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ResumenEste trabajo propone un sistema integrado de Machine Learning para la gestién
inteligente de microrredes hibridas fotovoltaica-diésel con almacenamiento en baterias. El
sistema combina una arquitectura de redes neuronales convolucionales con memoria a largo
plazo para predicciéon de demanda, un clasificador de bosque aleatorio para identificacién de
estados operativos, y un optimizador por enjambre de particulas con configuracién automaética
para despacho energético. Los resultados demuestran mejoras del 23.5% en costos operativos
y 31.2% en reduccién de emisiones CO4, validando la efectividad de la arquitectura secuencial
integrada con actualizacién horaria para optimizacion de microrredes.
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1. INTRODUCCION

La transicién energética global hacia fuentes renovables
posiciona a las microrredes hibridas como una solucién cla-
ve para un acceso energético confiable y sostenible (Hirsch
et al., 2018). Estos sistemas, que integran generacién foto-
voltaica (PV), generadores diésel y almacenamiento en ba-
terfas, ofrecen alta confiabilidad, eficiencia y reduccién de
emisiones (Parhizi et al., 2015). Sin embargo, su operacién
oOptima enfrenta desafios considerables por la variabilidad
de las fuentes renovables y la complejidad de coordinar sus
multiples recursos energéticos (Zia et al., 2018).

Los métodos de gestion tradicionales, como los basados
en reglas heuristicas y programacion lineal, son limitados
en escenarios con alta penetracién renovable (Olivares
et al., 2014). Su falta de capacidad predictiva y adaptativa
resulta en sobrecostos operativos del 15-30 % y una subuti-
lizacién de recursos renovables del 20-40 %, impidiendo asi
aprovechar el potencial de la generacién distribuida (Meng
et al., 2017; Ustun et al., 2011).

En este contexto, las técnicas de Machine Learning (ML)
emergen como una alternativa prometedora. Las redes neu-
ronales profundas han demostrado efectividad en predic-
cion de series temporales energéticas con errores inferiores
al 10% (Shi et al., 2018), mientras que los algoritmos
de clasificaciéon pueden identificar proactivamente estados
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operativos criticos con precisién superior al 95% (Raza
and Khosravi, 2015). Adicionalmente, las técnicas de op-
timizacién metaheuristica permiten encontrar soluciones
cuasi-Gptimas en espacios de bisqueda complejos (Moha-
med and Koivo, 2010).

Este trabajo propone un sistema que integra secuencial-
mente tres técnicas de Machine Learning (ML): una arqui-
tectura de redes neuronales convolucionales con memoria a
largo plazo (CNN-LSTM) para prediccién de demanda, un
clasificador de bosque aleatorio (Random Forest, RF) para
clasificacién de estados operativos y un algoritmo de Opti-
mizacién por Enjambre de Particulas (PSO) para el despa-
cho energético multiobjetivo. La contribucién principal es
la arquitectura integrada que configura automaticamente
los pesos del optimizador PSO segin tres estados ope-
rativos predefinidos (SAFE/PRECAUCION/CRITICO),
superando asi las limitaciones de los enfoques modulares
tradicionales. El sistema se aplica especificamente para el
despacho energético horario, optimizando la operacién de
generadores diésel, baterias y generacion fotovoltaica para
minimizar costos operativos y emisiones de COs.

El documento se estructura asi: la Seccién 2 presenta el
marco tedrico; la Seccién 3 detalla la metodologia propues-
ta; la Seccién 4 describe la configuracion experimental;
la Seccién 5 analiza los resultados; la Seccién 6 discute
las implicaciones y limitaciones; y finalmente, la Seccién 7
expone las conclusiones y el trabajo futuro.
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2. MARCO TEORICO Y TRABAJOS
RELACIONADOS

2.1 Arquitecturas de Microrredes Hibridas

Las microrredes hibridas constituyen sistemas eléctricos
complejos que requieren una coordinacién sofisticada en-
tre sus multiples componentes (Hatziargyriou, 2014). La
configuracion tipica incluye:

= Generacién renovable: Principalmente solar PV
con variabilidad diaria y estacional (Guerrero et al.,
2011)

= Generacién convencional: Generadores diésel co-
mo respaldo con restricciones operativas (Bidram and
Davoudi, 2012)

= Almacenamiento: Baterias Li-ion con consideracio-
nes de degradacién y vida 1til (Jing et al., 2017)

= Sistema de gestion: Coordinacién horaria de recur-
sos (Tsikalakis and Hatziargyriou, 2008)

2.2 Técnicas de Machine Learning en Microrredes

Las arquitecturas CNN-LSTM combinan extraccién de
caracteristicas espaciales mediante convoluciones con mo-
delado de dependencias temporales. Las CNN aplican:
yln] = Z,ﬂi}} xz[n — k] - w[k] + b, donde y[n] es la salida,
z[n] la entrada, w[k] los pesos del kernel, K el tamafio
del kernel, y b el sesgo. Las LSTM procesan secuencias
mediante compuertas: f; = o(Wy - [hy—1,x¢] + bs), donde
f+ es la compuerta de olvido, o la funcién sigmoide, Wy la
matriz de pesos, h;_1 el estado oculto previo, x; la entrada
actual, y by el sesgo. La combinacién mejora la precisién
en 15-25 % (Wang et al., 2019).

Random Forest (RF') construye multiples drboles mediante
bootstrap sampling, logrando 95 % de precisién en clasifi-
cacién (Kumar et al., 2019). PSO (Particle Swarm Opti-
mization) optimiza mediante: Uf“ =w- vf +c1r1(pbest; —
xl) + cora(gbest — xt), donde v! es la velocidad de la
particula i, w el factor de inercia, ¢y, co coeficientes de
aceleracion, ry, ro numeros aleatorios, pbest; la mejor
posicién histérica, gbest la mejor posicién global, y ! la
posicién actual, con convergencia 40-60 % mds rdpida que
algoritmos genéticos (Chen et al., 2018).

2.3 Limitaciones de Trabajos Previos

La Tabla 1 resume trabajos previos y evidencia la principal
limitacién: ningun enfoque integra los tres componentes
(prediccidn, clasificaciéon y optimizacién configurable), lo
que limita el desempeno global del sistema.

3. METODOLOGIA DEL SISTEMA INTEGRADO
3.1 Arquitectura General del Sistema

El sistema propuesto integra tres médulos ML que operan
en arquitectura secuencial con periodicidad horaria para
optimizacion integrada, como se muestra en la Figura 1.
Esta arquitectura permite que el mdédulo de prediccién
CNN-LSTM proporcione pronésticos horarios al clasifica-
dor Random Forest, que a su vez informa al optimizador
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Tabla 1. Comparacién con trabajos relaciona-

dos
Ref. Pred. Clasif. Opt.
(Kamireddy et al., 2025) Bi-LSTM No No
(11.9%)
(Ajayi et al., 2024) No RF No
(87%)
(Wang et al., 2024) No No PSO mejorado
(23.5% red.)
(Zhang et al., 2024) LSTM SVM GA
(9.8%) (92%) (18.3% red.)
(Liu et al., 2023) GRU No PSO
(8.5%) (21.1 % red.)
(Garcia et al., 2023) No RF No
(89 %)
Prop. CNN-LSTM RF PSO
(6.6 %) (99.3 %) config.

PSO para configurar autométicamente sus pesos segin el
estado operativo detectado.

El sistema opera en tres fases secuenciales:

» Fase 1 (cada hora): CNN-LSTM predice demanda
préximas 24h

» Fase 2 (cada hora): Random Forest clasifica estado
operativo

= Fase 3 (cada 24h): PSO optimiza despacho con
pesos preconfigurados segin estado

Sistema Integrado ML para Microrredes Fotovoltaicas

Prongshcos.
Demanda/ PV

Despacha
dipama

1 ]

Estada Dpemtive |
Deleciado

[— Random Forest - | P50 Adaprative |
CNN_LSTM |:| | EI |
prediceibn | 1 Clasifitecitn T *  Opmoacin

240 Extator | Despacha

f 1

" Dalos MSRDE " Estndos Acuzies | (7 Configuracian |
Imatiacion 50C Baberia | Pscs W1 W2 W3 |
Tamparstura PotEnca Fesana Resmcsinss

. Hisbrieos . Fisio Ganeracin \ Objelvos

Figura 1. Arquitectura del sistema integrado mostrando
flujo secuencial de datos y configuracién automédtica
entre médulos

3.2 Mdodulo CNN-LSTM para Prediccion de Demanda

Preprocesamiento y Caracteristicas  El preprocesamiento
incluye normalizaciéon mediante StandardScaler y codifica-
cion ciclica de variables temporales. Las caracteristicas de
entrada incluyen:

» Caracteristicas temporales: Hora (0-23), dia de la
semana (1-7), mes (1-12), dia del ano (1-365)

= Caracteristicas meteorolégicas: Radiacion solar,
temperatura, humedad, velocidad del viento

= Caracteristicas histéricas: Demanda previa (lag 1-
24), promedio mévil (7 dias)

= Caracteristicas derivadas: Factor de carga, varia-
bilidad diaria, patrones estacionales

Arquitectura CNN-LSTM  La arquitectura CNN-LSTM
implementa 3 capas convolucionales (64, 128, 256 fil-
tros), 2 capas BiLSTM (256, 128 unidades) y meca-

nismo de atencién (Bahdanau et al., 2014): oy s =
exp(score(hy,hs))

ZT, exp(score(hy,hgyr))
. /S =1 . ., .,
cién, score es la funcién de puntuacién, hy y hg son los

, donde ay ¢ son los pesos de aten-
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estados ocultos en los tiempos t y s, hy es el estado oculto
en el tiempo s, y T es la longitud de la secuencia.

3.8 Mdodulo Random Forest para Clasificacion de Estados

Caracteristicas Criticas  Las 11 caracteristicas criticas

incluyen:

Balance energético: BE(t) = Pyen(t) — Pioaa(t)
Estado de carga (State of Charge, SOC): SOC(t)
Tasa de cambio SOC: ASOC(t) = SOC(t) — SOC(t — 1)
Reserva de potencia: PR(t) = P — Py,q4(t)

gen
Prediccién demandas: f%,md(t +1)
Factor capacidad PV: CFpy (t) = Ppy(t)/Ppited
Tiempo de operacion diésel: Ty;eser(t)
Eficiencia de carga/descarga: 1.y, /qis(t)

Costo marginal: MC(t) = @fifw (t)

Factor de confiabilidad: RF(t) =
Indice de estrés: SI(t) = Proaa(t)

Proted

© RPN O AN

Povaitable(t)
Prequired(t)

— =
= O

Estados Operativos  Los tres estados operativos se defi-

nen como:

» SAFE: SOC > 0,3, PR > 0,2P,qteq, RF > 1,2

» PRECAUCION: 0,1 < SOC < 0,3, 0,1P,gteq <
PR < 0,2Prqteq, 1,0 < RF < 1,2

» CRITICO: SOC < 0,1, PR < 0,1P,41eq, RF < 1,0

3.4 Modulo PSO para Optimizacion Multiobjetivo

Funcion Objetivo  La funcién objetivo integra multiples
criterios (Mahmoud et al., 2018):

min F' = w1 - Ciotal + W2 - Eco, + W3 Preliabitity
(1)
T

Ctotal = Z[Cdiesel (t) + Cbattery(t) + Cmaintenance (t)]

t=1
(2)
T
E002 = Z[Ediesel (t) + Ebatte?“y(t)] (3)
t;I
Preliability = Z mé,X(O, onad(t) - Pavailable(t)) (4)
t=1

donde w1, ws, w3 son pesos que se configuran automatica-
mente segun el estado operativo detectado. La ponderaciéon
utiliza tres configuraciones fijas determinadas mediante
analisis de sensibilidad, priorizando la confiabilidad en
estados criticos y la economia en estados seguros:
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0,4 SAFE
w; =4 0,5 PRECAUCION (5)
0,6 CRITICO
0,3 SAFE
wy =4 0,2 PRECAUCION (6)
0,1 CRITICO
0,3 SAFE
w3 =4 0,3 PRECAUCION (7)

0,3 CRITICO

Estas tres configuraciones fijas priorizan confiabilidad
(CRITICO), balance (PRECAUCION) o economia (SA-
FE) segin el estado operativo detectado (Ross et al.,
2018).

Restricciones Operativas  Las restricciones incluyen:

Pyt < Pyen(t) < Pyen® (8)
SOC™m < SOC(t) < SOC™™ (9)
Pen(t) < PR (10)

Puis(t) < Pgig” (11)

Pop(t) - Pais(t) =0 (12)

El balance de potencia considera tnicamente potencia
activa debido a que la microrred opera en modo isla
con cargas principalmente resistivas y factor de potencia
cercano a la unidad. Las pérdidas en la red se consideran
despreciables dado el tamano reducido de la microrred
(j200 kW) y la proximidad de los componentes. Para
microrredes de mayor capacidad (500 kW), se recomienda
incluir el balance de potencia reactiva y modelar las
pérdidas de distribucién.

3.5 Integracion Secuencial del Sistema

La arquitectura secuencial integrada logra sinergia me-
diante cuatro mecanismos especificos:

1. Transferencia predictiva: CNN-LSTM proporcio-
na pronésticos de 24h al RF cada hora

2. Clasificaciéon contextual: RF categoriza estado
operativo basado en predicciones y SOC actual

3. Configuracién automatica: PSO ajusta pesos
(w; = 0,4 —0,6,wy = 0,1 —0,3,ws = 0,3) segin
clasificacién RF

4. Optimizacion coordinada: El ciclo completo se
ejecuta cada hora con retroalimentacién continua

4. CONFIGURACION EXPERIMENTAL
4.1 Datos y Configuracion del Sistema

Los datos provienen de una microrred hibrida en San Luis
Potosi, México, con:

» Generacién PV: Modelo PVWatts (NREL) (Dobos,
2014) adaptado para San Luis Potosi (1,860 msnm)
= Generador diésel: 100 kW con eficiencia variable

(25-35 %)
= Baterias Li-ion: 200 kWh, SOC operativo 10-90 %

https://doi.org/10.58571/CNCA.AMCA.2025.045
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» Demanda: Datos reales de 3 anos (2019-2022) con

resolucion 30 minutos
El sistema opera con actualizaciones horarias para

prediccién y clasificacién, mientras que la optimiza-
cién PSO se ejecuta cada 24 horas para planificaciéon
del despacho energético.

» Meteorologia: Datos NSRDB (NREL) con radia-
cién, temperatura, humedad

4.2 Configuracion de Algoritmos

» CNN-LSTM: Entrenamiento 70/15/15, batch size
32, epochs 100, learning rate 0.001

= Random Forest: 100 arboles, profundidad maxima
10, min_samples_split 5

= PSO: 50 particulas, 100 iteraciones, w = 0,7, ¢; =
Cy = 1,5

4.8 Meétricas de Evaluacion

» Prediccién: RMSE, MAE, MAPE, R?

= Clasificacién: Accuracy, Precision, Recall, F1-score

= Optimizacién: Costo total, emisiones CO4, confia-
bilidad

5. RESULTADOS Y ANALISIS
5.1 Rendimiento del Mddulo de Prediccion

El CNN-LSTM logré RMSE de 6.60 kW (6.6 %), MAE de
4.85 kW, MAPE de 5.2% y R2 de 0.94. La comparacién
con métodos tradicionales muestra mejoras significativas:

= MLP: RMSE 8.9 kW (mejora 25.8 %)
» LSTM simple: RMSE 9.2 kW (mejora 28.3 %)
« ARIMA: RMSE 12.1 kW (mejora 45.5 %)

Prodiccian de Bemancs - CNN-LSTM vs Vaioms Reslns

Figura 2. Predicciones vs valores reales del modelo CNN-
LSTM (RMSE = 6.60 kW, R2 = 0.934)

5.2 Rendimiento del Modulo de Clasificacion

El Random Forest logré una precisién del 99.3 %, superan-
do el 95 % reportado en la literatura:

» Precisién: 99.3% (SAFE: 99.5%, PRECAUCION:
98.8%, CRITICO: 99.6 %)

= Recall: 98.9% (SAFE: 99.2 %, PRECAUCION: 98.5 %,
CRITICO: 99.3%)

= Fl-score: 99.1% (SAFE: 99.3%, PRECAUCION:
98.6 %, CRITICO: 99.4 %)
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Figura 3. Matriz de confusion del clasificador Random
Forest

5.8 Rendimiento del Mdédulo de Optimizacion

El PSO configurable logré mejoras significativas:

= Reduccién de costos: 23.5 % vs. despacho tradicio-

nal

= Reduccién de emisiones: 31.2% vs. despacho tra-
dicional

= Confiabilidad: 99.7% vs. 96.2% del sistema tradi-
cional

5.4 Andlisis de Estados Operativos

La distribucién de estados durante el periodo de prueba
fue:

= SAFE: 67.3% del tiempo
= PRECAUCION: 24.1 % del tiempo
= CRITICO: 8.6 % del tiempo

El sistema demostré capacidad de configuracion automati-
ca entre estados, manteniendo estabilidad operativa en
todos los escenarios mediante la seleccién de pesos apro-
piados (Li et al., 2020).

5.5 Validacion con Datos Reales

Las reducciones del 23.5 % en costos y 31.2 % en emisiones
superan significativamente el objetivo del 20% (Chen
et al., 2018) y representan ahorros operativos sustanciales.
La Figura 4 ilustra la comparacién entre el despacho
tradicional basado en reglas y el sistema PSO configurable
durante un dia tipico. El gréfico superior muestra cémo
el sistema propuesto optimiza finamente el balance entre
fuentes, mientras que el grafico inferior demuestra la
gestion inteligente del generador diésel para minimizar
costos globales.

Figura 4. Despacho energético optimizado: PSO configu-
rable vs método tradicional
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5.6 Andlisis de Sensibilidad

El analisis de sensibilidad reveld:

s Costo del combustible: Incrementos del 20% re-
ducen beneficios en 8.3 %

= Eficiencia de baterias: Mejoras del 10 % aumentan
beneficios en 12.1 %

» Precisién de prediccién: Errores del 15 % reducen
beneficios en 6.7 %

= Escalabilidad: Para microrredes ;500 kW se requie-
re considerar balance reactivo y pérdidas

= Carga computacional: {30 segundos por ciclo ho-
rario en hardware estandar (Intel i7, 16GB RAM)

5.7 Perfil de Operacion 24 Horas

Figura 5. Operacién de 10 dias mostrando clasificacién
horaria de estados operativos y balance energético

La Figura 5 presenta un perfil operativo de 10 dias que
demuestra la efectividad del sistema integrado en condi-
ciones reales variables. El panel superior muestra el ba-
lance entre generaciéon y demanda, mientras que el panel
inferior ilustra la clasificacién dinamica de estados operati-
vos. Se observa cémo el sistema configura apropiadamente
los estados segun las condiciones previstas, manteniendo
operacion estable incluso durante periodos de baja gene-
racién renovable (dfas 4-6) mediante gestién conservadora
de recursos y activacién preventiva del generador diésel.

5.8 Comparacion con Estado del Arte

La mejora total supera la suma de componentes indivi-
duales, validando el valor de la integraciéon (Kumar et al.,
2019). La Tabla 2 resume la comparacién con métodos
existentes.

Tabla 2. Comparacién con métodos existentes

Método RMSE (%) Precisién (%) Reduccién Costos (%)
MLP 8.9 87.2 12.3
LSTM 9.2 89.1 15.7
ARIMA 12.1 82.4 8.9
GA 7.8 91.3 18.2
Propuesto 6.6 99.3 23.5

6. DISCUSION
6.1 Contribuciones Principales

Este trabajo contribuye significativamente al campo me-
diante:

1. Arquitectura secuencial integrada: Primera im-
plementacion que combina CNN-LSTM, Random Fo-
rest y PSO configurable

2. Configuracién automatica: Seleccion de pesos
PSO segin estado operativo predefinido

3. Validacién real: Demostracion con datos de micro-
rred operativa

4. Mejoras cuantificadas: 23.5% reduccién costos,
31.2% reduccién emisiones

6.2 Impacto Ambiental

La reduccién de 72 toneladas COz/ano contribuye sig-
nificativamente a los compromisos NDC de México (SE-
MARNAT, 2020). La replicacién en 10,000 microrredes
en México podria reducir 720,000 toneladas COs/afio,
contribuyendo 2.3 % a metas nacionales (SENER, 2023).

7. ANALISIS DE ESCALABILIDAD

El sistema propuesto fue disenado para microrredes de
hasta 200 kW, pero su arquitectura modular permite esca-
labilidad a sistemas de mayor capacidad. Para microrredes
de 500 kW a 1 MW, se recomienda:

= Arquitectura distribuida: Implementar cada médu-
lo ML en nodos separados

= Procesamiento paralelo: Paralelizar el entrena-
miento de CNN-LSTM

= Optimizacion hibrida: Combinar PSO con algorit-
mos deterministicos

= Tiempos de respuesta: Reducir intervalo de opti-
mizacién a 15 minutos

Los tiempos de procesamiento escalan linealmente con
el numero de componentes, manteniendo viabilidad para
aplicaciones con actualizacién horaria hasta 2 MW de
capacidad instalada.

8. CONCLUSIONES Y TRABAJO FUTURO

Este trabajo presenta un sistema ML integrado que pro-
porciona una solucion eficiente para microrredes hibridas:
(1) CNN-LSTM con RMSE 6.6 %, superando estado del
arte en 26 %; (2) Clasificacién con 99.3% precisién; (3)
PSO con configuraciéon automatica segin estado operativo;
(4) Mejoras significativas del 23.5% en costos y 31.2%
en emisiones. La validacién con datos reales confirma la
viabilidad préactica y escalabilidad del enfoque secuencial
integrado.

Trabajos futuros deberian explorar aprendizaje por refuer-
zo para configuracién dindmica continua, modelos explica-
bles para aumentar confianza de operadores, y resilien-
cia cibernética contra ataques adversarios. La transicién
energética requiere soluciones innovadoras que maximicen
el potencial renovable garantizando confiabilidad, y este
trabajo demuestra que la inteligencia artificial puede ca-
talizar esta transformacién. microrredes més inteligentes,
eficientes y sostenibles.
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