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ResumenEste trabajo propone un sistema integrado de Machine Learning para la gestión
inteligente de microrredes h́ıbridas fotovoltaica-diésel con almacenamiento en bateŕıas. El
sistema combina una arquitectura de redes neuronales convolucionales con memoria a largo
plazo para predicción de demanda, un clasificador de bosque aleatorio para identificación de
estados operativos, y un optimizador por enjambre de part́ıculas con configuración automática
para despacho energético. Los resultados demuestran mejoras del 23.5% en costos operativos
y 31.2% en reducción de emisiones CO2, validando la efectividad de la arquitectura secuencial
integrada con actualización horaria para optimización de microrredes.
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1. INTRODUCCIÓN

La transición energética global hacia fuentes renovables
posiciona a las microrredes h́ıbridas como una solución cla-
ve para un acceso energético confiable y sostenible (Hirsch
et al., 2018). Estos sistemas, que integran generación foto-
voltaica (PV), generadores diésel y almacenamiento en ba-
teŕıas, ofrecen alta confiabilidad, eficiencia y reducción de
emisiones (Parhizi et al., 2015). Sin embargo, su operación
óptima enfrenta desaf́ıos considerables por la variabilidad
de las fuentes renovables y la complejidad de coordinar sus
múltiples recursos energéticos (Zia et al., 2018).

Los métodos de gestión tradicionales, como los basados
en reglas heuŕısticas y programación lineal, son limitados
en escenarios con alta penetración renovable (Olivares
et al., 2014). Su falta de capacidad predictiva y adaptativa
resulta en sobrecostos operativos del 15-30% y una subuti-
lización de recursos renovables del 20-40%, impidiendo aśı
aprovechar el potencial de la generación distribuida (Meng
et al., 2017; Ustun et al., 2011).

En este contexto, las técnicas de Machine Learning (ML)
emergen como una alternativa prometedora. Las redes neu-
ronales profundas han demostrado efectividad en predic-
ción de series temporales energéticas con errores inferiores
al 10% (Shi et al., 2018), mientras que los algoritmos
de clasificación pueden identificar proactivamente estados

⋆ Este trabajo fue desarrollado como parte del programa de Doc-
torado en Ingenieŕıa Eléctrica. Los autores agradecen el apoyo de
las instituciones participantes y al SECIHTI por el financiamiento
otorgado.

operativos cŕıticos con precisión superior al 95% (Raza
and Khosravi, 2015). Adicionalmente, las técnicas de op-
timización metaheuŕıstica permiten encontrar soluciones
cuasi-óptimas en espacios de búsqueda complejos (Moha-
med and Koivo, 2010).

Este trabajo propone un sistema que integra secuencial-
mente tres técnicas de Machine Learning (ML): una arqui-
tectura de redes neuronales convolucionales con memoria a
largo plazo (CNN-LSTM) para predicción de demanda, un
clasificador de bosque aleatorio (Random Forest, RF) para
clasificación de estados operativos y un algoritmo de Opti-
mización por Enjambre de Part́ıculas (PSO) para el despa-
cho energético multiobjetivo. La contribución principal es
la arquitectura integrada que configura automáticamente
los pesos del optimizador PSO según tres estados ope-
rativos predefinidos (SAFE/PRECAUCIÓN/CRÍTICO),
superando aśı las limitaciones de los enfoques modulares
tradicionales. El sistema se aplica espećıficamente para el
despacho energético horario, optimizando la operación de
generadores diésel, bateŕıas y generación fotovoltaica para
minimizar costos operativos y emisiones de CO2.

El documento se estructura aśı: la Sección 2 presenta el
marco teórico; la Sección 3 detalla la metodoloǵıa propues-
ta; la Sección 4 describe la configuración experimental;
la Sección 5 analiza los resultados; la Sección 6 discute
las implicaciones y limitaciones; y finalmente, la Sección 7
expone las conclusiones y el trabajo futuro.
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2. MARCO TEÓRICO Y TRABAJOS
RELACIONADOS

2.1 Arquitecturas de Microrredes Hı́bridas

Las microrredes h́ıbridas constituyen sistemas eléctricos
complejos que requieren una coordinación sofisticada en-
tre sus múltiples componentes (Hatziargyriou, 2014). La
configuración t́ıpica incluye:

Generación renovable: Principalmente solar PV
con variabilidad diaria y estacional (Guerrero et al.,
2011)
Generación convencional: Generadores diésel co-
mo respaldo con restricciones operativas (Bidram and
Davoudi, 2012)
Almacenamiento: Bateŕıas Li-ion con consideracio-
nes de degradación y vida útil (Jing et al., 2017)
Sistema de gestión: Coordinación horaria de recur-
sos (Tsikalakis and Hatziargyriou, 2008)

2.2 Técnicas de Machine Learning en Microrredes

Las arquitecturas CNN-LSTM combinan extracción de
caracteŕısticas espaciales mediante convoluciones con mo-
delado de dependencias temporales. Las CNN aplican:

y[n] =
∑K−1

k=0 x[n − k] · w[k] + b, donde y[n] es la salida,
x[n] la entrada, w[k] los pesos del kernel, K el tamaño
del kernel, y b el sesgo. Las LSTM procesan secuencias
mediante compuertas: ft = σ(Wf · [ht−1, xt] + bf ), donde
ft es la compuerta de olvido, σ la función sigmoide, Wf la
matriz de pesos, ht−1 el estado oculto previo, xt la entrada
actual, y bf el sesgo. La combinación mejora la precisión
en 15-25% (Wang et al., 2019).

Random Forest (RF) construye múltiples árboles mediante
bootstrap sampling, logrando 95% de precisión en clasifi-
cación (Kumar et al., 2019). PSO (Particle Swarm Opti-
mization) optimiza mediante: vt+1

i = w ·vti + c1r1(pbesti−
xt
i) + c2r2(gbest − xt

i), donde vti es la velocidad de la
part́ıcula i, w el factor de inercia, c1, c2 coeficientes de
aceleración, r1, r2 números aleatorios, pbesti la mejor
posición histórica, gbest la mejor posición global, y xt

i la
posición actual, con convergencia 40-60% más rápida que
algoritmos genéticos (Chen et al., 2018).

2.3 Limitaciones de Trabajos Previos

La Tabla 1 resume trabajos previos y evidencia la principal
limitación: ningún enfoque integra los tres componentes
(predicción, clasificación y optimización configurable), lo
que limita el desempeño global del sistema.

3. METODOLOGÍA DEL SISTEMA INTEGRADO

3.1 Arquitectura General del Sistema

El sistema propuesto integra tres módulos ML que operan
en arquitectura secuencial con periodicidad horaria para
optimización integrada, como se muestra en la Figura 1.
Esta arquitectura permite que el módulo de predicción
CNN-LSTM proporcione pronósticos horarios al clasifica-
dor Random Forest, que a su vez informa al optimizador

Tabla 1. Comparación con trabajos relaciona-
dos

Ref. Pred. Clasif. Opt.

(Kamireddy et al., 2025) Bi-LSTM No No
(11.9%)

(Ajayi et al., 2024) No RF No
(87%)

(Wang et al., 2024) No No PSO mejorado
(23.5% red.)

(Zhang et al., 2024) LSTM SVM GA
(9.8%) (92%) (18.3% red.)

(Liu et al., 2023) GRU No PSO
(8.5%) (21.1% red.)

(Garcia et al., 2023) No RF No
(89%)

Prop. CNN-LSTM RF PSO
(6.6%) (99.3%) config.

PSO para configurar automáticamente sus pesos según el
estado operativo detectado.

El sistema opera en tres fases secuenciales:

Fase 1 (cada hora): CNN-LSTM predice demanda
próximas 24h
Fase 2 (cada hora): Random Forest clasifica estado
operativo
Fase 3 (cada 24h): PSO optimiza despacho con
pesos preconfigurados según estado

Figura 1. Arquitectura del sistema integrado mostrando
flujo secuencial de datos y configuración automática
entre módulos

3.2 Módulo CNN-LSTM para Predicción de Demanda

Preprocesamiento y Caracteŕısticas El preprocesamiento
incluye normalización mediante StandardScaler y codifica-
ción ćıclica de variables temporales. Las caracteŕısticas de
entrada incluyen:

Caracteŕısticas temporales: Hora (0-23), d́ıa de la
semana (1-7), mes (1-12), d́ıa del año (1-365)
Caracteŕısticas meteorológicas: Radiación solar,
temperatura, humedad, velocidad del viento
Caracteŕısticas históricas: Demanda previa (lag 1-
24), promedio móvil (7 d́ıas)
Caracteŕısticas derivadas: Factor de carga, varia-
bilidad diaria, patrones estacionales

Arquitectura CNN-LSTM La arquitectura CNN-LSTM
implementa 3 capas convolucionales (64, 128, 256 fil-
tros), 2 capas BiLSTM (256, 128 unidades) y meca-
nismo de atención (Bahdanau et al., 2014): αt,s =

exp(score(ht,hs))∑T

s′=1
exp(score(ht,hs′ ))

, donde αt,s son los pesos de aten-

ción, score es la función de puntuación, ht y hs son los
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estados ocultos en los tiempos t y s, hs′ es el estado oculto
en el tiempo s′, y T es la longitud de la secuencia.

3.3 Módulo Random Forest para Clasificación de Estados

Caracteŕısticas Cŕıticas Las 11 caracteŕısticas cŕıticas
incluyen:

1. Balance energético: BE(t) = Pgen(t)− Pload(t)
2. Estado de carga (State of Charge, SOC): SOC(t)
3. Tasa de cambio SOC: ∆SOC(t) = SOC(t)− SOC(t− 1)

4. Reserva de potencia: PR(t) = Pmax
gen − Pload(t)

5. Predicción demanda: P̂load(t+ 1)
6. Factor capacidad PV: CFPV (t) = PPV (t)/P

rated
PV

7. Tiempo de operación diésel: Tdiesel(t)
8. Eficiencia de carga/descarga: ηch/dis(t)

9. Costo marginal: MC(t) = ∂C
∂Pgen

(t)

10. Factor de confiabilidad: RF (t) = Pavailable(t)
Prequired(t)

11. Índice de estrés: SI(t) = Pload(t)
Prated

Estados Operativos Los tres estados operativos se defi-
nen como:

SAFE: SOC > 0,3, PR > 0,2Prated, RF > 1,2
PRECAUCIÓN: 0,1 < SOC ≤ 0,3, 0,1Prated <
PR ≤ 0,2Prated, 1,0 < RF ≤ 1,2
CRÍTICO: SOC ≤ 0,1, PR ≤ 0,1Prated, RF ≤ 1,0

3.4 Módulo PSO para Optimización Multiobjetivo

Función Objetivo La función objetivo integra múltiples
criterios (Mahmoud et al., 2018):

mı́nF = w1 · Ctotal + w2 · ECO2
+ w3 · Preliability

(1)

Ctotal =

T∑
t=1

[Cdiesel(t) + Cbattery(t) + Cmaintenance(t)]

(2)

ECO2
=

T∑
t=1

[Ediesel(t) + Ebattery(t)] (3)

Preliability =

T∑
t=1

máx(0, Pload(t)− Pavailable(t)) (4)

donde w1, w2, w3 son pesos que se configuran automática-
mente según el estado operativo detectado. La ponderación
utiliza tres configuraciones fijas determinadas mediante
análisis de sensibilidad, priorizando la confiabilidad en
estados cŕıticos y la economı́a en estados seguros:

w1 =


0,4 SAFE

0,5 PRECAUCIÓN

0,6 CRÍTICO

(5)

w2 =


0,3 SAFE

0,2 PRECAUCIÓN

0,1 CRÍTICO

(6)

w3 =


0,3 SAFE

0,3 PRECAUCIÓN

0,3 CRÍTICO

(7)

Estas tres configuraciones fijas priorizan confiabilidad
(CRÍTICO), balance (PRECAUCIÓN) o economı́a (SA-
FE) según el estado operativo detectado (Ross et al.,
2018).

Restricciones Operativas Las restricciones incluyen:

Pmin
gen ≤ Pgen(t) ≤ Pmax

gen (8)

SOCmin ≤ SOC(t) ≤ SOCmax (9)

Pch(t) ≤ Pmax
ch (10)

Pdis(t) ≤ Pmax
dis (11)

Pch(t) · Pdis(t) = 0 (12)

El balance de potencia considera únicamente potencia
activa debido a que la microrred opera en modo isla
con cargas principalmente resistivas y factor de potencia
cercano a la unidad. Las pérdidas en la red se consideran
despreciables dado el tamaño reducido de la microrred
(¡200 kW) y la proximidad de los componentes. Para
microrredes de mayor capacidad (¿500 kW), se recomienda
incluir el balance de potencia reactiva y modelar las
pérdidas de distribución.

3.5 Integración Secuencial del Sistema

La arquitectura secuencial integrada logra sinergia me-
diante cuatro mecanismos espećıficos:

1. Transferencia predictiva: CNN-LSTM proporcio-
na pronósticos de 24h al RF cada hora

2. Clasificación contextual: RF categoriza estado
operativo basado en predicciones y SOC actual

3. Configuración automática: PSO ajusta pesos
(w1 = 0,4 − 0,6, w2 = 0,1 − 0,3, w3 = 0,3) según
clasificación RF

4. Optimización coordinada: El ciclo completo se
ejecuta cada hora con retroalimentación continua

4. CONFIGURACIÓN EXPERIMENTAL

4.1 Datos y Configuración del Sistema

Los datos provienen de una microrred h́ıbrida en San Luis
Potośı, México, con:

Generación PV: Modelo PVWatts (NREL) (Dobos,
2014) adaptado para San Luis Potośı (1,860 msnm)
Generador diésel: 100 kW con eficiencia variable
(25-35%)
Bateŕıas Li-ion: 200 kWh, SOC operativo 10-90%

https://doi.org/10.58571/CNCA.AMCA.2025.045

XX Congreso Latinoamericano de Control Automático (CLCA 2025)
13-17 de Octubre, 2025. Cancún, Quintana Roo, México

Copyright© AMCA, ISSN: 2594-2492
264



Demanda: Datos reales de 3 años (2019-2022) con
resolución 30 minutos

El sistema opera con actualizaciones horarias para
predicción y clasificación, mientras que la optimiza-
ción PSO se ejecuta cada 24 horas para planificación
del despacho energético.
Meteoroloǵıa: Datos NSRDB (NREL) con radia-
ción, temperatura, humedad

4.2 Configuración de Algoritmos

CNN-LSTM: Entrenamiento 70/15/15, batch size
32, epochs 100, learning rate 0.001
Random Forest: 100 árboles, profundidad máxima
10, min samples split 5
PSO: 50 part́ıculas, 100 iteraciones, w = 0,7, c1 =
c2 = 1,5

4.3 Métricas de Evaluación

Predicción: RMSE, MAE, MAPE, R²
Clasificación: Accuracy, Precision, Recall, F1-score
Optimización: Costo total, emisiones CO2, confia-
bilidad

5. RESULTADOS Y ANÁLISIS

5.1 Rendimiento del Módulo de Predicción

El CNN-LSTM logró RMSE de 6.60 kW (6.6%), MAE de
4.85 kW, MAPE de 5.2% y R² de 0.94. La comparación
con métodos tradicionales muestra mejoras significativas:

MLP: RMSE 8.9 kW (mejora 25.8%)
LSTM simple: RMSE 9.2 kW (mejora 28.3%)
ARIMA: RMSE 12.1 kW (mejora 45.5%)

Figura 2. Predicciones vs valores reales del modelo CNN-
LSTM (RMSE = 6.60 kW, R² = 0.934)

5.2 Rendimiento del Módulo de Clasificación

El Random Forest logró una precisión del 99.3%, superan-
do el 95% reportado en la literatura:

Precisión: 99.3% (SAFE: 99.5%, PRECAUCIÓN:

98.8%, CRÍTICO: 99.6%)

Recall: 98.9% (SAFE: 99.2%, PRECAUCIÓN: 98.5%,

CRÍTICO: 99.3%)

F1-score: 99.1% (SAFE: 99.3%, PRECAUCIÓN:

98.6%, CRÍTICO: 99.4%)

Figura 3. Matriz de confusión del clasificador Random
Forest

5.3 Rendimiento del Módulo de Optimización

El PSO configurable logró mejoras significativas:

Reducción de costos: 23.5% vs. despacho tradicio-
nal
Reducción de emisiones: 31.2% vs. despacho tra-
dicional
Confiabilidad: 99.7% vs. 96.2% del sistema tradi-
cional

5.4 Análisis de Estados Operativos

La distribución de estados durante el peŕıodo de prueba
fue:

SAFE: 67.3% del tiempo
PRECAUCIÓN: 24.1% del tiempo
CRÍTICO: 8.6% del tiempo

El sistema demostró capacidad de configuración automáti-
ca entre estados, manteniendo estabilidad operativa en
todos los escenarios mediante la selección de pesos apro-
piados (Li et al., 2020).

5.5 Validación con Datos Reales

Las reducciones del 23.5% en costos y 31.2% en emisiones
superan significativamente el objetivo del 20% (Chen
et al., 2018) y representan ahorros operativos sustanciales.
La Figura 4 ilustra la comparación entre el despacho
tradicional basado en reglas y el sistema PSO configurable
durante un d́ıa t́ıpico. El gráfico superior muestra cómo
el sistema propuesto optimiza finamente el balance entre
fuentes, mientras que el gráfico inferior demuestra la
gestión inteligente del generador diésel para minimizar
costos globales.

Figura 4. Despacho energético optimizado: PSO configu-
rable vs método tradicional
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5.6 Análisis de Sensibilidad

El análisis de sensibilidad reveló:

Costo del combustible: Incrementos del 20% re-
ducen beneficios en 8.3%
Eficiencia de bateŕıas: Mejoras del 10% aumentan
beneficios en 12.1%
Precisión de predicción: Errores del 15% reducen
beneficios en 6.7%
Escalabilidad: Para microrredes ¿500 kW se requie-
re considerar balance reactivo y pérdidas
Carga computacional: ¡30 segundos por ciclo ho-
rario en hardware estándar (Intel i7, 16GB RAM)

5.7 Perfil de Operación 24 Horas

Figura 5. Operación de 10 d́ıas mostrando clasificación
horaria de estados operativos y balance energético

La Figura 5 presenta un perfil operativo de 10 d́ıas que
demuestra la efectividad del sistema integrado en condi-
ciones reales variables. El panel superior muestra el ba-
lance entre generación y demanda, mientras que el panel
inferior ilustra la clasificación dinámica de estados operati-
vos. Se observa cómo el sistema configura apropiadamente
los estados según las condiciones previstas, manteniendo
operación estable incluso durante peŕıodos de baja gene-
ración renovable (d́ıas 4-6) mediante gestión conservadora
de recursos y activación preventiva del generador diésel.

5.8 Comparación con Estado del Arte

La mejora total supera la suma de componentes indivi-
duales, validando el valor de la integración (Kumar et al.,
2019). La Tabla 2 resume la comparación con métodos
existentes.

Tabla 2. Comparación con métodos existentes

Método RMSE (%) Precisión (%) Reducción Costos (%)

MLP 8.9 87.2 12.3
LSTM 9.2 89.1 15.7
ARIMA 12.1 82.4 8.9
GA 7.8 91.3 18.2
Propuesto 6.6 99.3 23.5

6. DISCUSIÓN

6.1 Contribuciones Principales

Este trabajo contribuye significativamente al campo me-
diante:

1. Arquitectura secuencial integrada: Primera im-
plementación que combina CNN-LSTM, Random Fo-
rest y PSO configurable

2. Configuración automática: Selección de pesos
PSO según estado operativo predefinido

3. Validación real: Demostración con datos de micro-
rred operativa

4. Mejoras cuantificadas: 23.5% reducción costos,
31.2% reducción emisiones

6.2 Impacto Ambiental

La reducción de 72 toneladas CO2/año contribuye sig-
nificativamente a los compromisos NDC de México (SE-
MARNAT, 2020). La replicación en 10,000 microrredes
en México podŕıa reducir 720,000 toneladas CO2/año,
contribuyendo 2.3% a metas nacionales (SENER, 2023).

7. ANÁLISIS DE ESCALABILIDAD

El sistema propuesto fue diseñado para microrredes de
hasta 200 kW, pero su arquitectura modular permite esca-
labilidad a sistemas de mayor capacidad. Para microrredes
de 500 kW a 1 MW, se recomienda:

Arquitectura distribuida: Implementar cada módu-
lo ML en nodos separados
Procesamiento paralelo: Paralelizar el entrena-
miento de CNN-LSTM
Optimización h́ıbrida: Combinar PSO con algorit-
mos determińısticos
Tiempos de respuesta: Reducir intervalo de opti-
mización a 15 minutos

Los tiempos de procesamiento escalan linealmente con
el número de componentes, manteniendo viabilidad para
aplicaciones con actualización horaria hasta 2 MW de
capacidad instalada.

8. CONCLUSIONES Y TRABAJO FUTURO

Este trabajo presenta un sistema ML integrado que pro-
porciona una solución eficiente para microrredes h́ıbridas:
(1) CNN-LSTM con RMSE 6.6%, superando estado del
arte en 26%; (2) Clasificación con 99.3% precisión; (3)
PSO con configuración automática según estado operativo;
(4) Mejoras significativas del 23.5% en costos y 31.2%
en emisiones. La validación con datos reales confirma la
viabilidad práctica y escalabilidad del enfoque secuencial
integrado.

Trabajos futuros debeŕıan explorar aprendizaje por refuer-
zo para configuración dinámica continua, modelos explica-
bles para aumentar confianza de operadores, y resilien-
cia cibernética contra ataques adversarios. La transición
energética requiere soluciones innovadoras que maximicen
el potencial renovable garantizando confiabilidad, y este
trabajo demuestra que la inteligencia artificial puede ca-
talizar esta transformación. microrredes más inteligentes,
eficientes y sostenibles.
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co nacional 2023-2037. Secretaŕıa de Enerǵıa, México.
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