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Monterrey, 64849, N. L., México.

Abstract: We investigate the synchronization of bidirectionally coupled nonidentical
chaotic systems. We propose a design of their coupling to achieve synchronization that
takes into consideration the variable structure nature of the systems, and guarantees the
stability of an identical synchronization manifold for nonidentical systems using output
feedback linearization. We illustrate our results with numerical simulations of well-known
benchmark chaotic systems.
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1. INTRODUCTION

Two or more systems are said to be synchronized if
through a subtle interaction between them results in
their behaviors being correlated in time. From this
point of view many different types of synchronized
behaviors can be defined including: identical, phase,
and generalized synchronization to mention but a few
(Pikovsky et al., 2001; Boccaletti et al., 2002). In
the simplest case, two subsystems are unidirection-
ally connected, which is usually called drive-response
configuration (Pecora and Carroll, 1990). In this case,
the interconnection can easily be interpreted, from
the viewpoint of control theory, as a design problem
where the coupling term in the response subsystem
can be obtained using different control methodologies
like robust (Almeida et al., 2006), adaptive (Hong
et al., 2001) and optimal design (Pan and Yin, 1997)
techniques. Alternatively to a drive-response configu-
ration, two dynamical systems can be bidirectionally
coupled. In general terms, in this configuration the
synchronization problem is more complex since both
subsystems depend on each other through their in-
teractions (Boccaletti et al., 2002). The solutions to
bidirectional synchronization problem has been natu-
rally extended to the context of dynamical networks
(Boccaletti et al., 2006), where problems like consen-
sus and pinning are significant research topics (Su and
Wang, 2013).

In this contribution we propose a synchronization
scheme for bidirectionally coupled smooth nonlinear
systems with full relative degree. Our proposal consists
on a nonlinear feedback law for synchronization of
bidirectionally coupled systems with parameter mis-

match and non-identical possibly non-smooth compo-
nents.

The remainder of this contribution is organized as
follows. Section 2 contains the bidirectional synchro-
nization problem description. Section 3 deals with
the proposed synchronization strategy. In Section 4
some numerical results of applying our proposed syn-
chronization strategy to well-known chaotic systems.
Finally we conclude with a discussion and some future
work.

2. SYSTEMS PRELIMINARIES

Consider two systems of the form

ẋj(t) = F j(xj(t)) +Gj(xj(t))uj(t) (1)

yj(t) =Hj(xj(t)) for j = 1, 2.

where xj(t) ∈ R
n are state vectors, for j = 1, 2 and

vector fields F j(xj(t)) and Gj(xj(t)), states uj(t) ∈ R

and F j(xj(t)) possibly describing chaotic behavior.

Definition 1. (State synchronization) For two systems
of the form (1) with chaotic behavior and possibly non-
smooth vector fields, that are coupled together. Syn-
chronization is determine from the state-synchronized
error

e(t) = x1(t)− x2(t) (2)

Then, if
lim
t→∞

||e(t)|| = 0 (3)

the systems in (1) are (asymptotically) identically
synchronized.

The systems under consideration can be written in
normal form. In particular, if they are full relative
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degree a more convenient representation is possible.
To this end, we give the following definition.

Definition 2. (Full relative degree) System (1) is said
to have full relative degree if

(i) LGL
k
FH(x(t)) = 0, k = 0, 1, ..., n− 2

(ii) LGL
n−1
F H(x(t)) ̸= 0

where LFH(x) = ∂H(x(t))
∂x

F (x(t)) denotes the Lie

derivative of H(x(t)) along F(x(t)), with L0
FH(x(t)) =

H(x(t)).

Assuming the systems in (1) is full relative degree they
can be written as:

Theorem 1. The following system has full relative
degree

ẋi(t) = xi+1(t), (i = 1, ..., n− 1) (4)

ẋn(t) = f(x(t)) + g(x(t))u(t)

y(t) = x1(t)

for f(x(t)) and g(x(t)) ̸= 0 scalar functions and

x(t) = [x1(t), x2(t), ..., xn(t)]
⊤

the state vector.

Proof 1. The proof of Theorem 1 is straightforward
from Definition 2. Let us define

F (x(t)) =









x2(t)
x3(t)
...

f(x(t))









;G(x(t)) =









0
0
...

g(x(t))









(5)

and H(x(t)) = h(x(t)) = x1(t), in order to prove
condition i) from definition 2, we find

LFH(x(t)) = x2(t)

L2
FH(x(t)) = x3(t)

...

Ln−2
F H(x(t)) = xn−1(t)

LGL
n−2
F H(x(t)) = 0

Condition ii) is proven as follows

Ln−1
F H(x(t)) = xn(t)

LGL
n−1
F H(x(t)) = g(x(t)) ̸= 0

Let a system like (1) have full relative degree. Then
it can be rewritten in its normal form through the
following coordinates change xj = ϕ(x) for system j
(Isidori, 1985; Nijmeijer and Van der Schaft, 1990).

xi(t) = ϕi(x(t)) = Li−1
F FH(x(t)) (6)

for i = 1, 2, ..., n. In the following sections we proposed
a solution for the synchronization problem for full
relative degree systems with chaotic dynamics with
possibly nonsmooth components.

3. SYNCHRONIZATION STRATEGY

Consider a couple of systems of the form:

ẋj
i (t) = xj

i+1(t), (i = 1, ..., n− 1) (7)

ẋj
n(t) = f j(xj(t)) + gj(xj(t))uj(t)

yj(t) = xj
1(t)

for j = 1, 2, xi(t) ∈ R, i = 1, 2..., n, and f j()
and gj() are scalar functions. We define the state
synchronization error as in (2), then the dynamics for
the synchronization error can be expressed by

ėi(t) = ei+1(t), (i = 1, ..., n− 1) (8)

ėn(t) = f(x1(t), x2(t)) + g(x1(t), x2(t))u(t) (9)

y(t) = e1(t) (10)

where f(x1(t), x2(t)) = f1(x1(t))− f2(x2(t)) and
g(x1(t), x2(t)) = g1(x1(t))− g2(x2(t)).

In this sense, the synchronization error dynamics are
again in normal form which facilities the design of
the coupling controller such that synchronization is
achieved.

3.1 Synchronizability

A system like (8)-(10) with functions involving states
from different systems should be analyzed to assure
controllability. For error synchronization dynamics, let
us now define:

F (e) =









e2
e3
...

f(x1, x2)









;G(e) =









0
0
...

g(x1, x2)









(11)

and extended state x =
[

(x1)T (x2)T
]T

Let us give
some preliminary definitions (Nijmeijer and Van der
Schaft, 1990)

Definition 3. (Lie Brackets) (Isidori, 1985) Consider
vector fields F (e) and G(e) in R

n according to (5).
Then the Lie Bracket operation generates a new vector
field:

[F,G] =
∂G

∂x
F −

∂F

∂x
G (12)

Higher order Lie Brackets can be obtained as

(ad1F , G) = [F,G]

(ad2F , G) = [F, [F,G]]

...

(adkF , G) = [F, (adk−1
F , G)]

Thus, we introduce the following proposition

Proposition 1. (Synchronizability) The system defined
by (8)-(10), is locally accessible about e = 0 if the
accessibility distribution C spans n space. C is defined
by:

C = [g, [adkF g]] (13)

for k = 1, 2, ..., i.e. distribution C is involutive.

This will be considered as the synchronizability condi-
tion further on.
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3.2 The synchronization law

Let us define the error vector e = [e1 e2 ... en]
T
, and

some constant vector a = [−an −an−1 ... −a1]
T
, such

that the polynomial λn + a1λ
n−1 + ...+ an is strictly

Hurwitz. Then, provided synchronizability condition a
synchronization control law can be stated for (8)-(10)
in the following form

u(t) =
aT e− f(x1, x2)

g(x1, x2)
(14)

Application of (14) over (8)-(10) leads to the following
linear, asymptotically stable dynamics:

ėi = ei+1, (i = 1, ..., n− 1) (15)

ėn = aT e

y = e1

which can be expressed as ė = Ae whose equilibrium
point e = 0 is asymptotically stable, meaning that
synchronization error vanishes when t → ∞.

4. SIMULATION RESULTS

In the following subsections we will describe some
simulation results for synchronization law proposed
applied to several well-known chaotic systems.

4.1 Continuous case

For simulation purposes we have chosen a slightly
different system from one of the circuits proposed in
(Sprott, 2000) which may exhibit chaotic behavior for
certain set of parameters. Circuit chosen is of the form:

...
x = −µẍ+ ẋ2 − x+ βu (16)

which exhibits chaotic behavior for µ = −2.017 and
β = 0, Lyapunov exponents are (0.055, 0,−2.072). It
is easy to show that (16) has full relative degree by
selecting output y = x, thus a couple of Sprott-like
circuits can be written as follows

ẋj
1 = xj

2 (17)

ẋj
2 = xj

3

ẋj
3 =−xj

1 + (xj
2)

2 + µjx
j
3 + βju

yj = xj
1

for j = 1, 2. Let us define the error e1 = x1
1−x2

1 = y1−
y2, then the error dynamics are depicted as

ė1 = e2 (18)

ė2 = e3

ė3 =−e1 + e2(e2 + 2x2
2) + µ1x

1
3 − µ2x

2
3 + β̃u

for β̃ = β1 − β2 and β1 ̸= β2. Systems (17) show
chaotic behavior for µj = −2.017, βj = 0, (j = 1, 2)

and initial conditions xj(0) = [0 0 1]
T
.

Clearly, if µ1 = µ2 and x1(0) = x2(0), circuits
are perfectly synchronized. In order to prove our

Fig. 1. Time evolution for x1 variable of system (17)
for µ1 = −2.017

proposal, we use µ1 = −2.017 and µ2 = −2.02. Fig.
1 shows solution for x1 for system 16. Although this
parameter mismatch appears to be non significant,
time responses for both systems diverge considerably
as shown in Fig. 2.

Fig. 2. Error for x1 of systems (17) with respect to
time considering parameter mismatch

In order to synchronize the states (and outputs) of
both systems e → 0, we propose the synchronization
law:

u =
1

β̃
[aT e+ e1 − e2(e2 + 2x2

2)− µ1x
1
3 + µ2x

2
3] (19)

For demonstration purposes, let us now choose a =

[−6 −11 −6]
T

for behavioral modes located at λ =
−1,−2,−3. For this synchronization law, an asymp-
totically stable equilibrium point is expected for the
closed loop system.

Synchronization law was applied at t = 70s and its
time evolution is depicted in Fig. 3. Synchronization
error is shown in Fig. 4.
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Fig. 3. Synchronization law for (17)

Fig. 4. Synchronization error for systems (17)

4.2 Non-identical systems

In this section we deal with the synchronization of
a couple of different systems applying the proposed
strategy. We choose a normal-form Lorenz system and
a Sprott system. Lorenz dynamics can be described as

ẋ1 = σ(x2 − x1) (20)

ẋ2 = ρx1 − x2 − x1x3

ẋ3 = x1x2 − βx3 + u

y = x1

It is well known that for parameters σ = 10, ρ = 28
and β = 8/3 it shows chaotic behavior. Clearly, system
(20) is not in the form (??), but it can be expressed
in normal form by using coordinates transformation
shown in (??), i.e. x1 = ϕ(x). Thus, for the Lorenz
system, new coordinates are:

ϕ1(x) == x1 (21)

ϕ2(x) = σ(x2 − x1)

ϕ3(x) =−σ2(x2 − x1) + σ(ρx1 − x2 − 20x1x3)

leading to the following dynamics

ẋ1
1 = x1

2 (22)

ẋ1
2 = x1

3

ẋ1
3 = f1(x1) + g1(x1)u

y = x1
1

for

f1(x1) = (ρ− 1)σx1
2 − (23)

(σ + 1)x1
3 − (x1

1)
2(x1

2 + σx1
1)−

(βx1
1 − x1

2)
[

σ(1− ρ)x1
1 + (σ + 1)x1

2 + x1
3

x1
1

]

and
g1(x1) = −σx1

1 (24)
System (22) is now in normal form. Let us now
consider another system to synchronize with:

...
x = −µẍ− ẋ+ x− x3 + βu (25)

Equation (25) represent an electronic circuit described
in Sprott (2000) and exhibits chaotic behavior for
µ = 0.39 and β = 0. Normal form for the system
is shown below

ẋ2
1 = x2

2 (26)

ẋ2
2 = x2

3

ẋ2
3 =−µx2

3 − x2
2 + x2

1 − (x2
1)

3 + βu

y2 = x2
1

Synchronization error is defined as e1 = y1 − y2 =
x1
1−x2

1, leading to the following synchronization error
dynamics

ė1 = e2 (27)

ė2 = e3

ė3 = f(x1, x2) + g(x1, x2)u

with f(x1, x2) = f1(x1)− f2(x2) and g(x1, x2) = β −
σx1

1. Output error between both systems is shown in
Fig. 5. Thus, a synchronization law can be stated in

Fig. 5. Time evolution for error between Lorenz and
Sprott systems in open loop

the form

u =
aT e− f(x1, x2)

g(x1, x2)
(28)
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For demonstration purposes, we apply synchronization
law at t = 100s, Fig. 6 shows time response for e1.

Fig. 6. Error e1 between (22) and (26) with synchro-
nization law applied at t = 100s.

5. CONCLUDING REMARKS AND FUTURE
WORK

The proposed strategy has shown successful syn-
chronicity for a class of chaotic systems and it can be
implemented for systems depicting some nonsmooth-
ness features. It has been implemented for systems not
in normal form but fully linearizable with coordinates
transformation. Future work is focused in synchro-
nization for more than two systems, and on robust
synchronization using Internal model controller.
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