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Resumen: Spherical robots offer omnidirectional mobility and mechanical robustness, making
them ideal for exploration and surveillance in unstructured environments. However, their control
is challenging due to their non-linear and coupled dynamics. This paper presents the design,
modelling and control of a spherical robot with an internal pendulum. The approach combines
realistic simulations in CoppeliaSim, experimental validation using a visual tracking platform,
and advanced control strategies based on Deep Reinforcement Learning (DQN and DDPG) and
traditional approaches. Results from both simulation and real-world experiments demonstrate
the effectiveness of model-free learning techniques in achieving stable and accurate position

control.
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1. INTRODUCCION

La robética es un campo multidisciplinar que integra in-
genieria mecdanica, electréonica, informatica y teoria del
control para disenar y construir maquinas capaces de rea-
lizar tareas de forma auténoma o semi-auténoma. En las
dltimas décadas, la robotica ha evolucionado rapidamente
y ha dado lugar al desarrollo de sistemas cada vez més
sofisticados capaces de operar en diversos entornos, desde
la exploracion de fondos marinos hasta las misiones plane-
tarias (Greitans, 2025).

Entre los distintos tipos de robots, los méviles han ganado
especial atencién por su capacidad para navegar e inter-
actuar con entornos dindmicos. Estos robots no estén fijos
en una unica ubicaciéon y pueden desplazarse utilizando
distintos mecanismos de locomocién como ruedas, patas,
orugas o incluso propulsién aérea (Siegwart et al., 2011).
Los robots moviles se utilizan ampliamente en aplicaciones
que van desde la automatizacion de almacenes y vehiculos
autéonomos hasta las operaciones de bisqueda y rescate
(Sharma et al., 2023).

Una subclase tnica y atractiva de robots moviles es el
robot esférico. Caracterizados por una carcasa exterior
esférica que encierra todos los componentes internos, estos
robots se mueven rodando, ofreciendo movilidad omni-
direccional y un alto grado de proteccién mecénica. Su
diseno proporciona estabilidad y resistencia al vuelco, lo

que los hace adecuados para terrenos accidentados y en-
tornos peligrosos. Los robots esféricos se han explorado
para aplicaciones de vigilancia, reconocimiento, explora-
cién planetaria y robdética educativa (Diouf et al., 2024).
Sin embargo, sus mecanismos internos de actuacion y sus
estrategias de control plantean importantes retos debido
a la dindmica no lineal y al acoplamiento entre los movi-
mientos de rotacién y traslacién.

Durante los ultimos anos, los robots esféricos han evolu-
cionado hacia disenos con grados de libertad redundantes,
lo que permite una mayor maniobrabilidad y resistencia a
perturbaciones externas. Por ejemplo, el robot XK-III (Lin
et al., 2024) incorpora un observador de perturbaciones no
lineales y un controlador difuso PID para mejorar su des-
empenio en terrenos irregulares. Ademads, se han propuesto
nuevos enfoques de control como el uso de controladores
Riccati con observadores de velocidad basados en Kalman
(Wang et al., 2023), que permiten un seguimiento més
preciso de la velocidad en muiltiples tipos de terreno.

Estos métodos han demostrado ser mas eficaces que los
controladores PID convencionales, especialmente en tareas
que requieren cambios rapidos de direccién o adaptacion
a superficies variables (Vidana et al., 2024). Estas inno-
vaciones refuerzan el papel de los robots esféricos como
plataformas versdtiles para aplicaciones en exploracion,
vigilancia y asistencia en entornos no estructurados.
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Este trabajo aborda estos retos con una vision global
del diseno, modelado, construccién y control de un robot
esférico, presentando las siguientes contribuciones:

= Simulaciones realistas: Utilizacién de CoppeliaSim
para modelar la dindmica no lineal y los efectos de
friccién del robot en un entorno muy dindmico e
interactivo (Montenegro et al., 2022).

= Validacion experimental: Implementacién del con-
trol de posicién del robot esférico real en una plata-
forma de pruebas que utiliza el seguimiento visual con
SwisTrack para obtener la posiciéon global del robot
(Schroder et al., 2023).

= Control de posicién del robot mediante In-
teligencia Artificial: Aplicacién de algoritmos de
Deep Reinforcement Learning DQN (por sus siglas
en inglés, Deep Q-Network) y DDPG (por sus siglas
en inglés, Deep Deterministic Policy Gradient), para
optimizar las politicas de control sin depender de
modelos lineales (Escorza et al., 2025).

El resto de este articulo se organiza como sigue. En la
Seccién 2 se presenta el diseno y modelado del robot
esférico, asi como las estrategias de control implementa-
das. La Seccién 3 detalla la simulacién y los resultados
experimentales obtenidos utilizando plataformas virtuales
y fisicas. La Seccién 4 presenta una discusion y evaluacion
de los resultados. Finalmente, en la Seccién 5 se presentan
las conclusiones y las lineas de trabajo futuras.

2. DISENO7 MODELADO Y CONTROL DEL ROBOT
2.1 Diseno del Robot

El robot se compone de dos servomotores conectados ho-
rizontalmente a la carcasa esférica que permiten el mo-
vimiento hacia delante. Un motor de corriente continua
conectado al péndulo para realizar el movimiento en sen-
tido horario o antihorario. Los tres motores se accionan
mediante senales PWM para modificar sus velocidades. La
Figura 1-a muestra los componentes del robot y la Figura
1-b el robot armado.

(a) Componentes internos.

(b) Robot esférico.

Figura 1. Diseno del robot.

2.2 Modelado del robot esférico en CoppeliaSim

El robot esférico modelado en este trabajo consiste en
una carcasa esférica impresa en 3D que encierra todos los
componentes internos y permite el movimiento de balanceo
mediante accionamiento interno. El mecanismo interno
se basa en un péndulo y tres motores: dos servomotores
unidos a la carcasa mueven el péndulo para desplazar el
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centro de gravedad, mientras que un motor de corriente
continua permite girar el péndulo para inducir la rotacion.
Esta configuracién permite al robot moverse y mantener
el equilibrio con un dnico punto de contacto con el suelo.

El robot se disené inicialmente con Autodesk Fusion 360
(Verma, 2018) y con Tinkercad - 3D Design (Kelly, 2014)
y posteriormente se ensamblé virtualmente en el simula-
dor CoppeliaSim (Montenegro et al., 2022). El modelo de
simulacion incluye representaciones precisas de la masa, la
inercia y la geometria, lo que garantiza un comportamiento
dindmico realista. El didmetro total del robot es de 20 cm,
y los componentes internos estan dispuestos simétricamen-
te para mantener el equilibrio. Para girar, el robot utiliza
el principio del giroscopio de momento de control (CMG).
La dinamica de rotacién se rige por:

g=w (1)
B1 By 1
=22 2
w le 7, W+ Jle (2)
Bs 1
W=22W 4 =7, 3
Jeq Jeq ( )

donde ¢ es el angulo de orientacién del robot, w es su
velocidad angular. 7, es el torque del péndulo, B; es
el coeficiente de friccion del actuador interno, Bs es el
coeficiente de acoplamiento dindmico entre el actuador y
la esfera, W es la velocidad angular del péndulo, J; es
el momento de inercia de la carcasa del robot, J; es el
momento de inercia del péndulo y J., es el momento de
inercia equivalente.

Teniendo en cuenta factores como el coste, la viabilidad de
los materiales, la baja complejidad en el disenio, el buen
control del movimiento y la posibilidad de construccion
en un corto periodo de tiempo, se eligié el mecanismo
de péndulo accionado como método a utilizar. Por lo
tanto, las pruebas de control de posiciéon se basaran en
los controles realizados en el articulo (Montenegro et al.,
2022). El modelo simulado en el articulo esta representado
por la Figura 2 y considera al robot como un todo, formado
por 3 partes. La carcasa (a), el péndulo y los circuitos
electrénicos (b).

(a) Modelo del robot.

(b) Péndulo del robot.

Figura 2. Modelo del Robot en CoppeliaSim.

Para la construccién del robot, en el caso de la carcasa,
se imprimieron 2 piezas simétricas, una roja y otra verde.
El didmetro de la circunferencia es de 20 cm y para unir
ambas piezas se ided un sistema de roscas que permite un
acceso rapido y sencillo al circuito.

El mecanismo interno se compone de dos piezas, una
ggue alberga los componentes electronicos y otra que da
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forma al péndulo. El péndulo alberga 0,627 kg de peso
distribuidos uniformemente entre sus aletas para generar
el momento necesario para girar. En el centro, tiene una
columna de 3,7 cm que estd conectada a un motor de
corriente continua. En cuanto al soporte interior, se disené
para contener los servomotores, el motor de corriente
continua y el resto de componentes utilizados. Es una
pieza simétrica lo suficientemente larga como para llegar
a ambos extremos de la esfera.

2.8 Estrategias de Control (Enfoques Cldsicos)

Para validar el modelo de robot y evaluar su rendimiento
en distintas condiciones, se aplicaron y probaron varias
estrategias de control. El experimento consiste en conducir
un robot desde su posicién actual, C(z,y,d), hasta un
punto objetivo, Target Point (T},), por sus siglas en inglés.
La Figura 3 muestra el diagrama de bloques de este

experimento.
o o
—| Cidlculo Control ——» >
Y a,(t) w(t) Motor DC
c Sensor de Posicion

(Cdmara)

Figura 3. Diagrama en bloques del control del robot.

Las diferentes leyes de control clasico, que se implementan
en el bloque Ley de Control, y entre las que se encuentran:

1.- Controlador Villela: Una ley de control clésica
que calcula la velocidad lineal (V) y la angular (w) en
funcién de la distancia al objetivo y del error angular (a.)
(Gonzalez-Villela et al., 2004):

Vinaxs if |d| > k.
= max . 4
v Vk‘ d, if |d <k )

()

donde d es la distancia al objetivo y &, es un radio umbral.

W = Wiax Sin(ce)

2.- Controlador Proporcional Integral (IPC): Una
versiéon mejorada del controlador Villela que incluye un
término integral para mejorar la convergencia. Las leyes
de control son (Fabregas et al., 2020):

(6)

V = min(K, - p(a.) - d, Vinax)
(7)

¢
w = K, sin(a.) + Kl/ ae(T)dr
0

T—|oe|
T )

donde es p(ae) =
ajuste.

y Ky, Kp, K; son pardmetros de

Estas estrategias se evaluaron en escenarios que incluian la
estabilizaciéon de puntos, el seguimiento de trayectorias y
el control de formaciones multi-agente. El rendimiento se
evalu6 utilizando métricas estandar como el error integral
absoluto (IAE), el error integral cuadratico (ISE) y sus
variantes ponderadas en el tiempo (ITAE, ITSE).

2.4 Estrategia de control (Aprendizaje por Refuerzo)

Ademsds de las estrategias de control clasicas, se imple-
menté un enfoque de aprendizaje profundo por refuer-
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zo (DRL por sus siglas en inglés, Deep Reinforcement
Learning) para abordar la dindmica no lineal y acoplada
del robot esférico. En concreto, se utilizé un algoritmo
de aprendizaje profundo en base a redes neuronales para
aprender una politica de control 6ptima a través de la
interaccion con el entorno, basado en un modelo explicito

del sistema (Mnih et al., 2016).

El proceso de aprendizaje se basé en la ecuacién de
Bellman, y la teoria de Q-learning (Schroder et al., 2023)
que define la recompensa acumulada @Q(xy,uy) esperada
de tomar una accion ug en el estado x y seguir la politica
oOptima a partir de entonces:

Q(zk, uk) = s(wk, ug) + WH}?XQ(MH?U/) (8)
con v, un factor de descuento para valores futuros. En
Q-learning, los valores () se actualizan iterativamente uti-
lizando la regla de aprendizaje de la diferencia temporal:

Qi1 (ks uk) = Q;i(wk, up) + a[R(wk, uk) 0
+ymix Qi(wgi1,u') - Qilwr, ur)] ©)

donde « es la tasa de aprendizaje y R(zg,u) es la re-
compensa inmediata. La funcién de recompensa se disené
para penalizar los errores angulares grandes y el esfuerzo
de control excesivo, fomentando el movimiento suave y pre-
ciso hacia el objetivo. La técnica utilizada se disené sobre
la base de la extension desde Q-learning a DQN y DDPG,
al utilizar redes neuronales llamadas Critic y Actor, (Es-
corza et al., 2025). El método basado en datos tabulados
y de naturaleza discreta se modifica para proporcionar
valores continuos. DQN reemplaza la estructura tabular
por una continua, utilizando una red neuronal artificial
(ANN). Ademds, resuelve dos problemas que surgen con el
entrenamiento en tiempo real de redes neuronales: la falta
de independencia e igualdad de distribucién (IID) entre
tuplas de experiencia consecutivas (S, At, Ri41, St+1), ¥
la no estacionariedad del objetivo numérico de busqueda.
DQN define la funcién de valor Q%(s;6) como las salidas
de una red neuronal, parametrizada por el vector 6. Estos
pardmetros se obtienen minimizando el costo:

Li(0) = (r+7-mawQ"(s'30;) = Q"(s:6,))°  (10)
donde ;" se mantiene artificialmente fijo durante un cierto
intervalo de tiempo, o se hace variar lentamente mediante
un filtro pasa-bajos, para reducir la no estacionariedad.
Ademas, se selecciona aleatoriamente una tupla de expe-
riencia desde un bufer deslizante para reducir la correla-
cién. La Ecuacién (10) comparte la misma estructura que
(9) en términos del objetivo numérico de biisqueda y el
error, donde r es la funcién de recompensa y s y a son el
estado actual y la actuacion, respectivamente. DQN sigue
utilizando valores discretos para las acciones, teniendo una
salida @ desde la red neuronal para cada valor discreto de
accién. El operador max selecciona el valor de actuacion
optimo.

DDPG por su parte, se deriva de DQN, buscando re-
emplazar la naturaleza discreta de las acciones por una
continua. En este sentido, DDPG hereda la formulacion
de Q(s,a;0) para la estimacién de la recompensa, ahora
llamada C'ritic, pero en lugar de obtener la accién mediante
ghna maximizacién entre sus salidas discretas, implementa
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una red neuronal adicional u(s;¢), llamada Actor, para
generar la accién de control éptima. De forma similar,
los parametros del Critic 6 se obtienen minimizando la
siguiente funcién de costo:

Li(6:) = (r+ - Q(s', u(s'37):6,) — Q(s,a;6;))° (1)

Pero ahora, teniendo la accién a = p(s; ¢) como entrada,
se reemplaza la maximizacion sobre el espacio de actua-
cion. Esta actuacién se obtiene entonces maximizando la
siguiente funcién de costo:

Ji(¢5) = Q(s, u(s; ¢5);6:)

Aqui, se adopta el mismo enfoque para el vector de
parametros del Actor ¢ con el fin de reducir el efecto
de un objetivo no estacionario. El diagrama final de
interconexién se puede ver en la Figura 4.

(12)

Critic

V(t)

Figura 4. Redes neuronales en el controlador con 2 salidas.

El controlador utiliza el algoritmo DDPG (Sumiea et al.,
2024) para calcular la senal de control V basada en el
error angular a. y la distancia al objetivo d, sintonizada
con la funcién de recompensa r = —10 - a? — 12 - Vg,
siendo V; = %d la tasa de cambio temporal de la
distancia. Esta adicién a la funcién de recompensa fue para
forzar indirectamente al controlador a reducir el tiempo
total para alcanzar el objetivo, recompensando mayores
velocidades negativas de distancia. La senal Q es usada
durante el entrenamiento para ajustar los pesos de las
redes neuronales (tanto Critic como Actor), pero cuando
ya esta entrenado el controlador, solo se exporta al robot la
red llamada Actor, que en este caso es la funcion fpppa
que se muestra en la Figura 5. La senal de control w se
disena como en los casos anteriores:

w(t) = fippa(ac(t), o (1))
V(t) = fBppa(ae(t), d(t))

La estructura del controlador general es muy similar a
la anterior DDPG, ahora el segundo actor salidas V. El
diagrama en bloques del controlador se puede ver en la
Figura 5.

(13)

3. RESULTADOS EXPERIMENTALES
3.1 Controlador Villela

Las primeras pruebas de simulaciéon se realizaron con el
controlador Villela. En este caso, el punto inicial del robot
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e

Robot

1%
fDDI’G

V(1)

Figura 5. Diagrama en bloques del controlador DDPG.

es la posicién X, = 40 cm, Y, = 0 cm y su objetivo esta en
Xp = —80 cm, Y}, = 0 cm. La flecha muestra la orientacién
inicial a 0 grados. La Figura 6 muestra la trayectoria del
robot, asi como el tiempo que tarda en llegar al destino.

20 © Target
Real 140
10 — Simulacién

— Real
— Simulacién
01
-10
E-ZO
—=-30
>
-40
-50

-80 -60 -40 -20 20 40 60 0 5 10 15 20 25

Tiempo [s]

0
X [em]

(a) Posicién. (b) Distancia.

Figura 6. Posicién y distancia al objetivo X, = —80 cm,
Y, = 0 cm con el controlador Villela.

Puede observarse en este caso que tanto la simulacién como
el comportamiento del robot, en la realidad, son similares
en la trayectoria. Sin embargo, en términos de tiempo, la
simulacion tarda bastante menos, alcanzando el objetivo
aproximadamente 6 segundos antes. Esta diferencia puede
ser producida tanto por la superficie como por las conside-
raciones geométricas que difieren del modelo construido,
ya que estda basado en las simulaciones realizadas en el
articulo (Schroder et al., 2023) y adaptadas para el robot
construido en este articulo.

Finalmente, observando la Figura se puede determinar
que el robot mantiene su comportamiento respecto a la
trayectoria realizada, en términos de tiempo el robot real
tarda mas en alcanzar el objetivo. Esto se puede relacionar
directamente con la velocidad elegida para el robot y la
diferencia de dindmica entre el robot simulado y el real.

3.2 Controlador IPC

En este caso, el punto de partida del robot es la posiciéon
X, =40 cm, Y., = 0 cm y su objetivo estd en X, = —50
cm, Y, = 0 cm. La flecha muestra la orientacién inicial a 0
grados. La Figura 7 muestra la trayectoria del robot y el
tiempo que tarda en llegar al destino.

En el caso de la simulacién, la trayectoria utilizada es mu-
cho mas amplia que en el caso real. Por tanto, podria decir-
se que la trayectoria no es la misma que en la simulacién.
Sin embargo, en términos de tiempo, el robot mantiene
una relacion distancia-tiempo similar, que se mantiene a
medida que se acerca al objetivo. Esta diferencia en la
trayectoria puede deberse a las mismas razones expuestas
en el controlador desarrollado por Villela.

Finalmente, observando las gréficas, se puede determinar
ggue existen diferencias de comportamiento tanto en el
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Figura 7. Posicién y distancia al objetivo X, = —80 cm,
Y, =0 cm con el controlador IPC.

desplazamiento real como en el simulado, ya que el robot
real disminuye su error angular méas rapidamente que en
la simulacién, recorriendo menos distancia. Esto puede
deberse a la diferencia entre el modelo matemético y la
realidad, donde tanto las consideraciones de las superficies
como la geometria del robot pueden no ser tan similares.

3.8 Aprendizaje Profundo por Refuerzo

Para comprobar el funcionamiento del robot accionado
por diferentes controladores, se realizaron pruebas en tres
escenarios diferentes que se explicaran a continuacién en
funcién de la ubicacion del objetivo.

Para el algoritmo de RL Q-learning el robot necesité un
ntimero de episodios del orden de los millones de iteracio-
nes, pero para DDPG o DQN, la cantidad de iteraciones
fue del orden de las decenas de miles. El aprendizaje
se hizo en simulaciéon solamente, y ese conocimiento se
export6 al robot real, y no se continué con aprendizaje
en tiempo real con el robot. La Figura 8 muestra los
resultados con el controlador Villela en azul, el IPC en
rojo y el Aprendizaje por Refuerzo en verde. En el grafico
de la izquierda se muestra la trayectoria seguida por el
robot para alcanzar el punto final, mientras que en el de
la derecha, la disminucién de la distancia en funcién del
tiempo. Aqui se aplican las mismas consideraciones para
la gestién de las senales PWM.

Para este caso, se utiliz6 X, = 0, Y. = —40 como punto
de partida y X, = —80,Y}, = 40 como objetivo. La flecha
muestra la orientacién inicial a 0 grados. A simple vista,
se puede observar que el controlador IPC es el méas rapido
con un tiempo aproximado de 9 segundos para llegar al
destino.

Por otro lado, el controlador de aprendizaje por refuerzo
(RL, por sus siglas en inglés, Reinforcement Learning) es
el que mas tiempo tarda con 12 segundos, esto es debido
a que al acercarse al objetivo realizé una desviacién que le
impidié llegar en menos tiempo, teniendo que corregir la
orientacién y por tanto tardando casi 3 segundos mas.

Ademas, la calidad de cada algoritmo de control se evalia
utilizando métricas de rendimiento. Estas métricas utilizan
la integral del error, que en este caso es la distancia
al punto objetivo (Target). Las medidas de rendimiento
consideradas en este documento son (1) Error Cuadratico
Total (ISE), (2) Error Absoluto Total (IAE), (3) Error
Cuadratico Total en Tiempo Total (ITSE) y (4) Error
Absoluto en Tiempo Total (ITAE). En cuanto a los {ndices
de rendimiento mostrados en la Tabla 1, se puede observar
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Figura 8. Posicién y distancia al objetivo X, = —80 cm,

Y, = 40 cm con los tres controladores.

que los indices son menores en el control RL; sin embargo,
al observar las gréficas de la Figura 8, el controlador es el
que mas tiempo tarda en alcanzar el objetivo.

Tabla 1. Indices de Desempeio.

Indices  Villela IPC RL
IAE 797 703 641
ISE 76977 68857 53879
ITSE 275800 219640 150900
ITAE 3307 2579 2517

Considerando lo anterior, se podria esperar que los indices
ITSE e ITAE fueran mayores; sin embargo, la distancia que
tienen los demads controladores genera una compensacion,
obteniendo finalmente un mejor indice RL. Aunque al
principio de la trayectoria es el primero en reducir el
error angular, durante la trayectoria proxima al objetivo
se desvia, lo que produce este retraso en comparacién con
IPC, que es el mas competitivo después de RL. En relacién
con Villela, es el que mas tarda y, en consecuencia, tiene
los peores indices de rendimiento.

4. DISCUSION Y EVALUACION
4.1 FEvaluacion del desempeno del robot

Para examinar més a fondo el comportamiento de los
controladores DRL, se probaron diseios de control més
antiguos, Q-learning RL (Schroder et al., 2023), Villela
(Gonzalez-Villela et al., 2004), e IPC (Integral Proportio-
nal Controller) (Fabregas et al., 2020), para un escenario
comun. El punto de partida elegido es (X,,Y.) = (40,0),
pero con el objetivo situado ahora en (X,,Y,) = (—40,0),
lo que permite disponer de méas tiempo para maniobrar.
La Figura 9 muestra los resultados obtenidos.

Villel 120
illela Villela
60 PC IPC
RL 100 RL
40 —DaN —DaN
—DDPG —DDPG
20 —2 Salidas| | '£80 — 2 Salidas
— + Target O,
5o 860
2 s
-20 2
Q40
-40
20
-60
0
-60 -40 -20 0 20 40 60 0 2 4 6 8 10 12
Xc [em] Tiempo [s]

Figura 9. Posicién y distancia al T,(X,,Y,) = (—40,0).

En general, todos los controladores tomaron rutas dife-
983ntes cada vez que se realizé la prueba. En cuanto a

https://doi.org/10.58571/CNCA.AMCA.2025.015



XX Congreso Latinoamericano de Control Automatico (CLCA 2025)
13-17 de Octubre, 2025. Cancun, Quintana Roo, México

la distancia o el tiempo que tardaron los algoritmos en
llegar al punto, se pueden hacer varias observaciones. La
primera de ellas es que los tres controladores DRL ob-
tuvieron mejores resultados en términos de tiempo. Otro
punto importante es que esta prueba es coherente con la
tendencia de las anteriores en el orden de llegada. Para los
controladores no basados en DRL, el que menos tiempo
tardo fue el controlador RL, seguido del IPC y el que mas
tardé fue el Villela, lo cual era de esperar, coherente con
el (Montenegro et al., 2022). Para evaluar la calidad de
cada algoritmo, se utilizaron los indices de rendimiento
que se resumen en la Tabla 2, para el objetivo en el punto
(Xp’ Yp) = (—40,0).

Tabla 2. Indices de Desempeio.

T ) 2
Indices  Villela IPC RL DQN DDPG Salidas
IAE 694 477 474 389 342 325
ISE 51437 32462 39477 28706 25017 25753
ITSE 208130 96459 107430 63494 49322 49494
ITAE 3249 1697 1453 1019 799 693

Tras analizar todas las pruebas, se puede afirmar que el
controlador con mejores resultados, tanto en los indices de
rendimiento como en el tiempo empleado, es el controlador
DDPG con 2 salidas (V, w). Esto puede atribuirse a que
se trata de un algoritmo de control en tiempo continuo,
que gestiona tanto la velocidad lineal como la angular del
robot de forma concurrente, basdndose en las dos senales
de medida.

5. CONCLUSIONES Y TRABAJO FUTURO

Este trabajo presenta el modelado, disenio y control de un
robot esférico utilizando el entorno de simulacién Coppe-
liaSim y una plataforma real. Se implementaron y eva-
luaron varias estrategias de control, incluidos enfoques
cldsicos (Villela e TPC) y un método de aprendizaje por
refuerzo (Q-learning). Los controladores basados en DRL
(DQN y DDPG) demostraron un rendimiento superior
en términos de suavidad de trayectoria, tiempo de con-
vergencia y adaptabilidad a escenarios dindamicos. Tanto
los resultados de la simulaciéon como los del robot real
mostraron que las estrategias de control propuestas son
eficaces para lograr un movimiento estable y preciso en
diversas tareas.

El trabajo futuro se centrara la integracién de un sistema
de seguimiento visual en tiempo real y la validacién de los
resultados de la simulacion en condiciones reales. Ademas,
se exploraran nuevas mejoras en la eficacia y robustez del
aprendizaje mediante el uso de algoritmos DRL avanzados
y espacios de accién continuos.
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