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Avanzadas, Instituto Politécnico Nacional, Mexico City, México
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Abstract: The study of pendulum-based systems has been a subject of interest, from the cart-
pendulum and the Kapitza pendulum, among others, which are the most studied. However,
one of the less addressed pendulums is the variable mass pendulum, which involves a difficulty
not common in other types of systems. Due to this, the modelling of a variable mass system is
carried out using the Euler-Lagrange formalism, thus finding a nonlinear system. The dynamic
modelling of this system does not delve into the characteristics of variable mass but presents
the intrinsic difficulties of such a system.
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1. INTRODUCTION

In the study of dynamic systems within educational insti-
tutions, nonlinear systems are often approached through
the analysis of pendulums. Throughout the history of
physics, this system has been studied by great pioneers
such as Galileo Galilei, who laid much of the groundwork
for what we now know as kinematics (Erlichson, 1999;
Kossovsky, 2020). The modelling of a simple pendulum
system poses a significant challenge with regard to its
analytical solution. To simplify the problem, certain con-
straints can be introduced; however, variations of the
model can also be created to study different phenomena,
further increasing the system’s complexity (Yu et al.,
2024).

Among the wide range of pendulum model variations
are the double pendulum, the spring pendulum, the pen-
dulum on a moving cart, and others. One of the least
studied systems is the variable mass pendulum, an un-
common variation generally not covered in most academic
physics courses. In conventional physics courses taught at
secondary education institutions, examples where mass
variation is present are generally not shown (Matthews,
2000; Dandare, 2018; Femandes et al., 2022). The mass is
typically assumed to be constant, leading these examples
to go unnoticed by students. This oversight means stu-
dents miss the opportunity to explore intriguing results
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that could stimulate further investigation into these or
similar phenomena. Introducing variable mass pendulum
systems in physics curricula could thus enhance students’
understanding to engage them more deeply with the study
of dynamic systems (Nanjangud and Eke, 2018).

The challenges faced when working with variable mass
system models are complex. These range from the func-
tion that describes the mass variation, the function that
describes the position of the system’s centre of mass, and
other dependent parameters, not to mention the prac-
tical implementation of the experiment (Eke and Mao,
2002). Setting a variable mass system in motion and
being able to measure the parameters in a controlled
environment represents a significant practical challenge
(Fernández Guasti, 2007).

Another key aspect of working with such systems is the
control of the system itself. There are variables that de-
pend on others (Xie et al., 2024), and the slightest change
or disturbance could affect the behaviour, potentially
leading to chaos. Therefore, controlling such a system is
a complex task, but one that could serve as an incentive
to continue studying these kind of systems.

1.1 Pendula

The history of the pendulum dates back to around the
1600s when Galileo Galilei observed the peculiar motion of
a chandelier and noted its extremely periodic oscillations
(Bedini, 1992). This observation motivated him to study
pendulums in depth (Teerikorpi et al., 2009). It is note-
worthy that, although Galileo studied them extensively,
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he did not discover the pendulum; rather, he dedicated
time to its study, making him the first person to formalise
the study of this system. However, the simple pendulum
had applications long before Galileo’s studies. Evidence
has been found of pendulums used in primitive seismo-
graphs, which fundamentally relied on the behaviour of
the pendulum (Fréchet and Rivera, 2012).

The study of oscillating systems is vast, with the simple
pendulum being the quintessential model for initiating the
analysis of these systems. However, it is a highly idealised
model that lacks the ability to explain a large number of
involved phenomena. The wide variation in the behaviours
of different types of pendulums led to the development of
new systems and mathematical models that more closely
resemble observed phenomena (Domadzra et al., 2024).
The second most common example is the inverted pendu-
lum, which, despite behaving very similarly to the simple
pendulum, has distinguishing characteristics that make
it mathematically incompatible with the simple model.
The list of pendulum types is extensive, including the
Foucault pendulum, double pendulum, triple pendulum,
inverted pendulum, and spring pendulum (Shinbrot et al.,
1992; Awrejcewicz et al., 2007; Diniz, 2023; Szuminski and
Maciejewski, 2024), among others. However, there is a
much unknown and non-studied model: the variable mass
pendulum, which is the focus of this study.

1.2 Variable mass systems

Most physical systems typically have the characteristic of
maintaining certain quantities constant throughout their
behaviour, such as height, volume, moments of inertia,
and length. In most cases, the commonest constant quan-
tity in the majority of systems is mass, as it usually does
not vary over time, at least not within the period of study
during which the systems are analysed, or due to the
insignificance of the change. When referring to variable
mass systems, it encompasses all systems in which the
mass does not remain constant, changing as a function of
time. This leads to mathematical complications regarding
the description of the system’s behaviour (Eke, 1998; Eke
and Mao, 2002; Gui-cheng, 2010). The following systems
are examples of variable mass models:

• Airplanes

• Rockets

• Ships

• Automobiles

• Helicopters

2. DESCRIPTION OF THE MODEL

The system under consideration models a pendulum con-
sisting of a rigid bar and a cylindrical container filled
with fluid, where the bottom has a hole allowing the fluid
(in this case water) to exit. The length of the cylinder is
significantly greater than its diameter, designed to prevent
the fluid surface inside from becoming parallel to the hor-
izontal. Instead, the goal is to maintain the water surface
as parallel as possible to the circular faces of the cylinder,
as shown in Figure 2. This preserves cylindrical symmetry,

crucial for ensuring that the fluid and the centre of mass
of the cylinder (when full - Figure 3, half-full - Figure
2, empty - Figure 1) move along the cylinder’s axis of
symmetry.

The pendulum is suspended by an inextensible cable of
length “l” attached to the geometric centre of the non-
perforated circular face. It is assumed that the cable does
not bend at any point during the motion.

Fig. 1. Cross-sectional view of the empty model

Fig. 2. Cross-sectional view of the model at half capacity

Fig. 3. Cross-sectional view of the model at full capacity.

3. MODELLING USING THE EULER-LAGRANGE
FORMALISM

The system under consideration will be modelled through
the Euler-Lagrange formalism. The system consists of the
following parameters: the length of the cable (from which
the cylinder hangs and is considered constant), denoted as
l; the variable distance from the upper face of the cylinder
to the centre of mass, denoted as r (thus, the amount
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of material inside the cylinder will change and hence
the moment of inertia); and the angle of rotation of the
cable relative to the vertical axis. Thus, the generalised
coordinates of the system are the rotation angle θ and
the distance r from the cable to the centre of mass, as
depicted in Figure 4.

Fig. 4. Model parameters.

In Figure 5, the projections of the centre of mass position
onto the Cartesian coordinate system are shown along the
X-Y axes.

Fig. 5. Position projections with respect to the angle θ.

The rotational kinetic energy obtained is shown in Equa-
tion 1.

T =
1

2
Iθ̇2 (1)

Using the theorem of parallel axes with respect to the axis
of rotation and considering the radial velocity due to the
displacement of the centre of mass, the system’s kinetic
energy is described by Equation (2).

T =
1

2
θ̇2(I +m(l + r)2) +

1

2
mṙ2 (2)

Equation (3) represents the potential energy of the sys-
tem.

U = −mg(l + r) cos θ (3)

Recalling that the Lagrangian of a mechanical system
is defined as the difference between kinetic energy and
potential energy, as shown in Equation (4).

L = T − U (4)

The Lagrangian of the system is finally described by
Equation (5).

L =
1

2
θ̇2(I +m(l + r)2) +

1

2
mṙ2 +mg(l + r) cos θ (5)

The Euler-Lagrange equation for conservative systems is
shown in Equation (6).

∂L

∂q
−

d

dt

∂L

∂q̇
= 0 (6)

Applying the Euler-Lagrange equation with respect to the
parameters θ and θ̇ yields Equation (7).

θ̈[I +m(l + r)2] + θ̇[İ + 2mṙ(l + r)+

ṁ(l + r)2] +mg(l + r) sin θ = 0
(7)

Similarly, applying the Euler-Lagrange equation with
respect to the parameters r and ṙ results in Equation
(8).

mr̈ + ṁṙ − θ̇2m(l + r)−mg cos θ = 0 (8)

Expressing the equations of the system in matrix form
gives Equation (9).

[

I +m(l + r)2 0
0 m

] [

θ̈
r̈

]

+

[

İ +mṙ(l + r) + ṁ(l + r)2 mθ̇(l + r)

−mθ̇(l + r) ṁ

] [

θ̇
ṙ

]

+

[

mg sin θ(l + r)
−mg cos θ

]

= 0

(9)

Using Equation (10),

[

Ḋ − 2C
]

= −
[

Ḋ − 2C
]T

(10)

results in Equation (11).

[

Ḋ − 2C
]

=

[

−İ − ṁ(l + r)2 −2mθ̇(l + r)

2mθ̇(l + r) −ṁ

]

(11)

Finally, it can be observed that the matrix obtained in
the last equation does not satisfy the property shown
in Equation (10). However, it should be noted that if
the model had a constant mass, the following expression
would be obtained for Equation (11):

[

Ḋ − 2C
]

=

[

0 −2mθ̇(l + r)

2mθ̇(l + r) 0

]

(12)

Equation (12) is an expression that does satisfy the
property of mechanical systems.
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A further discussion on the non-compliance of the me-
chanical modelling property is given in the conclusions.
Now, representing the model in state-space form, the
following state variables are assigned:

x1 = θ (13)

x2 = θ̇ (14)

x3 = r (15)

x4 = ṙ (16)

From Equations (9), (13), (14), (15), and (16), the follow-
ing functions are obtained:

ẋ1 = x2 (17)

ẋ2 =

[

−İ − ṁ(l + x3)
2 −mx4(l + x3)

I +m(l + x3)2

]

x2

−
mx2x4(l + x3)

I +m(l + x3)2
−

mg sinx1(l + x3)

I +m(l + x3)2

(18)

ẋ3 = x4 (19)

ẋ4 = x2

2
(l + x3)−

ṁx4

m
+ g cosx1 (20)

After obtaining Equations (17), (18), (19), and (20), we
proceed to calculate the equilibrium points of the system

x1δ
= 0 (21)

x2δ
= 0 (22)

x3δ
= x̄3 (23)

x4δ
= 0 (24)

Linearising around the equilibrium points described in
Equations (21), (22), (23), and (24) yields the matrix
which describes the autonomous system, as shown in
Equation (25).

A =















0 1 0 0

−mg(l + x3)

I +m(l + x3)2
−İ − ṁ(l + x3)

2

I +m(l + x3)2
0 0

0 0 0 1

0 0 0 −
ṁ

m















(25)

Finally, after performing the Taylor Series linearisation,
the following state-space model is obtained in Equation
(26).





ẋ1

ẋ2

ẋ3

ẋ4



 =











0 1 0 0

−mg(l + x3)

I +m(l + x3)2
−İ − ṁ(l + x3)2

I +m(l + x3)2
0 0

0 0 0 1

0 0 0 −

ṁ

m















x1

x2

x3

x4



+





0
1
0
0



µ

(26)

And the output of the system is defined through the
Equation (27).

y = [1 0 0 0]







x1

x2

x3

x4






(27)

4. CONCLUSIONS

In this work, the dynamic modelling of a variable mass
pendulum was addressed, finding unusual issues in con-
stant mass systems. A verification of the model through
the skew-symmetric property of the inertia and Coriolis
matrices is performed.

It was observed that the final matrix obtained did not
satisfy the property described in Equation (11). This
discrepancy may be attributed to the non-constant nature
of the mass and moment of inertia. If these quantities were
indeed constant, the terms in the first row - first column
and second row - second column of the matrix would
be null, thereby fulfilling the aforementioned property.
The dynamic behaviour of the system, particularly with
respect to the fluid motion and its impact on the overall
system dynamics, warrants further investigation. This
could involve the development of more sophisticated fluid
dynamics models and their integration into the existing
framework.

Some potential areas for improvement include deriving
the mathematical expression governing the fluid variation
within the cylinder, thus enabling the incorporation of
time-dependent parameters such as mass and moment
of inertia, among others. Furthermore, additional phe-
nomena could be taken into account, such as centrifugal
acceleration and its influence on the expulsion of mass
from the cylinder.

Future work in this area should focus on implement-
ing control strategies for the system, leveraging ad-
vanced techniques specifically designed for highly nonlin-
ear systems. This may include adaptive control methods,
robust control algorithms, or model predictive control
approaches that can accommodate the system’s time-
varying parameters and complex dynamics.

Additionally, experimental validation of the theoretical
model would be beneficial to assess its accuracy and
identify any discrepancies between predicted and observed
behaviour. This empirical data could then be used to
refine and improve the model, potentially leading to more
accurate simulations and more effective control strategies.
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