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Resumen: Spherical robots offer omnidirectional mobility and mechanical robustness, making
them ideal for exploration and surveillance in unstructured environments. However, their control
is challenging due to their non-linear and coupled dynamics. This paper presents the design,
modelling and control of a spherical robot with an internal pendulum. The approach combines
realistic simulations in CoppeliaSim, experimental validation using a visual tracking platform,
and advanced control strategies based on Deep Reinforcement Learning (DQN and DDPG) and
traditional approaches. Results from both simulation and real-world experiments demonstrate
the effectiveness of model-free learning techniques in achieving stable and accurate position
control.
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1. INTRODUCCIÓN

La robótica es un campo multidisciplinar que integra in-
genieŕıa mecánica, electrónica, informática y teoŕıa del
control para diseñar y construir máquinas capaces de rea-
lizar tareas de forma autónoma o semi-autónoma. En las
últimas décadas, la robótica ha evolucionado rápidamente
y ha dado lugar al desarrollo de sistemas cada vez más
sofisticados capaces de operar en diversos entornos, desde
la exploración de fondos marinos hasta las misiones plane-
tarias (Greitans, 2025).

Entre los distintos tipos de robots, los móviles han ganado
especial atención por su capacidad para navegar e inter-
actuar con entornos dinámicos. Estos robots no están fijos
en una única ubicación y pueden desplazarse utilizando
distintos mecanismos de locomoción como ruedas, patas,
orugas o incluso propulsión aérea (Siegwart et al., 2011).
Los robots móviles se utilizan ampliamente en aplicaciones
que van desde la automatización de almacenes y veh́ıculos
autónomos hasta las operaciones de búsqueda y rescate
(Sharma et al., 2023).

Una subclase única y atractiva de robots móviles es el
robot esférico. Caracterizados por una carcasa exterior
esférica que encierra todos los componentes internos, estos
robots se mueven rodando, ofreciendo movilidad omni-
direccional y un alto grado de protección mecánica. Su
diseño proporciona estabilidad y resistencia al vuelco, lo

que los hace adecuados para terrenos accidentados y en-
tornos peligrosos. Los robots esféricos se han explorado
para aplicaciones de vigilancia, reconocimiento, explora-
ción planetaria y robótica educativa (Diouf et al., 2024).
Sin embargo, sus mecanismos internos de actuación y sus
estrategias de control plantean importantes retos debido
a la dinámica no lineal y al acoplamiento entre los movi-
mientos de rotación y traslación.

Durante los últimos años, los robots esféricos han evolu-
cionado hacia diseños con grados de libertad redundantes,
lo que permite una mayor maniobrabilidad y resistencia a
perturbaciones externas. Por ejemplo, el robot XK-III (Lin
et al., 2024) incorpora un observador de perturbaciones no
lineales y un controlador difuso PID para mejorar su des-
empeño en terrenos irregulares. Además, se han propuesto
nuevos enfoques de control como el uso de controladores
Riccati con observadores de velocidad basados en Kalman
(Wang et al., 2023), que permiten un seguimiento más
preciso de la velocidad en múltiples tipos de terreno.

Estos métodos han demostrado ser más eficaces que los
controladores PID convencionales, especialmente en tareas
que requieren cambios rápidos de dirección o adaptación
a superficies variables (Vidaña et al., 2024). Estas inno-
vaciones refuerzan el papel de los robots esféricos como
plataformas versátiles para aplicaciones en exploración,
vigilancia y asistencia en entornos no estructurados.
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Este trabajo aborda estos retos con una visión global
del diseño, modelado, construcción y control de un robot
esférico, presentando las siguientes contribuciones:

Simulaciones realistas: Utilización de CoppeliaSim
para modelar la dinámica no lineal y los efectos de
fricción del robot en un entorno muy dinámico e
interactivo (Montenegro et al., 2022).
Validación experimental: Implementación del con-
trol de posición del robot esférico real en una plata-
forma de pruebas que utiliza el seguimiento visual con
SwisTrack para obtener la posición global del robot
(Schröder et al., 2023).
Control de posición del robot mediante In-
teligencia Artificial: Aplicación de algoritmos de
Deep Reinforcement Learning DQN (por sus siglas
en inglés, Deep Q-Network) y DDPG (por sus siglas
en inglés, Deep Deterministic Policy Gradient), para
optimizar las poĺıticas de control sin depender de
modelos lineales (Escorza et al., 2025).

El resto de este art́ıculo se organiza como sigue. En la
Sección 2 se presenta el diseño y modelado del robot
esférico, aśı como las estrategias de control implementa-
das. La Sección 3 detalla la simulación y los resultados
experimentales obtenidos utilizando plataformas virtuales
y f́ısicas. La Sección 4 presenta una discusión y evaluación
de los resultados. Finalmente, en la Sección 5 se presentan
las conclusiones y las ĺıneas de trabajo futuras.

2. DISEÑO, MODELADO Y CONTROL DEL ROBOT

2.1 Diseño del Robot

El robot se compone de dos servomotores conectados ho-
rizontalmente a la carcasa esférica que permiten el mo-
vimiento hacia delante. Un motor de corriente continua
conectado al péndulo para realizar el movimiento en sen-
tido horario o antihorario. Los tres motores se accionan
mediante señales PWM para modificar sus velocidades. La
Figura 1-a muestra los componentes del robot y la Figura
1-b el robot armado.

(a) Componentes internos. (b) Robot esférico.

Figura 1. Diseño del robot.

2.2 Modelado del robot esférico en CoppeliaSim

El robot esférico modelado en este trabajo consiste en
una carcasa esférica impresa en 3D que encierra todos los
componentes internos y permite el movimiento de balanceo
mediante accionamiento interno. El mecanismo interno
se basa en un péndulo y tres motores: dos servomotores
unidos a la carcasa mueven el péndulo para desplazar el

centro de gravedad, mientras que un motor de corriente
continua permite girar el péndulo para inducir la rotación.
Esta configuración permite al robot moverse y mantener
el equilibrio con un único punto de contacto con el suelo.

El robot se diseñó inicialmente con Autodesk Fusion 360
(Verma, 2018) y con Tinkercad - 3D Design (Kelly, 2014)
y posteriormente se ensambló virtualmente en el simula-
dor CoppeliaSim (Montenegro et al., 2022). El modelo de
simulación incluye representaciones precisas de la masa, la
inercia y la geometŕıa, lo que garantiza un comportamiento
dinámico realista. El diámetro total del robot es de 20 cm,
y los componentes internos están dispuestos simétricamen-
te para mantener el equilibrio. Para girar, el robot utiliza
el principio del giroscopio de momento de control (CMG).
La dinámica de rotación se rige por:

q̇ = ω (1)

ω̇ =
B1

J1
ω +

B2

J1
W +

1

J1
τm (2)

Ẇ =
B2

Jeq
W +

1

Jeq
τm (3)

donde q es el ángulo de orientación del robot, ω es su
velocidad angular. τm es el torque del péndulo, B1 es
el coeficiente de fricción del actuador interno, B2 es el
coeficiente de acoplamiento dinámico entre el actuador y
la esfera, W es la velocidad angular del péndulo, J1 es
el momento de inercia de la carcasa del robot, J2 es el
momento de inercia del péndulo y Jeq es el momento de
inercia equivalente.

Teniendo en cuenta factores como el coste, la viabilidad de
los materiales, la baja complejidad en el diseño, el buen
control del movimiento y la posibilidad de construcción
en un corto periodo de tiempo, se eligió el mecanismo
de péndulo accionado como método a utilizar. Por lo
tanto, las pruebas de control de posición se basarán en
los controles realizados en el art́ıculo (Montenegro et al.,
2022). El modelo simulado en el art́ıculo está representado
por la Figura 2 y considera al robot como un todo, formado
por 3 partes. La carcasa (a), el péndulo y los circuitos
electrónicos (b).

(a) Modelo del robot. (b) Péndulo del robot.

Figura 2. Modelo del Robot en CoppeliaSim.

Para la construcción del robot, en el caso de la carcasa,
se imprimieron 2 piezas simétricas, una roja y otra verde.
El diámetro de la circunferencia es de 20 cm y para unir
ambas piezas se ideó un sistema de roscas que permite un
acceso rápido y sencillo al circuito.

El mecanismo interno se compone de dos piezas, una
que alberga los componentes electrónicos y otra que da
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forma al péndulo. El péndulo alberga 0, 627 kg de peso
distribuidos uniformemente entre sus aletas para generar
el momento necesario para girar. En el centro, tiene una
columna de 3, 7 cm que está conectada a un motor de
corriente continua. En cuanto al soporte interior, se diseñó
para contener los servomotores, el motor de corriente
continua y el resto de componentes utilizados. Es una
pieza simétrica lo suficientemente larga como para llegar
a ambos extremos de la esfera.

2.3 Estrategias de Control (Enfoques Clásicos)

Para validar el modelo de robot y evaluar su rendimiento
en distintas condiciones, se aplicaron y probaron varias
estrategias de control. El experimento consiste en conducir
un robot desde su posición actual, C(x, y, θ), hasta un
punto objetivo, Target Point (Tp), por sus siglas en inglés.
La Figura 3 muestra el diagrama de bloques de este
experimento.

Servomotores 𝐶𝐶(x, y,   ) 

𝛼𝛼𝑒𝑒 𝑡𝑡

𝑇𝑇𝑝𝑝

𝐶𝐶

𝜔𝜔 𝑡𝑡

𝑉𝑉 𝑡𝑡𝑑𝑑 𝑡𝑡
Cálculo Ley de

Control Motor DC

Sensor de Posición
(Cámara)

𝜃𝜃

Figura 3. Diagrama en bloques del control del robot.

Las diferentes leyes de control clásico, que se implementan
en el bloque Ley de Control, y entre las que se encuentran:

1.- Controlador Villela: Una ley de control clásica
que calcula la velocidad lineal (V ) y la angular (ω) en
función de la distancia al objetivo y del error angular (αe)
(Gonzalez-Villela et al., 2004):

V =




Vmax, if |d| > kr
Vmax

kr
d, if |d| ≤ kr

(4)

ω = ωmax sin(αe) (5)

donde d es la distancia al objetivo y kr es un radio umbral.

2.- Controlador Proporcional Integral (IPC): Una
versión mejorada del controlador Villela que incluye un
término integral para mejorar la convergencia. Las leyes
de control son (Fabregas et al., 2020):

V = mı́n(Kv · p(αe) · d, Vmax) (6)

ω = Kp sin(αe) +Ki

∫ t

0

αe(τ)dτ (7)

donde es p(αe) =
π−|αe|

π , y Kv, Kp, Ki son parámetros de
ajuste.

Estas estrategias se evaluaron en escenarios que inclúıan la
estabilización de puntos, el seguimiento de trayectorias y
el control de formaciones multi-agente. El rendimiento se
evaluó utilizando métricas estándar como el error integral
absoluto (IAE), el error integral cuadrático (ISE) y sus
variantes ponderadas en el tiempo (ITAE, ITSE).

2.4 Estrategia de control (Aprendizaje por Refuerzo)

Además de las estrategias de control clásicas, se imple-
mentó un enfoque de aprendizaje profundo por refuer-

zo (DRL por sus siglas en inglés, Deep Reinforcement
Learning) para abordar la dinámica no lineal y acoplada
del robot esférico. En concreto, se utilizó un algoritmo
de aprendizaje profundo en base a redes neuronales para
aprender una poĺıtica de control óptima a través de la
interacción con el entorno, basado en un modelo expĺıcito
del sistema (Mnih et al., 2016).

El proceso de aprendizaje se basó en la ecuación de
Bellman, y la teoŕıa de Q-learning (Schröder et al., 2023)
que define la recompensa acumulada Q(xk, uk) esperada
de tomar una acción uk en el estado xk y seguir la poĺıtica
óptima a partir de entonces:

Q(xk, uk) = s(xk, uk) + γmáx
u′

Q(xk+1, u
′) (8)

con γ, un factor de descuento para valores futuros. En
Q-learning, los valores Q se actualizan iterativamente uti-
lizando la regla de aprendizaje de la diferencia temporal:

Qi+1(xk, uk) = Qi(xk, uk) + α
[
R(xk, uk)

+ γmáx
u′

Qi(xk+1, u
′)−Qi(xk, uk)

] (9)

donde α es la tasa de aprendizaje y R(xk, uk) es la re-
compensa inmediata. La función de recompensa se diseñó
para penalizar los errores angulares grandes y el esfuerzo
de control excesivo, fomentando el movimiento suave y pre-
ciso hacia el objetivo. La técnica utilizada se diseñó sobre
la base de la extensión desde Q-learning a DQN y DDPG,
al utilizar redes neuronales llamadas Critic y Actor, (Es-
corza et al., 2025). El método basado en datos tabulados
y de naturaleza discreta se modifica para proporcionar
valores continuos. DQN reemplaza la estructura tabular
por una continua, utilizando una red neuronal artificial
(ANN). Además, resuelve dos problemas que surgen con el
entrenamiento en tiempo real de redes neuronales: la falta
de independencia e igualdad de distribución (IID) entre
tuplas de experiencia consecutivas (St, At, Rt+1, St+1), y
la no estacionariedad del objetivo numérico de búsqueda.
DQN define la función de valor Qa(s; θ) como las salidas
de una red neuronal, parametrizada por el vector θ. Estos
parámetros se obtienen minimizando el costo:

Li(θi) = (r + γ ·max
a′

Qa(s′; θ−i )−Qa(s; θi))
2

(10)

donde θ−i se mantiene artificialmente fijo durante un cierto
intervalo de tiempo, o se hace variar lentamente mediante
un filtro pasa-bajos, para reducir la no estacionariedad.
Además, se selecciona aleatoriamente una tupla de expe-
riencia desde un bufer deslizante para reducir la correla-
ción. La Ecuación (10) comparte la misma estructura que
(9) en términos del objetivo numérico de búsqueda y el
error, donde r es la función de recompensa y s y a son el
estado actual y la actuación, respectivamente. DQN sigue
utilizando valores discretos para las acciones, teniendo una
salida Q desde la red neuronal para cada valor discreto de
acción. El operador max selecciona el valor de actuación
óptimo.

DDPG por su parte, se deriva de DQN, buscando re-
emplazar la naturaleza discreta de las acciones por una
continua. En este sentido, DDPG hereda la formulación
de Q(s, a; θ) para la estimación de la recompensa, ahora
llamada Critic, pero en lugar de obtener la acción mediante
una maximización entre sus salidas discretas, implementa
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una red neuronal adicional µ(s;ϕ), llamada Actor, para
generar la acción de control óptima. De forma similar,
los parámetros del Critic θ se obtienen minimizando la
siguiente función de costo:

Li(θi) = (r + γ ·Q(s′, µ(s′;ϕ−
j ); θ

−
i )−Q(s, a; θi))

2
(11)

Pero ahora, teniendo la acción a = µ(s;ϕ) como entrada,
se reemplaza la maximización sobre el espacio de actua-
ción. Esta actuación se obtiene entonces maximizando la
siguiente función de costo:

Jj(ϕj) = Q(s, µ(s;ϕj); θi) (12)

Aqúı, se adopta el mismo enfoque para el vector de
parámetros del Actor ϕ con el fin de reducir el efecto
de un objetivo no estacionario. El diagrama final de
interconexión se puede ver en la Figura 4.

Figura 4. Redes neuronales en el controlador con 2 salidas.

El controlador utiliza el algoritmo DDPG (Sumiea et al.,
2024) para calcular la señal de control V basada en el
error angular αe y la distancia al objetivo d, sintonizada
con la función de recompensa r = −10 · α2

e − 12 · Vd,
siendo Vd = d

dtd la tasa de cambio temporal de la
distancia. Esta adición a la función de recompensa fue para
forzar indirectamente al controlador a reducir el tiempo
total para alcanzar el objetivo, recompensando mayores
velocidades negativas de distancia. La señal Q es usada
durante el entrenamiento para ajustar los pesos de las
redes neuronales (tanto Critic como Actor), pero cuando
ya está entrenado el controlador, solo se exporta al robot la
red llamada Actor, que en este caso es la funcion fDDPG

que se muestra en la Figura 5. La señal de control ω se
diseña como en los casos anteriores:

ω(t) = fω
DDPG(αe(t), α

int
e (t))

V (t) = fV
DDPG(αe(t), d(t))

(13)

La estructura del controlador general es muy similar a
la anterior DDPG, ahora el segundo actor salidas V . El
diagrama en bloques del controlador se puede ver en la
Figura 5.

3. RESULTADOS EXPERIMENTALES

3.1 Controlador Villela

Las primeras pruebas de simulación se realizaron con el
controlador Villela. En este caso, el punto inicial del robot

fD
ω
DPG

fD
V
DPG

Robot

∫
α(t)

θc(t)

ω(t)

V(t)

αe(t)

αe
int(t)-

+
θc(t), d(t)

d(t)

Figura 5. Diagrama en bloques del controlador DDPG.

es la posición Xc = 40 cm, Yc = 0 cm y su objetivo está en
Xp = −80 cm, Yp = 0 cm. La flecha muestra la orientación
inicial a 0 grados. La Figura 6 muestra la trayectoria del
robot, aśı como el tiempo que tarda en llegar al destino.
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Figura 6. Posición y distancia al objetivo Xp = −80 cm,
Yp = 0 cm con el controlador Villela.

Puede observarse en este caso que tanto la simulación como
el comportamiento del robot, en la realidad, son similares
en la trayectoria. Sin embargo, en términos de tiempo, la
simulación tarda bastante menos, alcanzando el objetivo
aproximadamente 6 segundos antes. Esta diferencia puede
ser producida tanto por la superficie como por las conside-
raciones geométricas que difieren del modelo construido,
ya que está basado en las simulaciones realizadas en el
art́ıculo (Schröder et al., 2023) y adaptadas para el robot
construido en este art́ıculo.

Finalmente, observando la Figura se puede determinar
que el robot mantiene su comportamiento respecto a la
trayectoria realizada, en términos de tiempo el robot real
tarda más en alcanzar el objetivo. Esto se puede relacionar
directamente con la velocidad elegida para el robot y la
diferencia de dinámica entre el robot simulado y el real.

3.2 Controlador IPC

En este caso, el punto de partida del robot es la posición
Xc = 40 cm, Yc = 0 cm y su objetivo está en Xp = −50
cm, Yp = 0 cm. La flecha muestra la orientación inicial a 0
grados. La Figura 7 muestra la trayectoria del robot y el
tiempo que tarda en llegar al destino.

En el caso de la simulación, la trayectoria utilizada es mu-
cho más amplia que en el caso real. Por tanto, podŕıa decir-
se que la trayectoria no es la misma que en la simulación.
Sin embargo, en términos de tiempo, el robot mantiene
una relación distancia-tiempo similar, que se mantiene a
medida que se acerca al objetivo. Esta diferencia en la
trayectoria puede deberse a las mismas razones expuestas
en el controlador desarrollado por Villela.

Finalmente, observando las gráficas, se puede determinar
que existen diferencias de comportamiento tanto en el
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Figura 7. Posición y distancia al objetivo Xp = −80 cm,
Yp = 0 cm con el controlador IPC.

desplazamiento real como en el simulado, ya que el robot
real disminuye su error angular más rápidamente que en
la simulación, recorriendo menos distancia. Esto puede
deberse a la diferencia entre el modelo matemático y la
realidad, donde tanto las consideraciones de las superficies
como la geometŕıa del robot pueden no ser tan similares.

3.3 Aprendizaje Profundo por Refuerzo

Para comprobar el funcionamiento del robot accionado
por diferentes controladores, se realizaron pruebas en tres
escenarios diferentes que se explicarán a continuación en
función de la ubicación del objetivo.

Para el algoritmo de RL Q-learning el robot necesitó un
número de episodios del orden de los millones de iteracio-
nes, pero para DDPG o DQN, la cantidad de iteraciones
fue del orden de las decenas de miles. El aprendizaje
se hizo en simulación solamente, y ese conocimiento se
exportó al robot real, y no se continuó con aprendizaje
en tiempo real con el robot. La Figura 8 muestra los
resultados con el controlador Villela en azul, el IPC en
rojo y el Aprendizaje por Refuerzo en verde. En el gráfico
de la izquierda se muestra la trayectoria seguida por el
robot para alcanzar el punto final, mientras que en el de
la derecha, la disminución de la distancia en función del
tiempo. Aqúı se aplican las mismas consideraciones para
la gestión de las señales PWM.

Para este caso, se utilizó Xc = 0, Yc = −40 como punto
de partida y Xp = −80, Yp = 40 como objetivo. La flecha
muestra la orientación inicial a 0 grados. A simple vista,
se puede observar que el controlador IPC es el más rápido
con un tiempo aproximado de 9 segundos para llegar al
destino.

Por otro lado, el controlador de aprendizaje por refuerzo
(RL, por sus siglas en inglés, Reinforcement Learning) es
el que más tiempo tarda con 12 segundos, esto es debido
a que al acercarse al objetivo realizó una desviación que le
impidió llegar en menos tiempo, teniendo que corregir la
orientación y por tanto tardando casi 3 segundos más.

Además, la calidad de cada algoritmo de control se evalúa
utilizando métricas de rendimiento. Estas métricas utilizan
la integral del error, que en este caso es la distancia
al punto objetivo (Target). Las medidas de rendimiento
consideradas en este documento son (1) Error Cuadrático
Total (ISE), (2) Error Absoluto Total (IAE), (3) Error
Cuadrático Total en Tiempo Total (ITSE) y (4) Error
Absoluto en Tiempo Total (ITAE). En cuanto a los ı́ndices
de rendimiento mostrados en la Tabla 1, se puede observar

-80 -60 -40 -20 0 20
X [cm]

-40

-30

-20

-10

0

10

20

30

40

50

60

Y
 [c

m
]

Target
Villela
IPC
RL

(a) Posición.

0 2 4 6 8 10 12 14
Tiempo [s]

0

20

40

60

80

100

120

140

D
is
ta
nc
ia

 [c
m

]

Villela
IPC
RL

(b) Distancia.

Figura 8. Posición y distancia al objetivo Xp = −80 cm,
Yp = 40 cm con los tres controladores.

que los ı́ndices son menores en el control RL; sin embargo,
al observar las gráficas de la Figura 8, el controlador es el
que más tiempo tarda en alcanzar el objetivo.

Tabla 1. Índices de Desempeño.

Índices Villela IPC RL

IAE 797 703 641
ISE 76977 68857 53879
ITSE 275800 219640 150900
ITAE 3307 2579 2517

Considerando lo anterior, se podŕıa esperar que los ı́ndices
ITSE e ITAE fueran mayores; sin embargo, la distancia que
tienen los demás controladores genera una compensación,
obteniendo finalmente un mejor ı́ndice RL. Aunque al
principio de la trayectoria es el primero en reducir el
error angular, durante la trayectoria próxima al objetivo
se desv́ıa, lo que produce este retraso en comparación con
IPC, que es el más competitivo después de RL. En relación
con Villela, es el que más tarda y, en consecuencia, tiene
los peores ı́ndices de rendimiento.

4. DISCUSIÓN Y EVALUACIÓN

4.1 Evaluación del desempeño del robot

Para examinar más a fondo el comportamiento de los
controladores DRL, se probaron diseños de control más
antiguos, Q-learning RL (Schröder et al., 2023), Villela
(Gonzalez-Villela et al., 2004), e IPC (Integral Proportio-
nal Controller) (Fabregas et al., 2020), para un escenario
común. El punto de partida elegido es (Xc, Yc) = (40, 0),
pero con el objetivo situado ahora en (Xp, Yp) = (−40, 0),
lo que permite disponer de más tiempo para maniobrar.
La Figura 9 muestra los resultados obtenidos.

-60 -40 -20 0 20 40 60
Xc [cm]

-60

-40

-20

0

20

40

60

Y
c 

[c
m

]

Villela
IPC
RL
DQN
DDPG
2 Salidas 
Target

0 2 4 6 8 10 12
Tiempo [s]

0

20

40

60

80

100

120

D
is

ta
nc

ia
 [c

m
]

Villela
IPC
RL
DQN
DDPG
2 Salidas

Figura 9. Posición y distancia al Tp(Xp, Yp) = (−40, 0).

En general, todos los controladores tomaron rutas dife-
rentes cada vez que se realizó la prueba. En cuanto a
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la distancia o el tiempo que tardaron los algoritmos en
llegar al punto, se pueden hacer varias observaciones. La
primera de ellas es que los tres controladores DRL ob-
tuvieron mejores resultados en términos de tiempo. Otro
punto importante es que esta prueba es coherente con la
tendencia de las anteriores en el orden de llegada. Para los
controladores no basados en DRL, el que menos tiempo
tardó fue el controlador RL, seguido del IPC y el que más
tardó fue el Villela, lo cual era de esperar, coherente con
el (Montenegro et al., 2022). Para evaluar la calidad de
cada algoritmo, se utilizaron los ı́ndices de rendimiento
que se resumen en la Tabla 2, para el objetivo en el punto
(Xp, Yp) = (−40, 0).

Tabla 2. Índices de Desempeño.

Índices Villela IPC RL DQN DDPG
2

Salidas

IAE 694 477 474 389 342 325
ISE 51437 32462 39477 28706 25017 25753
ITSE 208130 96459 107430 63494 49322 49494
ITAE 3249 1697 1453 1019 799 693

Tras analizar todas las pruebas, se puede afirmar que el
controlador con mejores resultados, tanto en los ı́ndices de
rendimiento como en el tiempo empleado, es el controlador
DDPG con 2 salidas (V , ω). Esto puede atribuirse a que
se trata de un algoritmo de control en tiempo continuo,
que gestiona tanto la velocidad lineal como la angular del
robot de forma concurrente, basándose en las dos señales
de medida.

5. CONCLUSIONES Y TRABAJO FUTURO

Este trabajo presenta el modelado, diseño y control de un
robot esférico utilizando el entorno de simulación Coppe-
liaSim y una plataforma real. Se implementaron y eva-
luaron varias estrategias de control, incluidos enfoques
clásicos (Villela e IPC) y un método de aprendizaje por
refuerzo (Q-learning). Los controladores basados en DRL
(DQN y DDPG) demostraron un rendimiento superior
en términos de suavidad de trayectoria, tiempo de con-
vergencia y adaptabilidad a escenarios dinámicos. Tanto
los resultados de la simulación como los del robot real
mostraron que las estrategias de control propuestas son
eficaces para lograr un movimiento estable y preciso en
diversas tareas.

El trabajo futuro se centrará la integración de un sistema
de seguimiento visual en tiempo real y la validación de los
resultados de la simulación en condiciones reales. Además,
se explorarán nuevas mejoras en la eficacia y robustez del
aprendizaje mediante el uso de algoritmos DRL avanzados
y espacios de acción continuos.

AGRADECIMIENTOS

Esta investigación fue apoyada en parte por la Agencia
Nacional de Investigación y Desarrollo de Chile (ANID)
bajo el Proyecto FONDECYT 1191188. La financiación de
la Universidad Nacional de Educación a Distancia (UNED)
para la publicación de acceso abierto. El Ministerio de
Ciencia e Innovación de España bajo el Proyecto PID2022-
137680OB-C32. La Agencia Estatal de Investigación (AEI)
bajo el Proyecto PID2022-139187OB-I00.

REFERENCIAS

Diouf, A., Belzile, B., Saad, M., and St-Onge, D. (2024).
Spherical rolling robots—design, modeling, and control:
A systematic literature review. Robotics and Autono-
mous Systems, 175, 104657.

Escorza, O., Garcia, G., Fabregas, E., Velastin, S.A., Es-
kandarian, A., and Farias, G. (2025). Deep reinforce-
ment learning applied to a spherical robot for target
tracking. IEEE Transactions on Industrial Electronics,
1–10.

Fabregas, E., Farias, G., Aranda-Escolástico, E., Garcia,
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