]

< 0. (15)

Once again notice that it is in the form of χTQχ < 0 as
in Lemma 1. Thus, (11) and (15) can be put together by
means of Lemma 1:

M
[

Ah+BhFhH
−1

h −Eh

]

+(∗)+

[

−P−1

h 0
0 P−1

h+

]

< 0, (16)

where M ∈ R
2n×n is a free matrix to be pre-selected such

that a set of LMIs arises. Using the congruence property,

that is, pre-multiplying (16) with

[

HT
h 0
0 Ph+

]

and post-

multiplying by its transpose together with M=

[

0
P−1

h+

]

yields
[

−HT
h P

−1

h Hh (∗)
AhHh +BhFh Ph+−EhPh+−Ph+ET

h

]

< 0, (17)
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applying Property 1 gives:
[

Ph −HT
h −Hh (∗)

AhHh +BhFh Ph+−EhPh+−Ph+ET
h

]

< 0.

Finally by means of the relaxation Lemma 2 the desired
result appears. □

The LMIs of Theorem 3 can be improved in terms of decay
rate, that is, the convergence speed (Tanaka and Wang,
2001).The following result provides LMIs for such task.

Corollary 4. The origin x = 0 of the system (1), under the
control law (10), is asymptotically stable with decay rate
α < 1, 0 < α2 < 1 if there exist matrices Pj=P

T
j ∈ R

n×n,

Hj ∈ R
n×n, Fj ∈ R

m×n, j ∈ {1, 2, . . . , 2p} such that
Pj > 0 and LMIs (4) are satisfied with

Υk
ij=

[

−α2HT
j − α2Hj + α2Pj (∗)

AiHj +BiFj Pk − EiPk − PkE
T
i

]

,

(18)
for (i, j, k) ∈ {1, 2, . . . , 2p}.

Proof. It follows similar lines as the one in Theorem 3
but considering ∆V (xt) ≤ (α2 − 1)V (xt). □

The stabilization part of the full control law (9) has been
just developed, now let us provide LMI conditions for the
design of Π and Γ, these gains are going to be designed by
means of the linear approximation (5) together with the
exosystem (6). To this end, let us recall a previous result
given in (Bernal et al., 2012).

Remark 5. Equations can be approximated by an element-
wise minimization problem, i.e., M(x)−N(x) = 0, M(x)
and N(x) being continuously differentiable linear matrix
functions of the decision variable vector x, can be solved
as a minimization problem: min ε > 0 : −ε ≺ M(x) −
N(x) ≺ ε, that is

min ε > 0 :

{

M(x)−N(x)− ε ≺ 0
M(x)−N(x) + ε ≻ 0

,

where ≺ and ≻ stand for element-wise lower-than and
greater-than, respectively.

Remark 6. The solution of the FIB equations (7) can be
approximated by an LMI optimization problem

min ε > 0 such that:

−ε ≺

[

AΠ+BΓ− EΠS 0
0 CΠ−Q

]

≺ ε.
(19)

The following result provides conditions for the output
regulation problem of discrete-time nonlinear descriptor
(1):

Theorem 7. The output of the nonlinear system (1) tracks
a desired signal yr(t) if there exist a nonlinear control
law (9) where the stabilization gain F(x) is computed
from LMI conditions in Theorem 3 and gains Π and Γ are
obtained from the LMI minimization problem in Remark
(6).

4. NUMERICAL EXAMPLES

The proposed results are illustrated with numerical ex-
amples. For both examples, let us consider the harmonic
oscillator as the exosystem:

S =

[

0 1
−1 0

]

and Q = [1 0] . (20)

Example 8. Consider a nonlinear descriptor system (1)
with:

E(xt)=

[

0.9 0.1 + 0.4 cosx1

0.1 + 0.4 cosx1 1.4

]

,

A(xt)=

[

0.2 + 0.12 cosx1 1.6
−0.8 0

]

, B(xt)=

[

0.1
−2− 1.04 sinx1

]

,

with output yt = x1. The nonlinear terms are z1 =
cosx1 ∈ [−1, 1], z2 = sinx1 ∈ [−1, 1], the bounds
have been computed within the region Ω = {x ∈
R

n : |x1| ≤ π}. The convex weighting functions are
w1

0(·) =
(

z11 − cosx1

)

/
(

z11 − z01
)

, w1
1(·) = 1 − w1

0, w
2
0 =

(

z12 − sinx1

)

/
(

z12 − z02
)

, w2
1 = 1−w2

0. LMI conditions in

Corollary 4 are feasible for α2 = 0.99 yielding gains

F1 = [−0.5231 0.1130], F2 = [−0.3400 0.0856] ,

F3 = [−0.3577 0.0510], F4 = [−0.3390 0.0474],

H1 =

[

0.3446 −0.0027
−0.0006 0.0698

]

, H2

[

1.3241 −0.1868
−0.2631 0.1448

]

,

H3 =

[

0.2653 −0.1082
−0.0288 0.0750

]

, H4 =

[

1.3772 −0.2963
−0.1876 0.1291

]

,

P1 =

[

0.3042 −0.0500
−0.0500 0.0719

]

, P2 =

[

0.3723 −0.0736
−0.0736 0.0903

]

,

P3 =

[

0.3390 −0.0722
−0.0722 0.0810

]

, P4 =

[

0.3489 −0.0715
−0.0715 0.0833

]

.

On the other hand, LMIs in Remark 5 are feasible with
ε = 6.8976× 10−12 and gains

Π =

[

1 0
−0.3381 0.4577

]

and Γ = [−0.0796 −0.0134] .

The simulation results for initial conditions x(0) = [0.5 −
0.5]T and ω(0) = [−0.1 0.1]T have been run. Figure 2
shows the output of the system and the reference signal
while Figure 3 plots the tracking error. It can be seen that
regulation is achieved.
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Fig. 2. Output x1 versus reference w1 in Example 8.
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Fig. 3. Tracking error e1 = x1 − w1 for Example 8.

Example 9. Consider the descriptor (1) with matrices

E(xt) =

[

0.8 0.1 + 0.7η
0.1− 0.7η 0.9

]

,

A(xt) =

[

−0.4 0.83

1.01
sinx1

x1

0.2

]

, B =

[

0.5
0

]

,

with η = (1 + x2
2)

−1, the output is yt = x1. Within
the region Ω = {x ∈ R

n : |x1| ≤ π, |x2| ≤ 1} the
nonlinear terms are bounded as follows z1 = η ∈ [0.5, 1]
and z2 = sin x1

x1
∈ [0.990, 1]. The weighting functions are

computed as in (2). The exosystem is the same as before,
with values (20). Once again, the stabilizer is computed
with LMIs in Corollary 4 with α2 = 0.8 and gains

P1 =

[

0.0401 −0.0053
−0.0053 0.0419

]

, P2 =

[

0.0225 −0.0054
−0.0054 0.0314

]

,

P3 =

[

0.0406 −0.0053
−0.0053 0.0421

]

, P4 =

[

0.0237 −0.0054
−0.0054 0.0323

]

,

F1 = [0.0259 −0.0619] , F2 = [0.0352 −0.0495] ,

F3 = [0.0274 −0.0612] , F4 = [0.0394 −0.0493] ,

H1 =

[

0.0330 −0.0065
0.0006 0.0354

]

, H2 =

[

0.0235 −0.0011
−0.0052 0.0300

]

,

H3 =

[

0.0333 −0.0064
0.0005 0.0355

]

, H4 =

[

0.0248 −0.0008
−0.0051 0.0305

]

.

0 1 2 3 4 5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.5 1 1.5 2

-0.4

-0.2

0

0.2

Fig. 4. Output x1 vs reference w1 in Example 9.

0 1 2 3 4 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Fig. 5. Tracking error e1 = x1 − w1 for Example 9.

The mappings are computed by means of Remark 5,
the minimization problem therein is feasible with ε =
1.4511× 10−12 and matrices:

Π =

[

1 0
0.3976 −1.2106

]

and Γ = [2.0768 4.2458] .

With initial conditions x(0) = [−0.8 0.8]T and ω(0) =
[0.1 − 0.1]T , simulation results are shown in figures 4
and 5. As expected, output regulation takes place.

5. CONCLUSION

It has been presented the design of a nonlinear regulator
for discrete-time nonlinear descriptor systems; thus, the
resulting closed-loop system asymptotically tracks a refer-
ence generated by an exosystem. The designing conditions
are in terms of LMIs, which can be efficiently solved
by convex optimization techniques already available in
commercial software. Two numerical examples illustrate
the performance of the proposal. As future work, a full
nonlinear regulator is to be designed.
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