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Abstract: This paper presents a comparative analysis of four strategies for intelligent fault
classification based on real-time data analysis. The number of research publications proposing
different intelligent classification strategies is extensive, but the vast majority of the proposed
classifiers operate offline. This paper explores different intelligent classification techniques with
the goal of implementing them in real-time for fault detection in nonlinear dynamic systems.
Real-time data classification is highly relevant for the design of fault-tolerant control systems.
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1. INTRODUCCIÓN

La detección y aislamiento de fallas (DAF) es un tema
de interés actual debido que proporciona la información
necesaria para ajustar y mitigar los efectos de la falla.
Generalmente, las fallas más comunes ocurren en los actu-
adores o en los sensores, por lo que este art́ıculo propone
un novedoso esquema libre de modelo para la detección y
aislamiento de fallas en sensores y actuadores de motores
de inducción (IM). La metodoloǵıa propuesta tiene la tarea
de detectar y aislar fallas a patir de la medición de datos
en tiempo real para diferentes tipos de fallas en sensores
y actuadores de motores de inducción (IM), ya sea por
desconexión, degradación, falla o daño en la conexión o
comunicación. El enfoque propuesto incluye el uso de redes
neuronales profundas que no requieren un modelo nominal
ni generan residuos para la detección de fallas, lo que
las convierte en una herramienta útil y en tiempo real.
Además, el enfoque de aislamiento de fallas se lleva a cabo
mediante clasificadores que diferencian caracteŕısticas in-
dependientemente de los demás clasificadores. Para esta
tarea se utilizan la red neuronal de memoria a largo plazo
(LSTM), la LSTM bidireccional (BiLSTM), el perceptrón
multicapa (MLP) y la red neuronal convolucional (CNN).
El esquema de detección y aislamiento de fallas propuesto
para sensores y actuadores es simple. Puede aplicarse de
forma conjunta con diversas aplicaciones que involucren
esquemas de DAF. Los resultados muestran que las re-
des neuronales profundas son una herramienta potente y
versátil para la detección y aislamiento de fallas a partir
de datos en tiempo real Sanchez et al. (2022).

Este trabajo aborda el problema de la identificación y de-
tección de fallas existentes, también denominada problema
de diagnóstico. Este problema se divide en dos etapas: la
de detección de fallas y la de aislamiento de fallas. En
la primera, se determina si se ha producido una falla,
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además de identificar el momento en que el sistema la ha
sufrido Rodriguez-Guerra et al. (2019). Por otro lado, la
etapa de aislamiento de fallas se centra en determinar el
componente donde se originó la falla y realizar acciones
para aislar la misma y evitar efectos adversos provocados
por la falla presentada Rodriguez-Guerra et al. (2019).

Existen tres tipos principales de fallas en los motores
de inducción: fallas del actuador, fallas de la planta y
fallas del sensor. En aplicaciones industriales, el control
tolerante a fallas ante fallas del sensor es crucial, ya que
estos permiten el monitoreo de las variables de estado
del sistema en algunos de los componentes con mayor
potencial de falla. De hecho, como se menciona en Chen
et al. (2020) que analizar las observaciones de los sensores
es una tarea compleja. Además, los actuadores representan
una conexión entre el algoritmo de control y el sistema,
por lo que si hay una falla en el actuador, su capacidad
operativa se reduce en comparación con el funcionamiento
normal. Una de las principales aplicaciones de la detección
y el aislamiento de fallas es garantizar la confiabilidad y la
seguridad, como en el caso de los trenes de alta velocidad
Chen et al. (2020).

Como se menciona en el trabajo publicado en Saufi et al.
(2019), el enfoque tradicional para detectar y diagnosticar
fallas se lleva a cabo en cinco pasos: adquisición de datos,
procesamiento de datos, extracción de caracteŕısticas, re-
ducción dimensional y clasificación. Esto implica que en-
contrar las técnicas adecuadas en cada paso es funda-
mental y que es necesario un proceso de prueba y error.
Por ello, diferentes trabajos utilizan enfoques únicos para
abordar cada aplicación espećıfica Sanchez et al. (2022).

En general, los trabajos existentes en clasificación traba-
jan fuera de ĺınea. En Chen et al. (2020), se presenta
una recopilación de numerosos art́ıculos con diferentes
metodoloǵıas de diagnóstico y detección, entre las que
se mencionan métodos basados en: análisis de señales,
modelos y basados en datos o sin modelos. Como se men-
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ciona en dicho art́ıculo, las estrategias desarrolladas para
el uso de controladores tolerantes a fallas son un tema
de interés para los investigadores; sin embargo, no existen
muchos trabajos relacionados con esquemas de DAF para
su aplicación en controladores.

Además, para aplicaciones en tiempo real, es necesario
contar con un clasificador confiable que funcione en tiempo
real, junto a un controlador tolerante a fallas. Este art́ıculo
propone una metodoloǵıa para el diagnóstico en ĺınea de
fallas de actuadores y sensores con aplicación a motores de
inducción trifásicos, utilizando únicamente datos medidos
sin conocer el modelo nominal ni otras suposiciones pre-
vias, salvo los datos con los que se entrenó la RNA. Esta
metodoloǵıa se implementó con cuatro estructuras de redes
neuronales profundas y sus rendimientos se probaron con
datos experimentales en tiempo real.

2. REDES NEURONALES PROFUNDAS

Para aplicaciones reales, es necesario desarrollar métodos
de diagnóstico de fallas capaces de analizar grandes canti-
dades de datos para su detección automática con precisión
y rapidez. Con frecuencia, la detección de fallas en los
motores de inducción, se basa en observadores; sin em-
bargo, su principal desventaja reside en su gran dependen-
cia de modelos matemáticos precisos correspondientes al
sistema. Esto no es completamente efectivo en aplicaciones
reales porque los parámetros del sistema suelen variar
durante el proceso y las perturbaciones son desconocidas,
lo que puede causar falsas alarmas Zhang et al. (2016).
Sin embargo, las redes neuronales que se han adoptado
para el diagnóstico inteligente de fallas tienen estructuras
superficiales Jia et al. (2016). Esto limita la capacidad de
las ANN para aprender relaciones no lineales complejas,
por lo que es necesario establecer una red de arquitectura
profunda para este propósito.

Las redes neuronales profundas (RNP) contienen múltiples
capas de operaciones no lineales para gestionar estruc-
turas complejas. Estas capas están conectadas entre śı, de
modo que los parámetros (pesos) se ajustan a representa-
ciones abstractas de aplicaciones reales. Las RNP cap-
turan funciones complejas mediante el entrenamiento de
los múltiples niveles de abstracción, utilizando únicamente
los datos directamente del sensor, ya que la red neuronal
puede aprender las caracteŕısticas del sensor tanto en
condiciones de fallo como en estado operativo.

En este trabajo, se propone el uso de cuatro redes neu-
ronales profundas, para la clasificación rápida y precisa de
fallas en sensores y actuadores de un motor de inducción,
por medio del procesamiento de datos en tiempo real Jia
et al. (2016). Las redes propuestas son: MLP, LSTM,
BiLSTM y CNN.

Los requisitos actuales de tiempo real para el proce-
samiento de datos en ĺınea, además de la variación de
los patrones de comportamiento en los datos observados
por el sensor a lo largo del tiempo, reducen la eficacia
de los métodos convencionales de aprendizaje automático.
Asimismo, las incertidumbres, los elementos no lineales y
la variabilidad de la naturaleza de los datos del sensor, que
constituyen información valiosa en los procesos de moni-
toreo para capturar la relación entre datos de series tempo-

rales, requieren un enfoque novedoso para la clasificación
de fallas. Estos enfoques deben ser computacionalmente
eficientes y tener altos niveles de precisión y exactitud
en las predicciones. De este modo, es posible modelar el
sistema con fallas en sensores y actuadores, de la siguiente
forma:

x̄(t+ 1) = F (x̄(t), ū(t)) + d(t) (1)

y(t) = Cx̄(t) (2)

donde x ∈ ℜn es el vector de estado del sistema, u ∈ ℜm,
F ∈ ℜn×ℜm → ℜn es una función no lineal, C ∈ ℜp×m es
la matriz de salida y d ∈ ℜn es el vector de perturbación.
Es posible reescribir (1) a partir de sus componentes,
como:

x̄i(t+ 1) = Fi(x̄(t), ū(t)) + di(t) i = 1, 2, . . . , n (3)

Las fallas en sensores y actuadores, se definen como:

x̄(t) = ρi(xi(t), δi(t)) (4)

ũ(t) = ϕi(ui(t), δi(t)) (5)

donde δi es el vector de incertidumbres; ρi y ϕi son
funciones no lineales consideradas desconocidas pero aco-
tadas y representan la perdida de la eficacia en sensores y
actuadores causada por entradas externas, no medibles,
sesgadas o imprecisas durante un tiempo t∗i . Entonces,
xi(t) se considera medible y su medida es definida como
x̄i(t). Una representación esquemática de (1) se puede ver
en Fig. 1.

Fig. 1. Representación esquemática de las fallas en sensores
y actuadores

Para propósitos de DAF, los valores de x̄ y ū representan
la dinámica interna del sistema (1) lo que puede resultar
en dos situaciones posibles: falla o no falla. Esto puede
considerarse como un problema de clasificación descrito
por

ρi(xi(t), δi(t)) =

{
falla, ρi(∗) ∈ S

nofalla, ρi(∗) /∈ S
(6)

Similarmente,

ϕi(ui(t), δi(t)) =

{
falla, ϕi(∗) ∈ S

nofalla, ϕi(∗) /∈ S
(7)

donde S es el subconjunto de todos los modos de falla
posibles. Por lo tanto, el subconjunto S se considera solo
parcialmente conocido debido a la dificultad de definir
completamente el sistema no lineal.

Si el estado completo x(t) del sistema está disponible y
existe una estructura de datos con la dinámica de (6) y
(7) que puede identificarse como caracteŕısticas, en una
serie de tiempo, se cumplen, entonces podemos afirmar
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que es posible identificar un escenario de falla, en el
sistema combinando todas las entradas de señal en una
serie temporal multivariable.

Para este trabajo, se consideran las redes profundas men-
cionadas anteriormente para realizar la tarea de clasifi-
cación (6) y (7), por lo que los problemas de detección y
aislamiento de fallas se dividen en dos etapas: la etapa de
aislamiento de la señal y la etapa de clasificación de fallas.
La metodoloǵıa se describe en la siguiente sección.

3. LÓGICA PARA EL AISLAMIENTO DE FALLAS

El conjunto de datos obtenido por el actuador y los sen-
sores puede considerarse una serie de tiempo que relaciona
los datos actuales con los pasados, lo que permite corrob-
orar tendencias. Podemos definir una serie temporal como
un vector X compuesto por valores reales medidos por
sensores propensos a fallos x̄(k), se define como:

X = [x̄(0), x̄(1), . . . , x̄(n)] (8)

El tamaño del vector corresponde al número de muestras
observadas, n. Por lo tanto, existen diferentes maneras de
abordar el problema de la DAF; por un lado, utilizando
técnicas de clasificación de series temporales multivaribles
(datos obtenidos a partir de mediciones de múltiples sen-
sores o variables) y por otro, utilizando series temporales
univariables (datos obtenidos a partir de mediciones de la
misma variable).

Por lo tanto, N series de tiempo univariables difer-
entes X(k), como la ecuación (8), pueden verse como
series temporales multivariables que consisten en X =
[X(1), X(2), . . . , X(N)]. Entonces, el conjunto de datos
D = {(X(1), Y (1)), (X(2), Y (2)) , . . . , (X(N), Y (N))} es
una colección donde X(k) es una serie temporal univari-
able e Y (k) es su vector de etiquetas de clase. La longitud
de Y (k) corresponde al número de clases i, donde cada
elemento j ∈ [1, k] es igual a 1 si la clase de X(k) es j y 0
en caso contrario.

Una serie de tiempo univariable presenta el problema de
incorporar información, ya que solo se considera disponible
una señal. En el caso de las redes neuronales profundas,
el contexto y la información proporcionada son cruciales.
Por lo tanto, la incorporación del contexto para redes neu-
ronales en series temporales univariable se puede realizar
de dos maneras: mediante conexiones recursivas para mod-
elar el flujo temporal directamente o recopilando entradas
en ventanas temporales superpuestas.

La extracción de información de observaciones pasadas se
conoce como ventana deslizante o incrustación con retardo
temporal Perea and Harer (2015). En este trabajo se pro-
pone la ventana deslizante implementada en ĺınea. Para
ello, se considera X como una función definida en un inter-
valo de la serie temporal observada {x̄(0), x̄(1), . . . , x̄(t)}.
Por lo tanto, la incrustación de la ventana deslizante X(t)
es un vector de retardo generado mediante la extracción
de información local de la serie temporal definida hasta el
tiempo actual t.

X(t) = [x̄(t− (d− 1)), . . . , x̄(t− 1), x̄(t)] (9)

donde {1, 2, . . . , d − 1} es el vector de regresión y d es
la dimensión del retardo. El vector X(t) es la entrada al

modelo neuronal para predecir la clase Y (t). Es necesario
probar diferentes dimensiones del vector de regresión para
encontrar el número apropiado de dimensiones que reduce
el error de clasificación según la complejidad de la señal.

4. METODOLOGÍA PROPUESTA

En esta propuesta se considera una red neuronal confor-
mada a su vez por cinco clasificadores locales (uno para
cada canal o variable a diagnosticar), para el proceso de
la detección de fallas y dos neuronas a la salida para la
clasificación de las fallas (una neurona de salida para las
fallas en sensores y otra neurona de salida para fallas en
actuadores), este esquema se pude ver en Fig. 2. Con-
siderando las siguientes etiquetas para las fallas tanto en
sensores como en actuadores.

Tabla 1. Etiquetas para la clasificación

Salida 1 Salida 2 Falla

0 0 No falla
1 0 Perturbación o incertidumbre
2 0 Posición
3 0 Corriente iα
4 0 Corriente iβ
5 0 Posición y corriente iα
6 0 Posición y corriente iβ
7 0 Corriente iα y corriente iβ
0 0 No falla
0 1 Voltaje uα

0 2 Voltaje uβ

0 3 Voltaje uα y voltaje uβ

4.1 Topoloǵıa de la red neuronal

Cada uno de los cinco clasificadores se probo con las cinco
estructuras neuronales ya mencionadas, considerando las
siguientes estructuras

Tabla 2. Estructuras neuronales para cada tipo
de red

Red Arquitectura

MLP Dos capas ocultas con 20 neuronas cada una
LSTM Una capa oculta con 15 celdas LSTM

BiLSTM Una capa con 15 celdas LSTM de estado directo y
15 en la capa oculta de estado inverso

CNN Una capa de convolución + ReLu con 20 filtros
una capa de agrupamiento y dos capas densas

Cada red neuronal tiene como entrada un vector de re-
gresión con diferente dimensión de acuerdo a la variable
considerada, de la siguiente manera:

Tabla 3. Dimensión del retardo para cada
variable

Variable Retardo máximo

Posición d = 2
Corriente iα e iβ d = 10
Voltaje uα y uβ d = 10

5. RESULTADOS

El entrenamiento se realizó fuera de ĺınea con datos
obtenidos experimentalmente de tal forma que los datos
utilizados en el entrenamiento sean diferentes a los datos
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de prueba. Cabe destacar que las ventanas deslizantes
se generaron en diferentes dimensiones para encontrar el
número más adecuado de dimensiones en cuanto al error
de clasificación. Por su parte, la implementación en linea
y en tiempo real utilizó los parámetros ajustados en el
entrenamiento de las redes neuronales.

Los resultados se obtuvieron utilizando las cuatro redes
neuronales con las estructuras mencionadas anteriormente.
Los clasificadores neuronales se entrenaron individual-
mente para cada canal; se utilizaron 20,000 muestras,
como se muestra en Fig. 3. El 50% de los datos utilizados
presentaba fallas y el resto no.

Para comparar el rendimiento de los diferentes clasi-
ficadores neuronales, utilizamos la exactitud de clasifi-
cación, aśı como el área bajo la curva caracteŕıstica op-
erativa (ROC, por sus siglas en inglés). La ecuación de
exactitud de clasificación indica la relación entre el número
de predicciones correctas y el número total de muestras,
que se obtiene mediante

Exactitud =
Positivos verdaderos

Positivos verdaderos+ Positivos falsos
(10)

Tabla 4. Resultados obtenidos para la MLP

Sensor Retardo ROC Exactitud

Posición d = 2 1 1
Corriente iα d = 8 0.9790 0.9665

d = 10 0.9783 0.9666
Corriente iβ d = 8 0.9867 0.9741

d = 10 0.9862 0.9718
Voltaje uα d = 8 0.9801 0.9678

d = 10 0.9758 0.9759
Voltaje uβ d = 8 0.9883 0.8737

d = 10 0.9846 0.8823

5.1 Análisis comparativo

Los resultados del estudio indican que todas las redes
neuronales evaluadas son eficaces en la clasificación de la

Fig. 2. Estructura neuronal propuesta

falla, destacando la red CNN por su rendimiento superior,
con una exactitud que supera al 99 %. A pesar de que las
redes MLP, LSTM y BiLSTM también muestran un buen
rendimiento, los canales de corrientes (Canal 2 y Canal
3) son los más dif́ıciles de clasificar, presentando bajos

Fig. 3. Serie de tiempo multivariable del motor de in-
ducción

Tabla 5. Resultados obtenidos para la LSTM

Sensor Retardo ROC Exactitud

Posición d = 2 1 1
Corriente iα d = 8 0.9864 0.9778

d = 10 0.9791 0.9675
Corriente iβ d = 8 0.9954 0.9892

d = 10 0.9961 0.9896
Voltaje uα d = 8 0.9971 0.9905

d = 10 0.9972 0.9907
Voltaje uβ d = 8 0.9973 0.9911

d = 10 0.9972 0.9845

Tabla 6. Resultados obtenidos para la BiLSTM

Sensor Retardo ROC Exactitud

Posición d = 2 1 1
Corriente iα d = 8 0.9873 0.9381

d = 10 0.9787 0.9318
Corriente iβ d = 8 0.9914 0.9823

d = 10 0.9902 0.9821
Voltaje uα d = 8 0.9962 0.9887

d = 10 0.9964 0.9890
Voltaje uβ d = 8 0.9971 0.9907

d = 10 0.9965 0.9909
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rendimientos. En contraste, los canales actuadores (Canal
4 y Canal 5) mostraron un desempeño adecuado, especial-
mente en las redes LSTM, BiLSTM y CNN, alcanzando
igualmente una exactitud superior al 99%.

La red neuronal MLP destaca por su tiempo promedio
de ejecución por muestra, siendo la mejor opción para
experimentos en tiempo real, aunque con una ligero sacri-
ficio de precisión en comparación con CNN y LSTM, que
ofrecen mejores resultados. Sin embargo, si la velocidad de
clasificación por muestra no es una prioridad, el modelo
CNN se considera la mejor alternativa.

6. CONCLUSIONES

La clasificación de series de tiempo es relevante en diversas
aplicaciones, como en el ámbito médico e industrial. Los
métodos tradicionales suelen ser costosos y complejos, lo
que limita su uso. Este trabajo aborda la detección y
aislamiento de fallas en sensores y actuadores de un motor
de inducción mediante clasificadores neuronales en tiempo
real, sin requerir un modelo matemático del sistema ni
redundancia de sensores. Se implementó un enfoque sen-
cillo donde se consideran diferentes señales como canales,
permitiendo que los clasificadores aprendan a clasificar se-
ries temporales univariables. Además, se integró contexto
para el entrenamiento de las redes neuronales a través de
un vector de regresión.

Una posible modificación para mejorar el desempeño de
la clasificación consistiŕıa en emplear una combinación
de redes neuronales, espećıficamente una red MLP para
el canal 1 y una red LSTM para los canales 2 y 3.
Los resultados obtenidos son prometedores, dado que se
basa únicamente en la información de los tres sensores
disponibles: posición, corriente.
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