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Abstract: This paper presents a comparative analysis of four strategies for intelligent fault
classification based on real-time data analysis. The number of research publications proposing
different intelligent classification strategies is extensive, but the vast majority of the proposed
classifiers operate offline. This paper explores different intelligent classification techniques with
the goal of implementing them in real-time for fault detection in nonlinear dynamic systems.
Real-time data classification is highly relevant for the design of fault-tolerant control systems.
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1. INTRODUCCION

La deteccién y aislamiento de fallas (DAF) es un tema
de interés actual debido que proporciona la informacién
necesaria para ajustar y mitigar los efectos de la falla.
Generalmente, las fallas mas comunes ocurren en los actu-
adores o en los sensores, por lo que este articulo propone
un novedoso esquema libre de modelo para la deteccién y
aislamiento de fallas en sensores y actuadores de motores
de induccién (IM). La metodologia propuesta tiene la tarea
de detectar y aislar fallas a patir de la medicién de datos
en tiempo real para diferentes tipos de fallas en sensores
y actuadores de motores de induccién (IM), ya sea por
desconexion, degradacién, falla o dano en la conexién o
comunicacion. El enfoque propuesto incluye el uso de redes
neuronales profundas que no requieren un modelo nominal
ni generan residuos para la deteccion de fallas, lo que
las convierte en una herramienta 1til y en tiempo real.
Ademds, el enfoque de aislamiento de fallas se lleva a cabo
mediante clasificadores que diferencian caracteristicas in-
dependientemente de los demads clasificadores. Para esta
tarea se utilizan la red neuronal de memoria a largo plazo
(LSTM), la LSTM bidireccional (BiLSTM), el perceptrén
multicapa (MLP) y la red neuronal convolucional (CNN).
El esquema de deteccién y aislamiento de fallas propuesto
para sensores y actuadores es simple. Puede aplicarse de
forma conjunta con diversas aplicaciones que involucren
esquemas de DAF. Los resultados muestran que las re-
des neuronales profundas son una herramienta potente y
versatil para la deteccion y aislamiento de fallas a partir
de datos en tiempo real Sanchez et al. (2022).

Este trabajo aborda el problema de la identificacién y de-
teccién de fallas existentes, también denominada problema
de diagnéstico. Este problema se divide en dos etapas: la
de deteccién de fallas y la de aislamiento de fallas. En
la primera, se determina si se ha producido una falla,
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ademds de identificar el momento en que el sistema la ha
sufrido Rodriguez-Guerra et al. (2019). Por otro lado, la
etapa de aislamiento de fallas se centra en determinar el
componente donde se originé la falla y realizar acciones
para aislar la misma y evitar efectos adversos provocados
por la falla presentada Rodriguez-Guerra et al. (2019).

Existen tres tipos principales de fallas en los motores
de induccion: fallas del actuador, fallas de la planta y
fallas del sensor. En aplicaciones industriales, el control
tolerante a fallas ante fallas del sensor es crucial, ya que
estos permiten el monitoreo de las variables de estado
del sistema en algunos de los componentes con mayor
potencial de falla. De hecho, como se menciona en Chen
et al. (2020) que analizar las observaciones de los sensores
es una tarea compleja. Ademds, los actuadores representan
una conexion entre el algoritmo de control y el sistema,
por lo que si hay una falla en el actuador, su capacidad
operativa se reduce en comparacion con el funcionamiento
normal. Una de las principales aplicaciones de la deteccién
y el aislamiento de fallas es garantizar la confiabilidad y la
seguridad, como en el caso de los trenes de alta velocidad
Chen et al. (2020).

Como se menciona en el trabajo publicado en Saufi et al.
(2019), el enfoque tradicional para detectar y diagnosticar
fallas se lleva a cabo en cinco pasos: adquisicién de datos,
procesamiento de datos, extraccion de caracteristicas, re-
duccién dimensional y clasificacién. Esto implica que en-
contrar las técnicas adecuadas en cada paso es funda-
mental y que es necesario un proceso de prueba y error.
Por ello, diferentes trabajos utilizan enfoques unicos para
abordar cada aplicacién especifica Sanchez et al. (2022).

En general, los trabajos existentes en clasificacion traba-
jan fuera de linea. En Chen et al. (2020), se presenta
una recopilacion de numerosos articulos con diferentes
metodologias de diagnéstico y deteccidén, entre las que
se mencionan métodos basados en: andlisis de senales,
modelos y basados en datos o sin modelos. Como se men-
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ciona en dicho articulo, las estrategias desarrolladas para
el uso de controladores tolerantes a fallas son un tema
de interés para los investigadores; sin embargo, no existen
muchos trabajos relacionados con esquemas de DAF para
su aplicacién en controladores.

Ademsds, para aplicaciones en tiempo real, es necesario
contar con un clasificador confiable que funcione en tiempo
real, junto a un controlador tolerante a fallas. Este articulo
propone una metodologia para el diagndstico en linea de
fallas de actuadores y sensores con aplicacion a motores de
induccién trifasicos, utilizando tnicamente datos medidos
sin conocer el modelo nominal ni otras suposiciones pre-
vias, salvo los datos con los que se entrend la RNA. Esta
metodologia se implementoé con cuatro estructuras de redes
neuronales profundas y sus rendimientos se probaron con
datos experimentales en tiempo real.

2. REDES NEURONALES PROFUNDAS

Para aplicaciones reales, es necesario desarrollar métodos
de diagnostico de fallas capaces de analizar grandes canti-
dades de datos para su deteccién automatica con precision
y rapidez. Con frecuencia, la deteccién de fallas en los
motores de induccién, se basa en observadores; sin em-
bargo, su principal desventaja reside en su gran dependen-
cia de modelos matemaéticos precisos correspondientes al
sistema. Esto no es completamente efectivo en aplicaciones
reales porque los parametros del sistema suelen variar
durante el proceso y las perturbaciones son desconocidas,
lo que puede causar falsas alarmas Zhang et al. (2016).
Sin embargo, las redes neuronales que se han adoptado
para el diagndstico inteligente de fallas tienen estructuras
superficiales Jia et al. (2016). Esto limita la capacidad de
las ANN para aprender relaciones no lineales complejas,
por lo que es necesario establecer una red de arquitectura
profunda para este propdsito.

Las redes neuronales profundas (RNP) contienen miltiples
capas de operaciones no lineales para gestionar estruc-
turas complejas. Estas capas estan conectadas entre si, de
modo que los pardmetros (pesos) se ajustan a representa-
ciones abstractas de aplicaciones reales. Las RNP cap-
turan funciones complejas mediante el entrenamiento de
los mltiples niveles de abstraccién, utilizando inicamente
los datos directamente del sensor, ya que la red neuronal
puede aprender las caracteristicas del sensor tanto en
condiciones de fallo como en estado operativo.

En este trabajo, se propone el uso de cuatro redes neu-
ronales profundas, para la clasificacién rapida y precisa de
fallas en sensores y actuadores de un motor de induccién,
por medio del procesamiento de datos en tiempo real Jia
et al. (2016). Las redes propuestas son: MLP, LSTM,
BiLSTM y CNN.

Los requisitos actuales de tiempo real para el proce-
samiento de datos en linea, ademas de la variacion de
los patrones de comportamiento en los datos observados
por el sensor a lo largo del tiempo, reducen la eficacia
de los métodos convencionales de aprendizaje automatico.
Asimismo, las incertidumbres, los elementos no lineales y
la variabilidad de la naturaleza de los datos del sensor, que
constituyen informacién valiosa en los procesos de moni-
toreo para capturar la relacién entre datos de series tempo-
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rales, requieren un enfoque novedoso para la clasificacién
de fallas. Estos enfoques deben ser computacionalmente
eficientes y tener altos niveles de precisién y exactitud
en las predicciones. De este modo, es posible modelar el
sistema con fallas en sensores y actuadores, de la siguiente
forma:

Z(t+1) = F(z(t),u(t)) + d(t) (1)
(t) (2)

donde z € R" es el vector de estado del sistema, u € R™,
F e R*"xR™ — R"™ es una funcién no lineal, C' € RP*" es
la matriz de salida y d € R" es el vector de perturbacién.
Es posible reescribir (1) a partir de sus componentes,
como:

Zi(t+ 1) = Fi(z(t),a(t)) + di(t) i=1,2,...

Las fallas en sensores y actuadores, se definen como:
I(t) = pilxi(t), 0:(t)) (4)
u(t) = ¢i(ui(t), i(t)) (5)

donde 6; es el vector de incertidumbres; p; y ¢; son
funciones no lineales consideradas desconocidas pero aco-
tadas y representan la perdida de la eficacia en sensores y
actuadores causada por entradas externas, no medibles,
sesgadas o imprecisas durante un tiempo t¢;. Entonces,
x;(t) se considera medible y su medida es definida como
Z;(t). Una representacién esquematica de (1) se puede ver
en Fig. 1.

|

Actuadores Sistema Sensores

Fig. 1. Representacion esquematica de las fallas en sensores
y actuadores

Para propésitos de DAF, los valores de T y @ representan
la dindmica interna del sistema (1) lo que puede resultar
en dos situaciones posibles: falla o no falla. Esto puede
considerarse como un problema de clasificacién descrito
por

pi(xi(t), 6i(t)) = { niﬁgﬁéf)éﬁ)egs )

Similarmente,

R e

donde S es el subconjunto de todos los modos de falla
posibles. Por lo tanto, el subconjunto S se considera solo
parcialmente conocido debido a la dificultad de definir
completamente el sistema no lineal.

Si el estado completo x(t) del sistema estd disponible y
existe una estructura de datos con la dindmica de (6) y
(7) que puede identificarse como caracteristicas, en una
serie de tiempo, se cumplen, entonces podemos afirmar
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que es posible identificar un escenario de falla, en el
sistema combinando todas las entradas de senal en una
serie temporal multivariable.

Para este trabajo, se consideran las redes profundas men-
cionadas anteriormente para realizar la tarea de clasifi-
cacién (6) y (7), por lo que los problemas de deteccién y
aislamiento de fallas se dividen en dos etapas: la etapa de
aislamiento de la senal y la etapa de clasificacién de fallas.
La metodologia se describe en la siguiente seccién.

3. LOGICA PARA EL AISLAMIENTO DE FALLAS

El conjunto de datos obtenido por el actuador y los sen-
sores puede considerarse una serie de tiempo que relaciona
los datos actuales con los pasados, lo que permite corrob-
orar tendencias. Podemos definir una serie temporal como
un vector X compuesto por valores reales medidos por
sensores propensos a fallos Z(k), se define como:

X = [(0), (1), ..., 7(n)] (8)

El tamano del vector corresponde al nimero de muestras
observadas, n. Por lo tanto, existen diferentes maneras de
abordar el problema de la DAF; por un lado, utilizando
técnicas de clasificacion de series temporales multivaribles
(datos obtenidos a partir de mediciones de multiples sen-
sores o variables) y por otro, utilizando series temporales
univariables (datos obtenidos a partir de mediciones de la
misma variable).

Por lo tanto, N series de tiempo univariables difer-
entes X(k), como la ecuacién (8), pueden verse como
series temporales multivariables que consisten en X =
[X(1),X(2),...,X(N)]. Entonces, el conjunto de datos
D ={(X(1),Y(1)), (X(2),Y(2)) ..., (X(N),Y(N))} es
una coleccién donde X (k) es una serie temporal univari-
able e Y (k) es su vector de etiquetas de clase. La longitud
de Y (k) corresponde al nimero de clases i, donde cada
elemento j € [1,k] es igual a 1 si la clase de X (k) es j y O
en caso contrario.

Una serie de tiempo univariable presenta el problema de
incorporar informacién, ya que solo se considera disponible
una senal. En el caso de las redes neuronales profundas,
el contexto y la informacién proporcionada son cruciales.
Por lo tanto, la incorporacion del contexto para redes neu-
ronales en series temporales univariable se puede realizar
de dos maneras: mediante conexiones recursivas para mod-
elar el flujo temporal directamente o recopilando entradas
en ventanas temporales superpuestas.

La extraccion de informacién de observaciones pasadas se
conoce como ventana deslizante o incrustacién con retardo
temporal Perea and Harer (2015). En este trabajo se pro-
pone la ventana deslizante implementada en linea. Para
ello, se considera X como una funcién definida en un inter-
valo de la serie temporal observada {Z(0),Z(1),...,Z(¢)}.
Por lo tanto, la incrustacién de la ventana deslizante X (¢)
es un vector de retardo generado mediante la extraccién
de informacion local de la serie temporal definida hasta el
tiempo actual .

X(t) = [t — (d—1)),...,5(t —1),2(t)] (9)

donde {1,2,...,d — 1} es el vector de regresién y d es
la dimensién del retardo. El vector X (t) es la entrada al
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modelo neuronal para predecir la clase Y (t). Es necesario
probar diferentes dimensiones del vector de regresion para
encontrar el niimero apropiado de dimensiones que reduce
el error de clasificacion segun la complejidad de la senal.

4. METODOLOGIA PROPUESTA

En esta propuesta se considera una red neuronal confor-
mada a su vez por cinco clasificadores locales (uno para
cada canal o variable a diagnosticar), para el proceso de
la deteccién de fallas y dos neuronas a la salida para la
clasificacién de las fallas (una neurona de salida para las
fallas en sensores y otra neurona de salida para fallas en
actuadores), este esquema se pude ver en Fig. 2. Con-
siderando las siguientes etiquetas para las fallas tanto en
sensores como en actuadores.

Tabla 1. Etiquetas para la clasificacion

Salida 1  Salida 2 Falla
No falla
Perturbacién o incertidumbre
Posicién
Corriente iq
Corriente ig
Posicién y corriente iq
Posicién y corriente ig
Corriente i, y corriente ig
No falla
Voltaje uq
Voltaje ug

Voltaje uq y voltaje ug

o
o

QO OO OO ULk WN -
WNH OODODDODOO OO

4.1 Topologia de la red neuronal

Cada uno de los cinco clasificadores se probo con las cinco
estructuras neuronales ya mencionadas, considerando las
siguientes estructuras

Tabla 2. Estructuras neuronales para cada tipo

de red
Red Arquitectura
MLP Dos capas ocultas con 20 neuronas cada una
LSTM Una capa oculta con 15 celdas LSTM

BiLSTM  Una capa con 15 celdas LSTM de estado directo y
15 en la capa oculta de estado inverso

Una capa de convolucién + ReLu con 20 filtros

una capa de agrupamiento y dos capas densas

CNN

Cada red neuronal tiene como entrada un vector de re-
gresion con diferente dimension de acuerdo a la variable
considerada, de la siguiente maneras:

Tabla 3. Dimensién del retardo para cada

variable
Variable Retardo maximo
Posicién d=2
Corriente iq € ig d=10
Voltaje ua y ug d=10

5. RESULTADOS

El entrenamiento se realiz6 fuera de linea con datos
obtenidos experimentalmente de tal forma que los datos
utilizados en el entrenamiento sean diferentes a los datos
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de prueba. Cabe destacar que las ventanas deslizantes
se generaron en diferentes dimensiones para encontrar el
nimero mas adecuado de dimensiones en cuanto al error
de clasificacién. Por su parte, la implementacion en linea
y en tiempo real utilizé los pardmetros ajustados en el

entrenamiento de las redes neuronales.

Los resultados se obtuvieron utilizando las cuatro redes
neuronales con las estructuras mencionadas anteriormente.
Los clasificadores neuronales se entrenaron individual-
mente para cada canal; se utilizaron 20,000 muestras,
como se muestra en Fig. 3. El 50% de los datos utilizados

presentaba fallas y el resto no.

Para comparar el rendimiento de los diferentes clasi-
ficadores neuronales, utilizamos la exactitud de clasifi-
cacion, asi como el area bajo la curva caracteristica op-
erativa (ROC, por sus siglas en inglés). La ecuacién de
exactitud de clasificacién indica la relacién entre el nimero
de predicciones correctas y el nimero total de muestras,

que se obtiene mediante

Positivos verdaderos

Exactitud =

Positivos verdaderos + Positivos falsos

Tabla 4. Resultados obtenidos para la MLP

Sensor Retardo ROC  Exactitud
Posicién d=2 1 1
Corriente 74 d=28 0.9790 0.9665
d=10 0.9783 0.9666
Corriente ig d=38 0.9867 0.9741
d=10 0.9862 0.9718
Voltaje uq d=28 0.9801 0.9678
d=10 0.9758 0.9759
Voltaje ug d=38 0.9883 0.8737
d=10 0.9846 0.8823

5.1 Andlisis comparativo

(10)

Los resultados del estudio indican que todas las redes
neuronales evaluadas son eficaces en la clasificacion de la

P T R T
Clasificador

P(t) neutohal 1
e \
Clasificador )
neuronal 2
I (1) » ;
i
( Placifirmdmr
Clasificador
neuronal 3

Ig (©)

T T
Clasificador
neuronal 4
U (1) e
et
F TS T TR
Clasificador

neuronal 5
Ug(t)

Fig. 2. Estructura neuronal propuesta
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falla, destacando la red CNN por su rendimiento superior,
con una exactitud que supera al 99 %. A pesar de que las
redes MLP, LSTM y BiLLSTM también muestran un buen
rendimiento, los canales de corrientes (Canal 2 y Canal
3) son los més dificiles de clasificar, presentando bajos

Voltae bata ]

Coeriento ata [A)

Waltaje alfa 4]

Canal 1

B l 'HHH&ENM"U’.WW 'v‘.',"‘ﬂf““'ﬂﬁm v m‘i’ﬂ‘-’\"v‘\ﬁﬁiﬁ?ﬁ«“.'v'v“\-"f"d'n'ﬁ_
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100000

Fig. 3. Serie de tiempo multivariable del motor de in-

duccién

Tabla 5. Resultados obtenidos para la LSTM

Sensor Retardo ROC Exactitud
Posicién d=2 1 1
Corriente iq d=38 0.9864 0.9778
d=10 0.9791 0.9675
Corriente ig d=38 0.9954 0.9892
d=10 0.9961 0.9896
Voltaje ua d=28 0.9971 0.9905
d=10 0.9972 0.9907
Voltaje ug d=28 0.9973 0.9911
d=10 0.9972 0.9845

Tabla 6. Resultados obtenidos para la BILSTM

Sensor Retardo ROC  Exactitud
Posicién d=2 1 1
Corriente 74, d=28 0.9873 0.9381
d=10 0.9787 0.9318
Corriente ig d=38 0.9914 0.9823
d=10 0.9902 0.9821
Voltaje uq d=28 0.9962 0.9887
d=10 0.9964 0.9890
Voltaje ug d=38 0.9971 0.9907
d=10 0.9965 0.9909
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rendimientos. En contraste, los canales actuadores (Canal
4 y Canal 5) mostraron un desempeno adecuado, especial-
mente en las redes LSTM, BiLSTM y CNN, alcanzando
igualmente una exactitud superior al 99%.

La red neuronal MLP destaca por su tiempo promedio
de ejecucién por muestra, siendo la mejor opciéon para
experimentos en tiempo real, aunque con una ligero sacri-
ficio de precisiéon en comparaciéon con CNN y LSTM, que
ofrecen mejores resultados. Sin embargo, si la velocidad de
clasificacién por muestra no es una prioridad, el modelo
CNN se considera la mejor alternativa.

6. CONCLUSIONES

La clasificacion de series de tiempo es relevante en diversas
aplicaciones, como en el ambito médico e industrial. Los
métodos tradicionales suelen ser costosos y complejos, lo
que limita su uso. Este trabajo aborda la deteccién y
aislamiento de fallas en sensores y actuadores de un motor
de induccién mediante clasificadores neuronales en tiempo
real, sin requerir un modelo mateméatico del sistema ni
redundancia de sensores. Se implementé un enfoque sen-
cillo donde se consideran diferentes sefiales como canales,
permitiendo que los clasificadores aprendan a clasificar se-
ries temporales univariables. Ademas, se integré contexto
para el entrenamiento de las redes neuronales a través de
un vector de regresion.

Una posible modificacién para mejorar el desempefio de
la clasificacion consistiria en emplear una combinacién
de redes neuronales, especificamente una red MLP para
el canal 1 y una red LSTM para los canales 2 y 3.
Los resultados obtenidos son prometedores, dado que se
basa Unicamente en la informacién de los tres sensores
disponibles: posicién, corriente.
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