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Abstract: Some mathematical models of infectious diseases or cancer use time delays to
consider the influence of past states in their evolution, models that include distributed delays
are more realistic since they take into account all the states in a time interval in the past.
In cancer models it is convenient to know the parameter ranges for which the model is stable
in the presence of a tumour. We use tools like an stability criterion depending on the delay
Lyapunov matrix and a computational program to determine the roots of the characteristic
equation of the linearized model.
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1. INTRODUCTION

Mathematical models are used in all branches of science
and engineering as they are a resource that allows si-
mulations of economic, physical, chemical and biological
phenomena in different scenarios and without the need
for specialized equipment. Mathematical models allow
evaluating and understanding the behavior of the mo-
deled phenomena as well as assessing the complexity of
the systems through the study of the effect produced
by changes in the model and to discard hypotheses be-
fore executing experiments in a laboratory. In biological
systems, models help to understand the interactions and
behavior of biological entities such as cells, tissues, organs
and organisms. For example, the responses of the immune
system and the evolution of diseases within an organism
by studying populations of viruses, bacteria or malicious
cells to the host, another approach is the study of the
spread of infectious diseases such as measles, chicken
pox, mumps, influenza and other viral diseases within a
population.

Thanks to mathematical modeling and computation, it
has become possible to simulate biological systems that
are considered particularly complex because of the large
number of variables involved and the need to recalculate
the responses repeatedly during the simulation time (Da-
gasso et al., 2021).

One equation employed for the modelling of diseases
is the classical logistic equation introduced by the Bel-
gian mathematician Pierre Verhulst to study population
growth. In this model the population is neither allowed to
grow out of control nor grow or decay constantly (Abell
and Braselton, 2014).

The lag between an individual gets infected and the
reaction of the immune system varies and can impact in
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the evolution of the disease in the host (Dagasso et al.,
2021).

The introduction of a delay into the classical logistic
equation results in:

u̇(t) = m (1− au(t− τ))u(t), (1)

where a characterizes the resistance to the external envi-
ronment, m is called the Malthusian coefficient which is
the intrinsic population growth and τ is the delay that
describe the time it takes for pathogens to start to mul-
tiply. This equation describes the population dynamics
(Kashchenko, 2021; Kuang, 1993).

The model (1) is useful to describe oscillations in the
dynamics in the case where a single species is studied
without the presence of predators. However, integro-
differential equations like the logistic equation with dis-
tributed delay defined in (2) allows describing the evolu-
tion of the population size in a way closer to reality.

ẏ(t) = py(t)

(

1−
1

K

∫ t

t−τ

y(s)G(t− s)ds

)

, t > t0. (2)

In this case, the state derivative depends on all the states
of y(t) after the initial moment t0, p is the intrinsic
growth of the population and K is the environmental
carrying capacity which is defined as the species’ average
population size in a particular habitat considering the
necessary elements to support the species. The delay is
continuously distributed between t and t− τ , this means
that model (2) has a fixed time lag or finite memory
(Rihan, 2021).

Our goal is to use the tools developed for the stability
analysis of time delay systems in the analysis of a particu-
lar model of prostate cancer involving distributed delays
and thus obtain parameter vales for which the disease
remains in a tumour-dormancy state. We illustrate our
results through examples where we obtain stability maps
in the space of the selected parameters. As cancer is
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a complex disease, this kind of analysis can be useful
for understanding the effect of parameter changes and
their relation with tumour-dormancy states, which can
be used for designing administration protocols for medical
treatments that allow driving the disease to a desirable
stable state and attempt to eliminate tumor cells.

2. DELAY EQUATIONS MODELLING CANCER

The immune system is a network of cells and signals that
respond to the presence of pathogens and protect the
body from cancer cells. It monitors substances normally
found in the body, if the system detects an unrecognized
new substance then proceed to attack it. The substances
that cause a response of the immune system are called
antigens. The mission of the immune system is to destroy
everything containing antigens, in fact, it considers any
foreign substance as an antigen. The immune system is
better at recognizing and attacking pathogens than cancer
cells. Pathogens are easily detectable due to certain types
of proteins on their outer surfaces that normally are not
found in the human body. In contrast, cancer cells and
normal cells show fewer differences even though they also
have unusual substances on their outer surfaces (Rihan
et al., 2014b).

Several mathematical models have been obtained and
used to estimate important biological parameters, to un-
derstand certain behaviours both of tumours and of the
immune response. These models also have been used to
make predictions, however, the dynamics of the immune
response to tumours in vivo is complex and some reac-
tions are difficult to predict and understand. The reasons
of the capabilities of new tumours of being able to hide
from the immune system and grown out of control are still
unknown Kuznetsov et al. (1994). Mathematical models,
using ordinary, partial, and delay differential equations,
play an important role to understand how immune cells
and cancerous cells evolve and interact over time (Rihan
et al., 2014b,a).

Cancer is one of the most challenging problems of mod-
ern medicine and is a disease with high mortality rates
worldwide. Some studies of cancer are focused on un-
derstand the interactions between tumor cells and the
immune system. Treatments for cancer include chemo-
therapy, surgery, radiation and immunotherapy. Chemo-
therapy kills both the cancerous and healthy cells making
the patient susceptible to opportunistic infections. Com-
bination of chemotherapy and immunotherapy protects
the patient from infections, as well as boost their immune
system to fight cancer (Rihan et al., 2014a).

The called tumour-dormancy is a state in which poten-
tially lethal tumor cells persist for a long period of time
with little or no increasing population. It is assumed that
the population does not increase due to the absence of
some growth factor or that the fast-growing cells are
eliminated at a rate equal to the rate at which they were
generated (Kuznetsov et al., 1994).

3. PROSTATE CANCER MODEL

Some research groups focus on a particular cancer type to
develop and improve mathematical models. We focus in a

prostate cancer model including distributed delays since
with this type of delays all states from a point in the past
to the present time are considered, this property is more
realistic than punctual delays, were certain states in the
past are taken. In Turner et al. (2021), a nonlinear model
for prostate cancer with distributed delay is presented:

Ȧ = γ(Amax −A)− µA(A−Amin) + κN,

L̇ =(1− kpα(A))F (A)L

(

1−

∫

0

−τ

L(t+ θ)
ω(θ)

ηk
dθ

)

− δLL− ktα(A)L,

Ṅ = kpα(A)F (A)L

(

1−

∫

0

−τ

L(t+ θ)
ω(θ)

ηk
dθ

)

+ ktα(A)L− δNN
2 − µNN,

(3)
here ω(θ) is the delay kernel or delay distribution which
is usually taken as a constant or an exponential function.
For simplicity, the time dependency of variables A(t),
L(t), N(t) and their derivatives is omitted. The model
considers the androgen concentration in the environment
A, the androgen dependent Lymph Node Carcinoma of
the Prostate (LNCaP) cells L, and the neuroendocrine
androgen independent cells N . They study the androgen
concentration because it has been observed that this
hormone stimulates the prostate tumour growth. It has
also been observed that some LNCaP cells change (trans-
differentiate) to neuroendocrine cells, possibly caused by
low androgen levels. This change is aimed at secreting
androgens or other anabolic hormones to promote tumor
growth.

The first equation of (3) represents the dynamics of
androgen, Amin is the minimum androgen concentration
for tumour growth, Amax is the maximum androgen
concentration of the system and satisfies Amax > Amin.
The model considers that androgen can be produced from
endocrine glands like adrenal glands and kidneys, with
production rate γ. The depletion of androgen depends on
µA which is the maximum depletion rate and assumes
a minimum threshold of androgen to sustain the cancer.
The equation also considers androgen secretion by N cells
with secretion rate κ.

The second equation of (3) describes the dynamics of
L cells, assumes asymmetric cell division, apoptosis at
rate δL, transdifferentiation into N cells at maximum
rate kp during growth and maximum rate kt when they
are mature. Transdifferentiation depends on the androgen
concentration through function α(A) = rAe−aA with
gradient of the differentiation increase r and inverse of
the maximum differentiation rate a. Proliferation of L
cells is governed through

F (A) = βp

(

1−
Amin

A

)

,

here βp is the maximum proliferation rate of L, the growth
of L is limited by the population density and distributed
over a past time interval τ . The term L(t+θ) is the delay
term for L cells, and ηk is the carrying capacity of the
environment.

Finally, in the third equation of (3), the growth of N
cells depends on the production by asymmetrical cell
division and transdifferentiation of L cells. The death
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rate has a linear term for apoptosis with maximum rate
µN and a quadratic term that represents the intraspecific
competition for space and resources at rate δN .

For biological representation, all parameters are consi-
dered to be positive and initial conditions are positive
continuous functions defined for θ ∈ [−τ, 0] as

ϕ(θ) = [ϕ1(θ), ϕ2(θ), ϕ3(θ)]
T = [A(θ), L(θ), N(θ)]T .

The proportion of L cells produced by asymmetric di-
vision must satisfy 0 < 1 − kpα(A) 6 1 ∀A, and
αmax = re−1/a, thus, we have the condition kpαmax 6 1.

3.1 Equilibrium points

In Turner et al. (2021), two equilibrium points of system
(3) were detected; A tumour-free equilibrium point E1,
and a tumour-present equilibrium point E⋆ which can be
considered a tumour-dormancy state. The study of the
equilibrium points of system (3) and their stability led to
the following result.

Theorem 1. (Turner et al. (2021)). System (3) always ad-
mits a tumour-free equilibrium E1 at

E1 = (A1, L1, N1) =

(

γAmax + µAAmin

γ + µA
, 0, 0

)

,

and if the conditions

R0 =
A1 (δL + ktα(A1))

βp (A1 −Amin) (1− ktα(A1))
6 1, A1 >

1

a
,

are satisfied, then system (3) admits a tumour-present
equilibrium E⋆ = (A⋆, L⋆, N⋆) with coordinates given by
the solution for A⋆ > A1 of the nonlinear equation:

δN
κ2

(

((γ + µA)A
⋆ − (γAmax + µAAmin))

2

+
κµN
δN

((γ + µA)A
⋆ − (γAmax + µAAmin))

)

−
ηk
∆

(

1−
A⋆ (δL + ktα(A

⋆))

βp (A⋆ −Amin) (1− ktα(A⋆))

)

×

(

δL + ktα(A
⋆)

1− kpα(A⋆)
− δL

)

= 0,

and

L⋆ =
ηk
∆

(

1−
A⋆ (δL + ktα(A

⋆))

βp (A⋆ −Amin) (1− ktα(A⋆))

)

,

N⋆ =
(γ + µA)A

⋆ − (γAmax + µAAmin)

κ
,

with ∆ =
∫

0

−τ
ω(θ)dθ.

3.2 Linearized model

Since system (3) is nonlinear it is necessary to linearize
it to apply some standard methods for the analysis of its
stability, for example, frequency strategies. The linearized
version of (3) is analyzed around a generic equilibrium
Ē =

(

Ā, L̄, L̄
)

. Using the change of variables x1(t) = A−

Ā, x2(t) = L−L̄, x3(t) = N−N̄ and the truncated Taylor
expansion around (0, 0, 0), the following linearized system
is obtained (Turner et al., 2021):

ẋ1 (t) =− (γ + µA)x1(t) + κx3(t),

ẋ2 (t) = b1x1(t) + b2x2(t)− c1

∫

0

−τ

x2(t+ θ)ω(θ)dθ,

ẋ3 (t) = b3x1(t) + b4x2(t)−
(

2δN N̄ + µN
)

x3(t)

− c2

∫

0

−τ

x2(t+ θ)ω(θ)dθ.

where,

b1 =− kpα
′(Ā)F (Ā)L̄

(

1−
L̄∆

ηk

)

+ F ′(Ā)
(

1− kpα(Ā)
)

L̄

(

1−
L̄∆

ηk

)

− ktα
′(Ā)L̄,

b2 =
(

1− kpα(Ā)
)

F (Ā)

(

1−
L̄∆

ηk

)

−
(

δL + ktα(Ā)
)

,

b3 = kpα(Ā)F
′(Ā)L̄

(

1−
L̄∆

ηk

)

+ ktα
′(Ā)L̄+ kpα

′(Ā)F (Ā)L̄

(

1−
L̄∆

ηk

)

,

b4 = kpα(Ā)F (Ā)

(

1−
L̄∆

ηk

)

+ ktα(Ā),

and

c1 =
1

ηk

(

1− kpα(Ā)
)

F (Ā)L̄,

c2 =
1

ηk
kpα(Ā)F (Ā)L̄.

Which is rewritten as

ẋ(t) = Bx(t) +

∫

0

−τ

Cω(θ)x(t+ θ)dθ, (4)

with x(t) = [x1(t), x2(t), x3(t)]
T and matrices

B =





− (γ + µA) 0 κ
b1 b2 0
b3 b4 −

(

2δN N̄ + µN
)



 , C =

[

0 0 0
0 −c1 0
0 −c2 0

]

.

3.3 Delay distribution

The distributed delay works similarly to a memory, it
considers all the past states contained between a time
span defined by the delay value. The delay distribution
assigns weights to the history. If it is a constant on the
time span, it is uniform and assigns the same importance
to all the history, but if it is a function that varies in the
same time range, then it gives different weights to the
history, possibly giving more importance to the closest
states to the present time. For the delay distribution ω(θ)
of equation (4), in Turner et al. (2021) two cases are
considered:

• Uniform distribution (constant case)

ω(θ) =

{1

τ
, θ ∈ [−τ, 0],

0, θ 6∈ [−τ, 0],
(5)

which gives equal weight to all of the history incor-
porated by the distributed delay.

• Exponential distribution

ω(θ) = ζeψθ,

which is the most used distribution in the literature.
In this case, is assumed that the history of L cells
have a much greater weight close to the present time.
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4. STABILITY OF TIME DELAY SYSTEMS WITH
DISTRIBUTED DELAY

Linear delay systems are usually analyzed by classical
frequency methods like those involving the analysis of
the roots of the characteristic equation of the system. It
is known that delay equations have an infinite number
of roots (Bellman and Cooke, 1963), with the help of
computational tools like the QPmR root finder software
(Vyhĺıdal and Źıtek, 2003), it is possible to observe a slice
of the spectrum of the characteristic equation. Other tool
is the D-Subdivisions method in which the stability bor-
ders in a space of parameters are determined by detecting
the zero crossing of the roots of the system (Neimark,
1949). An alternative to the frequency methods are the
temporal ones like those involving Lyapunov functions
(Razumikhin, 1956) and functionals (Krasovskii, 1963).

4.1 Stability criterion

In this contribution, we focus on the stability analysis
of linear delay equations with distributed delay in the
temporal approach by means of Lyapunov matrices and
functionals (Kharitonov, 2013). Next, we introduce the
Lyapunov matrices for pointwise and distributed time-
delay systems. Consider equations of the form

ẋ(t) = A0x(t) +A1x(t− τ) +

∫

0

−τ

G(θ)x(t+ θ)dθ, (6)

where τ > 0, A0, A1 ∈ R
n×n and G(θ) is a real piecewise

continuous matrix function of dimension n×n defined on
θ ∈ [−τ, 0]. The characteristic equation of (6) is given by

det

(

sI −A0 −A1e
−sτ −

∫

0

−τ

G(θ)esθdθ

)

= 0. (7)

It is said that equation (6) satisfies the Lyapunov condi-
tion if the characteristic equation (7) has no symmetric
solutions s1 and s2 with respect to zero i.e. s1 = −s2.

The delay Lyapunov matrix U(t), t ∈ R of (6) associated
to matrix W ∈ R

n×n is a matrix function satisfying the
following properties (Cuvas and Mondié, 2016):

• Continuity property:

U ∈ C
(

R,Rn×n
)

.

• Dynamic property, for t > 0:

U̇ (t) = U (t)A0+U (t− τ)A1+

∫

0

−τ

U (t+ θ)G(θ)dθ.

• Symmetry property:

U (t) = UT (−t) , t ∈ R.

• Algebraic property:

−W =AT
0
UT (0) + U (0)A0

+AT
1
UT (−τ) + U (−τ)A1

+

∫

0

−τ

[

GT (θ)UT (θ) + U (θ)G(θ)
]

dθ.

In Kharitonov (2013) and Aliseyko (2017), it was shown
that the Lyapunov matrix exists and is unique if equation
(6) satisfies the Lyapunov condition.

To present the stability criterion, first let us introduce the
following block matrices:

K1 = U (0) ,

K2 =

[

U (0) U (τ)
∗ U (0)

]

,

K3 =

[

U (0) U (τ/2) U (τ)
∗ U (0) U (τ/2)
∗ ∗ U (0)

]

,

and so on. Since block matrices Kr are symmetric, the
blocks denoted by ∗ represent the transpose of the corre-
sponding block. In general, for r = 2, 3, . . .

Kr =

[

U

(

(j − i) τ

r − 1

)]r

i,j=1

.

Theorem 2. (Egorov et al. (2017)). System (6) is expo-
nentially stable if and only if the Lyapunov condition
is satisfied and, for every natural number r, Kr > 0 is
satisfied. Moreover, if the Lyapunov condition is satisfied
and system (6) is unstable, then there exist a natural
number r such that Kr 6> 0.

4.2 Construction of the delay Lyapunov matrix

One important task to determine the stability of systems
of the form defined by (6) is the computation of the
delay Lyapunov matrix in order to construct the block
matrices Kr and test their positivity. The path followed
to compute the delay Lyapunov matrix of (6) is to use
the semi-analytic method described in Aliseyko (2017),
where function G(θ) is defined as

G(θ) =

m
∑

i=1

ηi (θ)Bi,

here Bi ∈ R
n×n, and ηi(θ) are scalar functions satisfying

η′i (θ) =
m
∑

j=1

αijηj (θ) , αij ∈ R,

in general η′ (θ) = Aη (θ) with

η (θ) =









η1 (θ)
η2 (θ)

...
ηm (θ)









, A =









α11 α12 · · · α1m

α21 α22 · · · α2m

...
...

. . .
...

αm1 αm2 · · · αmm









.

5. RESULTS

We analyze the stability of the linearized model (4)
around the tumour-present equilibrium E⋆ defined in
Theorem 1, equivalently, we analyze the stability of equa-
tion (6) with A0 = B, A1 = 03 (zero matrix in R

3×3)
and G(θ) = Cω(θ). As we argued in Section 3, the
delay distribution can be uniform or exponential. Observe
that if we take ψ = 0 and ζ = 1/τ in the exponential
distribution ω (θ) = ζeψθ, we recover exactly the uniform
distribution ω (θ) = 1/τ therefore, we do not need to
compute the delay Lyapunov matrix for both cases, it
is enough if we consider just the exponential case.

We seek to determine the parameter values for what
the tumour-present equilibrium is stable in a tumour-
dormancy state. For the analysis, we take the parameter
values defined in Turner et al. (2021) and summarized in
Table 1 unless we specify the contrary and except for the
pair of parameters object of our stability analysis. In the
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analysis we take a pair of parameters of interest (p1, p2)
and define a range of values for which we will carry out
the analysis and set the rest of parameters according to
the values in Table 1. Next we grid the space of param-
eters (p1, p2) in a mesh of 80 × 80 points, we compute
the tumour-free equilibrium which always exists and is
stable and verify if the conditions for the existence of the
tumour-present equilibrium E⋆ are satisfied at each point
with coordinates (p1x, p2y), as described in Theorem 1.
For those points where conditions are satisfied, we proceed
to compute E⋆ and the rest are discarded. For not dis-
carded points, we use the stability criteria in Theorem 2 to
test the stability of system (4) with the values of the point
(p1x, p2y) around the equilibrium E⋆. Since sometimes
for small values of r we obtain outer estimates of the
stable zone, we start the analysis with r = 1, save the
obtained candidate stability region and increase the value
of r, we analyze the points of the candidate stability area
with the new r value until the number of stable points
remains the same for two consecutive values of r. For
comparison purposes we use the QPmR root finder soft-
ware to determine the unstable roots of the characteristic
equation of (4) defined in expression (7) with the values
of (p1x, p2y) around E⋆ at each point where E⋆ exists,
it is worth mentioning that the result gives us values
were the cancer is present but in a tumour-dormancy
state. It is evident that the stability region obtained by
Theorem 2 matches the coordinates where there are no
roots in the right-hand-side of the complex plane. Notice
that with the selection of a pair of parameters (p1, p2)
the stability analysis leads to a two-dimensional stability
map, we choose this option for simplicity and to reduce
computational cost however, it is also possible to take a
triplet (p1, p2, p3) leading to a three-dimensional stability
map.

The integral term in (4) corresponds to the rate of
appearance of new cancer cells at time t due to the cells
that appeared at all previous times since t − τ . Next we
present some examples where we consider that function
ω(θ) is a constant or an exponential function.

5.1 Uniform distribution

In this case ω(θ) is defined by (5), which gives equal
relevance to the history of cancer cells in the integral
term, this distribution is typically used when there is no
information about the behaviour of the delay (Turner
et al., 2021). For the computation of the Lyapunov
matrix, as described in the previous section, we consider
ω(θ) = ζeψθ with ζ = 1/τ and ψ = 0.

Example 1. In this example we take the parameters
of interest Amin which is the minimum concentration of
androgen for tumour growth and κ that is the androgen
secretion rate from N cells that transdifferentiate with
the aim at helping L cells to multiply. Fig. 1 shows the
stability region of equation (4) in the space of parameters
(Amin, κ).

Example 2. We analyze equation (4) in the space of
parameters of the maximum proliferation rate βp of L
cells and the length of the history considered in the

0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

κ

Amin

(a)

0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

κ

Amin

(b)

Fig. 1. Stability region of (4). (a) Using Theorem 2,
reached for r = 2. (b) Using the QPmR software.

0 3 6 9 12 15
0

3

6

9
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15

βp

τ

(a)

0 3 6 9 12 15
0

3

6

9

12

15

βp

τ

(b)

Fig. 2. Stability region of (4). (a) Using Theorem 2
reached for r = 3. (b) Analysing the eigenvalues with
QPmR.

distributed delay τ , (βp, τ). Fig. 2 depicts the obtained
stability region.

5.2 Exponential distribution

We consider the exponential distribution ω(θ) = ζeψθ

which is the most used distribution in the literature due
to its more realistic behaviour. This distribution assumes
that the production of new cancer cells at time t has a
greater influence of the history of recently produced cells
than those produced near time t−τ (Turner et al., 2021).

Example 3. We consider system (4) with the param-
eter values of Table 1 and considering the exponential
distribution ω(θ) = ζeψθ, with the values ζ and ψ defined
in Table 1, the analysis is carried out in the space of pa-
rameters (κ, γ), both parameters are androgen production
rates; production from N cells (κ) and from the endocrine
glands (γ).

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.005
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0.03
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γ

(a)

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.005

0.01

0.015

0.02

0.025

0.03

κ

γ

(b)

Fig. 3. Stability region of (4) with ω(θ) = ζeψθ. (a) Using
Theorem 2, reached for r = 1. (b) Analyzing the
number of unstable roots with the QPmR software.

6. DISCUSSION

In this contribution we analyze the stability of the
prostate cancer model with distributed delay (4) by
means of a stability criterion based on the delay Lya-
punov matrix and with a software which computes the
roots of the characteristic equation of (4). We consider
these tools as an alternative for the stability analysis of
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Table 1. Values of the parameters taken from
Turner et al. (2021) for the analysis of (4).

Parameter Value Units Parameter Value Units

γ 0.013 day−1 r 3.67 -
Amax 6 % a 1.5 -
Amin 0.1 % βp 1.4 day−1

µA 0.08 day−1 δN 0.013 day−1

κ 0.009 day−1 µN 0.08 day−1

kp 0.41 day−1 τ 1.42 day
kt 0.52 day−1 ψ 1 -
δL 0.013 day−1 ζ 1.318 -
ηk 3 ×106cells/l - - -

the model studied in Turner et al. (2021) where they
make an analytical study to determine the stability of
the system (3). For the case of the uniform distribution
ω(θ) = 1/τ they make a frequency analysis to obtain sta-
bility conditions. However, for the case of the exponential
distribution ω(θ) = ζeψθ it was not possible to obtain
analytical results to conclude about the stability proper-
ties of the system, instead several numerical simulation
were programmed to explore the dynamics of the system.

For the cases where the analysis of the characteristic equa-
tion is hard because of the big dependency of the parame-
ters that do not allow to develop classical analysis, like D-
Partitions, the stability criterion described in Theorem 2
gives an interesting alternative for the stability analysis of
systems with distributed delay. In this case, it is useful to
find the parameter values for which the linearized system
(4) around a tumour-present equilibrium (according to
Theorem 1) is exponentially stable. The criterion is simple
and for some value r we obtain necessary and sufficient
stability conditions that in practice is reached with really
small values of r as is illustrated in the examples above.

The stability regions shown in Figs. 1-3, allow identifying
the system parameter values that correspond to a tumour-
dormancy state. For instance, for the case depicted in
Fig. 3 since the model considers that androgen stimulates
tumour growth is interesting to know the stability area
in order to define possible values to be reached with
some treatment for example, with androgen deprivation
therapy.

7. CONCLUSION

Mathematical models of biological phenomena to make
computational simulations help researchers to experiment
and understand the relations of the different elements
involved and the effects when parameters vary. When the
goal of the investigation is to get parameter ranges where
the system is stable, simple stability criteria like the one
described in Theorem 2 are particularly useful as it is
not necessary to run simulations and observe the system
response for each value in the range considered.
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