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Abstract: This work presents a hybrid mobile robot navigation system for simulated environments. The 

system integrates the Dynamic Window Approach (DWA) with a deep reinforcement learning (DRL) using 

an actor-critic architecture. Initially, the robot uses DWA, while concurrently, a DRL agent generates 

alternative control speeds using actor and critic networks. An entropy-based mechanism dynamically 

weights the DWA and DRL speeds, transitioning gradually to DRL control. The system's performance is 

evaluated using success rate and trajectory length, comparing the hybrid approach to DWA and DRL alone. 

Results demonstrate improved robustness and performance, particularly in complex scenarios. 
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1. INTRODUCCIÓN 

La navegación autónoma de robots móviles es un desafío 

crucial en robótica.  Estos entornos, caracterizados por la 

imprevisibilidad de la geometría y la dinámica del entorno, 

exigen sistemas de control robustos y adaptativos.  Los 

algoritmos de planificación de trayectorias clásicos, que 

requieren mapas precisos del entorno, presentan limitaciones 

significativas en escenarios donde la información del entorno 

es incompleta o dinámica.  El Algoritmo de Ventana Dinámica 

(DWA) es efectivo para la planificación local en entornos 

parcialmente conocidos; sin embargo, Bodong y Kim (2024) 

señalan que puede carecer de la capacidad de adaptación 

necesaria para optimizar el rendimiento en situaciones 

complejas y cambiantes. Además, esto se ha demostrado en 

diversos trabajos que exploran alternativas basadas en 

aprendizaje por refuerzo profundo (DRL) para mejorar la 

eficiencia y robustez en entornos con obstáculos estáticos y 

dinámicos (Laiyi et al., 2022; Haisen et al., 2023). 

El aprendizaje por refuerzo profundo (DRL) ha surgido como 

una técnica prometedora para la navegación robótica en 

entornos no estructurados. Algoritmos de DRL, como los 

métodos actor-crítico (Liang et al., 2020; Xiaoyu et al., 2022), 

permiten a los robots aprender políticas de control óptimas a 

través de la interacción con el entorno. Sin embargo, el 

entrenamiento de estos agentes puede ser computacionalmente 

costoso y requerir un gran número de iteraciones, 

especialmente en entornos de alta dimensionalidad o con 

restricciones de tiempo real (Laiyi et al., 2022; Haisen et al., 

2023). Además, la eficiencia del entrenamiento puede verse 

afectada por la complejidad del espacio de estados y la 

formulación de la función de recompensa (An et al., 2024; 

Fanfan et al., 2024). 

Este trabajo propone un enfoque híbrido que combina la 

robustez del algoritmo DWA con la capacidad de aprendizaje 

adaptativo del DRL para superar las limitaciones de los 

métodos de navegación tradicionales. A su vez cuenta con un 

mecanismo de selección basado en la entropía que permite una 

transición gradual del control, desde el algoritmo DWA hasta 

el control aprendido por el agente. Este enfoque híbrido busca 

aprovechar las ventajas de ambos métodos, logrando un 

sistema de navegación eficiente en los entornos. 

El resto del artículo se estructura de la siguiente manera: la 

Sección 2 describe el problema abordado y el tipo de robot 

utilizado; la Sección 3 presenta los fundamentos teóricos del 

algoritmo propuesto; la Sección 4 detalla el algoritmo de 

navegación híbrido, que combina DWA y DRL; la Sección 5 

evalúa el rendimiento del algoritmo mediante simulaciones, 

analizando las velocidades generadas y el comportamiento del 

parámetro α; finalmente, la Sección 6 presenta las 

conclusiones y el trabajo futuro.  

2. PROBLEMA DE NAVEGACIÓN 

En este trabajo se considera el problema de navegación de un 

robot móvil del tipo diferencial el cual se desplaza en un 

ambiente congestionado. Se considera un robot móvil descrito 

por el modelo cinemático, 

𝑥̇ = 𝑣 𝑐𝑜𝑠𝜃
𝑦̇ = 𝑣 𝑠𝑒𝑛𝜃

𝜃̇ = 𝑤

                                    (1) 

donde (𝑥, 𝑦) representan la posición del punto medio de las 

ruedas en el plano (X-Y), 𝜃 describe la orientación del 

vehículo con respecto al eje X. 𝑣 corresponde a la velocidad 

lineal y 𝑤 a la velocidad rotacional. El vehículo se describe en 

la Fig. 1. 

El objetivo planteado es lograr que el robot móvil, a partir de 

una condición inicial [𝑥(0), 𝑦(0), 𝜃(0)], alcance la posición 

final establecida por una meta (𝑥𝑚 , 𝑦𝑚 , 𝜃𝑚) esto llevado a cabo 

en un ambiente congestionado de obstáculos estáticos.  

Sin pérdida de generalidad se considera un robot navegando 

en un plano cartesiano X-Y con origen (0,0) desde el instante 

de tiempo cero hasta que llega a la meta. En una aplicación 
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real, un sensor Light Detection and Ranging (LiDAR) puede 

definir una ventana dinámica (entorno) en la cual se tomaron 

en cuenta los obstáculos existentes. El robot utilizará el 

obstáculo más cercano como punto de referencia para su 

desplazamiento, hasta hallar otro más cercano. El mecanismo 

de entropía y el sistema de recompensas del DRL guían la 

exploración del robot, minimizando la probabilidad de ciclos 

repetitivos alrededor de los obstáculos. Si la meta se detecta 

dentro del rango del LIDAR, se prioriza como punto de 

referencia para optimizar la ruta. 

 

Figura 1. Robot móvil tipo diferencial considerado.  

3. PRELIMINARES 

En esta sección, describimos brevemente los conceptos 

básicos utilizados en el algoritmo propuesto, que son el 

Aprendizaje por Refuerzo Profundo y el Algoritmo de Ventana 

Dinámica. 

 

3.1 Aprendizaje por refuerzo profundo (DRL) 

El DRL es un subcampo del aprendizaje automático que se 

centra en el entrenamiento de agentes para tomar decisiones 

óptimas en un entorno dado. Un agente aprende a través de la 

interacción con el entorno, recibiendo recompensas o 

penalizaciones por sus acciones, ver Fig. 2. El objetivo del 

agente es maximizar la recompensa acumulada a lo largo del 

tiempo. DRL combina técnicas de aprendizaje por refuerzo 

con redes neuronales profundas para representar funciones de 

valor y políticas complejas. Los métodos actor-crítico son una 

clase popular de algoritmos DRL que utilizan dos redes 

neuronales: una red actor que define la política (es decir, la 

forma en que el agente selecciona acciones) y una red crítica 

que evalúa el valor de los estados y las acciones. El 

entrenamiento implica iterativamente actualizar ambas redes 

para mejorar la política y la estimación del valor. (Ebrahim et 

al., 2024) proporciona una revisión exhaustiva de los 

algoritmos DRL.  

 

Figura 2. Ciclo de interacción en el aprendizaje por refuerzo 

profundo.  

En la Fig. 2, el Agente recibe el estado extendido del entorno 

y ejecuta una acción. Como resultado, el Agente evoluciona y 

el entorno devuelve una nueva observación del estado junto 

con una señal de recompensa. En la Sección 4, se detalla el 

algoritmo que le permite al robot pasar del estado extendido a 

la acción híbrida (𝑣ℎ, 𝑤ℎ). 

3.2 Algoritmo de Ventana Dinámica (DWA) 

El DWA es un algoritmo de planificación de movimiento local 

que considera las limitaciones dinámicas del robot, como la 

velocidad máxima, la aceleración máxima y el radio de giro 

mínimo. A diferencia de los algoritmos de planificación global 

que requieren un mapa completo del entorno, DWA opera en 

una ventana de tiempo y espacio limitada, utilizando 

información sensorial local para generar velocidades de 

control. Para cada velocidad dentro de la ventana dinámica, 

DWA simula la trayectoria del robot durante un corto periodo 

de tiempo y evalúa la trayectoria utilizando una función de 

costo que considera la distancia al objetivo, la proximidad a 

los obstáculos y la velocidad. La velocidad que produce la 

trayectoria con el menor costo se selecciona y se aplica al 

robot. (Yanjie y Norzalilah, 2024) presenta una descripción 

detallada del algoritmo DWA. 

 

4. DESCRIPCIÓN DEL ALGORITMO DE NAVEGACIÓN 

Esta sección describe el algoritmo propuesto para la 

navegación autónoma de un robot móvil en entornos no 

controlados. El algoritmo combina el Algoritmo de Ventana 

Dinámica con un modelo de aprendizaje por refuerzo profundo 

con arquitectura actor-crítico. El robot móvil considerado 

puede verse en la Fig. 1 y su evolución en el plano cartesiano 

puede representarse mediante el modelo cinemático de (1). 

4.1 Representación del Estado (s) 

Para efectos del algoritmo de navegación, se considera un 

estado extendido del robot formado por:  

𝑠 = [𝑥, 𝑦, 𝜃, 𝑣, 𝑤]                              (2) 

4.2 Espacio de Acciones 

El espacio de acciones consiste en pares de velocidades de 

control: [𝑣, 𝑤]. 

En el DRL, la acción predicha está dada por: 

𝑎𝑝 = 𝜋𝜑(𝑠)                                  (3) 

donde: 

• 𝑎𝑝: acción predicha (𝑣𝑝, 𝑤𝑝). 

• 𝜋: política de la red neuronal (distribuciones de 

probabilidades de las acciones). 

• 𝜑: pesos de conexión de la red actor. 

4.3 Función de Recompensa (r) 

La función de recompensa se diseña para guiar al robot hacia 

el objetivo mientras evita obstáculos, en la forma, 
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𝑟 = {

𝑟𝑎𝑟𝑟𝑖𝑣𝑒 = 10
𝑆𝑖 𝑑𝑖𝑡𝑜𝑏𝑗(𝑖) < 𝑑𝑖𝑠𝑡𝑜𝑏𝑗(𝑖−1) = 2

−1; 𝑑𝑒 𝑙𝑜 𝑐𝑜𝑛𝑡𝑟𝑎𝑟𝑖𝑜

                  (4)  

 

donde: 

• 𝑑𝑖𝑡𝑜𝑏𝑗(𝑖): Distancia al objetivo en el instante i. 

• 𝑑𝑖𝑡𝑜𝑏𝑗(𝑖−1): Distancia al objetivo en el instante i-1. 

Esta función fomenta que el agente reduzca progresivamente 

la distancia al objetivo y penaliza trayectorias que no 

representen un avance real, garantizando un aprendizaje 

orientado alcanzar meta. 

4.4 Calidad Q 

La calidad Q representa cuan eficiente fue la acción realizada 

𝑎𝑝 iniciando en el estado s, dicho valor es calculado con los 

valores Q de cada una de las redes críticas, como se tienen 2 

redes resulta: 

𝑄 = 𝑟 + 𝛾 ∗ min (𝑄1(𝑠, 𝑎𝑝; 𝜃1), 𝑄2(𝑠, 𝑎𝑝; 𝜃2))   (5) 

donde: 

• 𝛾: Factor de descuento con valor de 0.9. 

• 𝑄1: Valor Q de la primera red crítica cuyas entradas 

son: 𝑠, 𝑎𝑝 ; con parámetros 𝜃1. 

• 𝑄2: Valor Q de la segunda red crítica cuyas entradas 

son: 𝑠, 𝑎𝑝 ; con parámetros 𝜃2. 

4.5 Arquitectura de las Redes Neuronales (Actor y Crítico) 

Este trabajo emplea una arquitectura de redes neuronales 

basada en el algoritmo Soft Actor-Critic (SAC) (Shuhuan et 

al., 2025), modificada para incluir una segunda red crítica. Esta 

modificación mejora la política del agente, en comparación 

con la arquitectura SAC original que emplea una sola red 

crítica (Husam y Oscar, 2024), además se emplea la función 

de activación Rectified Linear Unit (ReLU), definida como 

𝑓(𝑥) = max (0, 𝑥). Esta función no fue seleccionada 

arbitrariamente, sino que se adopta siguiendo el diseño 

propuesto en la investigación de Husam y Oscar (2024), 

quienes demostraron su efectividad en problemas de 

navegación autónoma con aprendizaje por refuerzo profundo. 

La arquitectura neuronal se ilustra en la Fig. 3 y está 

compuesta por cuatro capas: 

• Capas completamente conectadas (FC): Dos capas 

FC, cada una con 256 neuronas, procesan la 

información del vector de estado. Estas capas realizan 

transformaciones no lineales de la entrada mediante 

ReLU, extrayendo características relevantes para la 

toma de decisiones. 

• Capas de salida específicas: La red actor genera la 

distribución de probabilidad de las acciones (𝑣, 𝑤) 

utilizando softmax para limitar las velocidades. Y en 

el caso de las redes críticas gemelas, en su salida, se 

estima el valor de la calidad de la acción realizada (Q) 

de los estados-acción utilizando una función 

sigmoidal. 

 

 

Figura 3. Representación gráfica de la arquitectura de DRL.  

 
Figura 4. Esquema del sistema híbrido propuesto basado en DRL y 

DWA.  

La Fig. 4 ilustra el sistema de navegación híbrido propuesto. 

Tanto el algoritmo DWA como el DRL generan 

velocidades reales  (𝑣𝑟 , 𝑤𝑟) y predichas (𝑣𝑝, 𝑤𝑝), 

respectivamente. Luego, un mecanismo basado en la entropía 

combina estas salidas para producir velocidades híbridas 

(𝑣ℎ, 𝑤ℎ) que guía al robot al siguiente estado. 

 

4.6 Incorporación de la Entropía para la Acción Híbrida 

Para mejorar la exploración del espacio de acciones y mitigar 

el riesgo de convergencia prematura a óptimos locales, se 

introduce un mecanismo de transición basado en la entropía. 

Este mecanismo pondera las acciones sugeridas por el 

algoritmo de aprendizaje por refuerzo DRL y el DWA, 

utilizando un parámetro α que se ajusta dinámicamente en 

función de la entropía del sistema. 

La entropía H se calcula a partir de la distribución de 

probabilidades de las acciones propuestas por la red actor del 

agente RL, mostrada en la siguiente ecuación. (Shuhuan et al., 

2025) 

𝐻 = −(𝑣𝑝 ∗ log(𝑣𝑝) + 𝑤𝑝 ∗ log(𝑤𝑝))                 (6) 

El parámetro α se encarga de hacer la transición entre los 

valores predichos por la red y los valores dados por el control 

DWA. α se actualiza mediante una función sigmoide que 

depende de H, un umbral de entropía (𝐻𝑢𝑚𝑏𝑟𝑎𝑙), y una 

constante de velocidad de transición (k=0.5). (Shuhuan et al., 

2025) 

𝛼 =  1 / (1 +  𝑒𝑥𝑝(−𝑘 ∗  (𝐻𝑢𝑚𝑏𝑟𝑎𝑙  −  𝐻)))           (7) 

Considerando que la entropía de una distribución de 

probabilidad siempre es positiva y, para el caso de una 

distribución discreta con n posibles resultados, su valor 
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máximo es 𝑙𝑜𝑔₂(𝑛) (Jinding et al., 2024). En este caso, se 

tienen dos salidas (velocidad lineal y angular), así que el valor 

máximo de entropía es 𝑙𝑜𝑔₂(2)  =  1. Sin embargo, dado que 

se usa el logaritmo natural (ln) en lugar del logaritmo en base 

2, el valor máximo de nuestra entropía será 𝑙𝑛(2)  ≈  0.693. 

Dado esto, se experimentó con valores de 𝐻𝑢𝑚𝑏𝑟𝑎𝑙  dentro del 

rango 0.1 a 0.6. Este rango cubre una gama de situaciones: 

• Valores bajos (0.1 - 0.3): Indican que la red necesita 

tener una alta confianza (baja entropía) para tomar el 

control. Esto es útil si la tarea es compleja o si 

requiere una transición muy gradual. 

• Valores medios (0.3 - 0.5): Representan un equilibrio 

entre la confianza de la red y la velocidad de la 

transición. 

• Valores altos (0.5 - 0.6): Indican que la red puede 

tomar el control incluso con una incertidumbre 

moderada. Esto es útil si la tarea es simple o si se 

quiere una transición más rápida. 

Para nuestro caso, el valor usado fue de 𝐻𝑢𝑚𝑏𝑟𝑎𝑙 = 0.3. 

Tomando en cuenta lo anterior, es posible obtener las 

velocidades híbridas con (8) y (9). 

𝑣ℎ = 𝛼(𝑣𝑝) + (1 − 𝛼)(𝑣𝑟)                     (8) 

𝑤ℎ = 𝛼(𝑤𝑝) + (1 − 𝛼)(𝑤𝑟)                     (9) 

El parámetro α se define como un coeficiente de transición 

dinámico que pondera las velocidades propuestas por el DWA 

y el DRL. Su valor depende de la entropía del sistema, 

permitiendo una transición gradual: cuando α→0, el control se 

asemeja al DWA, y cuando α→1, se aproxima al DRL. De esta 

manera, α regula el grado de influencia del controlador a lo 

largo del proceso de navegación. En términos prácticos, α 

funciona como un regulador adaptativo: al inicio otorga mayor 

peso al control clásico del DWA para estabilizar la 

navegación, y conforme el agente gana confianza (menor 

entropía), transfiere progresivamente el control hacia el DRL. 

 

5. EVALUACIÓN DEL ALGORITMO PROPUESTO 

Para evaluar el rendimiento del algoritmo propuesto, se 

realizaron experimentos de navegación autónoma en entornos 

simulados donde se proyectan obstáculos de manera aleatoria 

para cada episodio, es decir, ningún entorno se parece a otro. 

Un ejemplo de episodio se muestra en la Fig. 5.  

En la Fig. 5 se muestra la posición de los obstáculos marcados 

con puntos negros, mientras que la “x”, es decir, el objetivo se 

mantiene en la misma posición en cada simulación, al igual 

que el agente representado por el rectángulo cuyo punto de 

inicio es (0,0) y su trayectoria local está dada por la línea 

naranja.  

La trayectoria realizada por el agente en el entorno se muestra 

en la Fig. 6. Enfaticemos que, durante la simulación, el DWA 

genera trayectorias locales las cuales se van modificando en 

cada paso. Sin embargo, en la Fig. 6 sólo se muestra la 

trayectoria efectiva seguida hasta alcanzar la meta. 

 

 

Figura 5. Ejemplo de entorno de navegación autónoma. 

 

Figura 6. Trayectoria final recorrida por el agente desde (0,0) hasta 

la coordenada (20,15). 

En la Fig. 7 se observa la evolución de la velocidad lineal a lo 

largo de los pasos del robot para tres componentes: 𝑣𝑟  

(velocidad del DWA), 𝑣𝑝 (velocidad del DRL) y 𝑣ℎ (velocidad 

híbrida). A medida que avanza el tiempo, todas las velocidades 

presentan una ligera disminución, esto puede deberse a que el 

robot se acerca gradualmente al objetivo, lo que requiere una 

reducción de la velocidad para evitar sobrepasarlo. Además, 

𝑣ℎ  se sitúa consistentemente entre las velocidades generadas 

(𝑣𝑟 y 𝑣𝑝), lo que confirma su naturaleza como una 

combinación de ambos enfoques. Esta tendencia intermedia 

permite una navegación más suave y adaptable, evitando los 

cambios bruscos de velocidad que podrían ocurrir si se 

dependiera exclusivamente de uno de los algoritmos. 

Por otra parte, el término paso se refiere al cambio de estado 

del agente definido por (2). 

La Fig. 8 muestra la evolución de la velocidad angular en 

función de los pasos del robot para los tres métodos. Se 

observa que la velocidad 𝑤𝑟 comienza con valores negativos 

considerables y decrece aún más con el tiempo, lo que indica 

una tendencia del DWA a realizar giros amplios. En contraste, 

la velocidad 𝑤𝑝, correspondiente al DRL, se incrementa 

gradualmente, reflejando una estrategia que favorece giros 

más controlados y estables conforme avanza el aprendizaje. La 

velocidad angular híbrida 𝑤ℎ se mantiene en un rango más 

moderado, equilibrando el comportamiento del DWA y la 

adaptación progresiva del DRL.  

 

https://doi.org/10.58571/CNCA.AMCA.2025.038

XX Congreso Latinoamericano de Control Automático (CLCA 2025)
13-17 de Octubre, 2025. Cancún, Quintana Roo, México

Copyright© AMCA, ISSN: 2594-2492
224



 
Figura 7. Evolución de las velocidades lineales generadas por el 

DWA (𝑣𝑟), el DRL (𝑣𝑝) y la combinación híbrida (𝑣ℎ) a lo largo 

de los pasos del robot. 

 

 
Figura 8. Evolución de las velocidades angulares generadas por el 

DWA (𝑤𝑟), el DRL (𝑤𝑝) y la combinación híbrida (𝑤ℎ) a lo largo 

de los pasos del robot.  

Para evaluar el desempeño del método híbrido se utilizaron dos 

métricas principales: 

• Tasa de éxito: Porcentaje de pruebas en las que el 

robot alcanzó el objetivo dentro de un tiempo límite 

predefinido (10000 pasos de tiempo). Esta métrica 

cuantifica la capacidad del algoritmo para guiar al 

robot de manera eficiente hacia el objetivo, incluso en 

presencia de obstáculos. Se registraron las tasas de 

éxito tanto para el algoritmo híbrido como para el 

DWA y DRL utilizado de forma independiente, 

permitiendo una comparación directa de su 

rendimiento. Mostrado en la Tabla 1. 

• Tiempo de planificación de ruta: El tiempo de 

planificación de ruta también es un indicador 

importante para medir la capacidad de navegación 

autónoma. Registramos el número de pasos 

planificados para 100 episodios, como se muestra en 

la Fig. 9. 

Tabla 1. Tasa de éxito de los métodos de navegación 

DWA DRL HÍBRIDO 

91% 47% 96% 

 

La Tabla 1 compara la tasa de éxito de tres enfoques distintos 

de navegación: DWA, DRL y el método HÍBRIDO, que 

integra ambos. 

El método HÍBRIDO alcanza el mejor desempeño con una tasa 

de éxito del 96%, superando tanto al enfoque tradicional DWA 

(91%) como al basado únicamente en DRL (47%). Este 

resultado evidencia que, si bien DRL por sí solo aún no iguala 

la fiabilidad de DWA, su integración dentro de un esquema 

híbrido mejora sustancialmente el rendimiento. 

Esto sugiere que el enfoque híbrido se beneficia de las 

fortalezas de ambos métodos: la capacidad reactiva y robusta 

de DWA frente a obstáculos, y la capacidad de adaptación y 

aprendizaje de políticas óptimas de DRL. La fusión a través de 

un mecanismo de selección basado en entropía permite obtener 

decisiones más eficaces, resultando en una mayor tasa de éxito. 

En la Fig. 9, se observa que el método DWA presenta los 

menores tiempos de planificación, con una gran cantidad de 

episodios finalizados en menos de 500 pasos, lo que indica 

trayectorias cortas y eficientes. Por otro lado, el método DRL 

muestra un alto número de episodios que alcanzan el límite 

máximo de 10,000 pasos, lo que implica que en muchos casos 

el agente no logró llegar al objetivo, evidenciando 

inestabilidad y falta de confiabilidad en su comportamiento 

autónomo. En contraste, el enfoque híbrido logra reducir 

significativamente la cantidad de episodios fallidos respecto al 

DRL puro, manteniéndose en una zona intermedia, con una 

mayor proporción de episodios exitosos que no exceden los 

5000 pasos.  

 

Figura 9. Comparación del tiempo de planificación de ruta, medido 

en pasos por episodio, entre los métodos DWA, DRL y el enfoque 

híbrido propuesto. 

Adicionalmente, se analizó el comportamiento del mecanismo 

de transición basado en entropía, monitoreando la evolución 

del parámetro α a lo largo de las pruebas, ilustrado en Fig. 10. 

Esto permitió evaluar la efectividad del mecanismo para 

equilibrar la exploración y la explotación, y su influencia en la 

toma de decisiones del robot. 

 

Figura 10. Evolución del parámetro 𝛼 en la trayectoria de la Fig. 6. 
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Como se muestra en la Fig. 10, el valor de α se incrementa 

progresivamente a medida que avanzan los pasos del robot. En 

otras palabras, las velocidades propuestas por el algoritmo 

DWA van perdiendo peso, mientras que las generadas por el 

DRL adquieren mayor relevancia en el cálculo de las 

velocidades híbridas. 

6. CONCLUSIÓN Y TRABAJO FUTURO 

Este trabajo presentó un sistema de navegación híbrido para 

robots móviles que combina la eficiencia y robustez del 

Algoritmo de Ventana Dinámica (DWA) con la capacidad 

adaptativa del Aprendizaje por Refuerzo Profundo (DRL) 

mediante una arquitectura actor-crítico. Los resultados de las 

simulaciones mostraron que el enfoque híbrido propuesto, 

basado en la combinación del algoritmo DWA y el aprendizaje 

por refuerzo profundo (DRL), supera tanto al método DWA 

como al DRL por separado en términos de tasa de éxito y 

eficiencia. Con una tasa de éxito del 96%, el enfoque híbrido 

demuestra una mayor robustez en la navegación autónoma, 

reduciendo considerablemente la cantidad de episodios 

fallidos que se observan en el DRL puro (47%). Aunque el 

algoritmo DWA mostró los tiempos de planificación más 

bajos, también presentó limitaciones en la adaptabilidad a 

entornos más complejos. En contraste, el enfoque híbrido 

logró un equilibrio entre eficiencia y adaptabilidad, 

manteniendo tiempos de planificación aceptables y evitando el 

estancamiento observado en el DRL.  

Si bien nuestros resultados demuestran la eficacia del enfoque 

híbrido en entornos simulados, es importante reconocer que 

existen ciertas limitaciones. Por ejemplo, no hemos 

considerado la influencia de factores como el ruido en los 

sensores o las imperfecciones en el control del robot, como 

siguiente paso, se considera explorar cómo estos factores 

afectan el rendimiento del sistema y cómo se podrían mitigar 

sus efectos para la validación del mismo en un robot físico, lo 

que permitirá evaluar su desempeño en un entorno real y 

considerar las limitaciones y desafíos que surgen al interactuar 

con el mundo físico. Esto abrirá la puerta a futuras 

investigaciones enfocadas en la robustez del sistema ante 

imprevistos y la adaptación a las particularidades del robot y 

su entorno. 
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