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Abstract: This work presents a hybrid mobile robot navigation system for simulated environments. The
system integrates the Dynamic Window Approach (DWA) with a deep reinforcement learning (DRL) using
an actor-critic architecture. Initially, the robot uses DWA, while concurrently, a DRL agent generates
alternative control speeds using actor and critic networks. An entropy-based mechanism dynamically
weights the DWA and DRL speeds, transitioning gradually to DRL control. The system's performance is
evaluated using success rate and trajectory length, comparing the hybrid approach to DWA and DRL alone.
Results demonstrate improved robustness and performance, particularly in complex scenarios.
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1. INTRODUCCION

La navegacion autonoma de robots moviles es un desafio
crucial en robotica. Estos entornos, caracterizados por la
imprevisibilidad de la geometria y la dindmica del entorno,
exigen sistemas de control robustos y adaptativos. Los
algoritmos de planificacion de trayectorias clasicos, que
requieren mapas precisos del entorno, presentan limitaciones
significativas en escenarios donde la informacién del entorno
es incompleta o dinamica. El Algoritmo de Ventana Dinamica
(DWA) es efectivo para la planificacion local en entornos
parcialmente conocidos; sin embargo, Bodong y Kim (2024)
sefialan que puede carecer de la capacidad de adaptacion
necesaria para optimizar el rendimiento en situaciones
complejas y cambiantes. Ademas, esto se ha demostrado en
diversos trabajos que exploran alternativas basadas en
aprendizaje por refuerzo profundo (DRL) para mejorar la
eficiencia y robustez en entornos con obstaculos estaticos y
dinamicos (Laiyi et al., 2022; Haisen et al., 2023).

El aprendizaje por refuerzo profundo (DRL) ha surgido como
una técnica prometedora para la navegacion robdtica en
entornos no estructurados. Algoritmos de DRL, como los
métodos actor-critico (Liang et al., 2020; Xiaoyu et al., 2022),
permiten a los robots aprender politicas de control 6ptimas a
través de la interaccion con el entorno. Sin embargo, el
entrenamiento de estos agentes puede ser computacionalmente
costoso y requerir un gran numero de iteraciones,
especialmente en entornos de alta dimensionalidad o con
restricciones de tiempo real (Laiyi et al., 2022; Haisen et al.,
2023). Ademas, la eficiencia del entrenamiento puede verse
afectada por la complejidad del espacio de estados y la
formulacion de la funcién de recompensa (An et al., 2024;
Fanfan et al., 2024).

Este trabajo propone un enfoque hibrido que combina la
robustez del algoritmo DWA con la capacidad de aprendizaje
adaptativo del DRL para superar las limitaciones de los
métodos de navegacion tradicionales. A su vez cuenta con un

mecanismo de seleccion basado en la entropia que permite una
transicion gradual del control, desde el algoritmo DWA hasta
el control aprendido por el agente. Este enfoque hibrido busca
aprovechar las ventajas de ambos métodos, logrando un
sistema de navegacion eficiente en los entornos.

El resto del articulo se estructura de la siguiente manera: la
Seccion 2 describe el problema abordado y el tipo de robot
utilizado; la Seccion 3 presenta los fundamentos tedricos del
algoritmo propuesto; la Seccion 4 detalla el algoritmo de
navegacion hibrido, que combina DWA y DRL; la Seccion 5
evalua el rendimiento del algoritmo mediante simulaciones,
analizando las velocidades generadas y el comportamiento del
parametro «; finalmente, la Seccion 6 presenta las
conclusiones y el trabajo futuro.

2. PROBLEMA DE NAVEGACION

En este trabajo se considera el problema de navegacion de un
robot moévil del tipo diferencial el cual se desplaza en un
ambiente congestionado. Se considera un robot mévil descrito
por el modelo cinematico,

X = v cosO
y = v senf (1)
6=w

donde (x,y) representan la posicion del punto medio de las
ruedas en el plano (X-Y), € describe la orientacion del
vehiculo con respecto al eje X. v corresponde a la velocidad
lineal y w a la velocidad rotacional. El vehiculo se describe en
la Fig. 1.

El objetivo planteado es lograr que el robot moévil, a partir de
una condicion inicial [x(0), y(0),8(0)], alcance la posicion
final establecida por una meta (x,,,, ¥y, 6,,) esto llevado a cabo
en un ambiente congestionado de obstaculos estaticos.

Sin pérdida de generalidad se considera un robot navegando
en un plano cartesiano X-Y con origen (0,0) desde el instante
de tiempo cero hasta que llega a la meta. En una aplicacion
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real, un sensor Light Detection and Ranging (LiDAR) puede
definir una ventana dinamica (entorno) en la cual se tomaron
en cuenta los obstaculos existentes. El robot utilizara el
obstaculo mas cercano como punto de referencia para su
desplazamiento, hasta hallar otro mas cercano. El mecanismo
de entropia y el sistema de recompensas del DRL guian la
exploracion del robot, minimizando la probabilidad de ciclos
repetitivos alrededor de los obstaculos. Si la meta se detecta
dentro del rango del LIDAR, se prioriza como punto de
referencia para optimizar la ruta.

YA

=V

Figura 1. Robot movil tipo diferencial considerado.
3. PRELIMINARES

En esta seccion, describimos brevemente los conceptos
basicos utilizados en el algoritmo propuesto, que son el
Aprendizaje por Refuerzo Profundo y el Algoritmo de Ventana
Dinémica.

3.1 Aprendizaje por refuerzo profundo (DRL)

El DRL es un subcampo del aprendizaje automatico que se
centra en el entrenamiento de agentes para tomar decisiones
optimas en un entorno dado. Un agente aprende a través de la
interaccion con el entorno, recibiendo recompensas o
penalizaciones por sus acciones, ver Fig. 2. El objetivo del
agente es maximizar la recompensa acumulada a lo largo del
tiempo. DRL combina técnicas de aprendizaje por refuerzo
con redes neuronales profundas para representar funciones de
valor y politicas complejas. Los métodos actor-critico son una
clase popular de algoritmos DRL que utilizan dos redes
neuronales: una red actor que define la politica (es decir, la
forma en que el agente selecciona acciones) y una red critica
que evalua el valor de los estados y las acciones. El
entrenamiento implica iterativamente actualizar ambas redes
para mejorar la politica y la estimacion del valor. (Ebrahim et
al., 2024) proporciona una revision exhaustiva de los
algoritmos DRL.

- v
| Agente T
R, oS |
Estado
Extendido
' [x, 7.6, v, w] | Acciom
l ReCOI‘{.llelS{l“! (v, wr)
| e |

| Entorno |

Figura 2. Ciclo de interaccion en el aprendizaje por refuerzo
profundo.

En la Fig. 2, el Agente recibe el estado extendido del entorno
y ejecuta una accion. Como resultado, el Agente evoluciona y
el entorno devuelve una nueva observacion del estado junto
con una sefial de recompensa. En la Seccion 4, se detalla el
algoritmo que le permite al robot pasar del estado extendido a
la accion hibrida (vy,, wy,).

3.2 Algoritmo de Ventana Dinamica (DWA)

El DWA es un algoritmo de planificacion de movimiento local
que considera las limitaciones dindmicas del robot, como la
velocidad maxima, la aceleracion maxima y el radio de giro
minimo. A diferencia de los algoritmos de planificacion global
que requieren un mapa completo del entorno, DWA opera en
una ventana de tiempo y espacio limitada, utilizando
informacion sensorial local para generar velocidades de
control. Para cada velocidad dentro de la ventana dinamica,
DWA simula la trayectoria del robot durante un corto periodo
de tiempo y evalta la trayectoria utilizando una funcion de
costo que considera la distancia al objetivo, la proximidad a
los obstaculos y la velocidad. La velocidad que produce la
trayectoria con el menor costo se selecciona y se aplica al
robot. (Yanjie y Norzalilah, 2024) presenta una descripcion
detallada del algoritmo DWA.

4. DESCRIPCION DEL ALGORITMO DE NAVEGACION

Esta seccion describe el algoritmo propuesto para la
navegacion autéonoma de un robot moévil en entornos no
controlados. El algoritmo combina el Algoritmo de Ventana
Dinamica con un modelo de aprendizaje por refuerzo profundo
con arquitectura actor-critico. El robot movil considerado
puede verse en la Fig. 1 y su evolucion en el plano cartesiano
puede representarse mediante el modelo cinematico de (1).

4.1 Representacion del Estado (s)

Para efectos del algoritmo de navegacion, se considera un
estado extendido del robot formado por:

s=[xy,60,v,w] )
4.2 Espacio de Acciones

El espacio de acciones consiste en pares de velocidades de
control: [v, w].

En el DRL, la accién predicha esta dada por:
ap = 1y(s) 3)
donde:
e a,:accion predicha (v,, wy).

e 7 politica de la red neuronal (distribuciones de
probabilidades de las acciones).

e @:pesos de conexion de la red actor.
4.3 Funcion de Recompensa (r)

La funcion de recompensa se disefia para guiar al robot hacia
el objetivo mientras evita obstaculos, en la forma,
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Tarrive = 10
r = Si dltobj(i) < dlStobj(i—l) =2 (4)
—1;de lo contrario

donde:
e ditypj(;: Distancia al objetivo en el instante i.
e dit,pj(i—1): Distancia al objetivo en el instante i-/.

Esta funcién fomenta que el agente reduzca progresivamente
la distancia al objetivo y penaliza trayectorias que no
representen un avance real, garantizando un aprendizaje
orientado alcanzar meta.

4.4 Calidad Q

La calidad Q representa cuan eficiente fue la accion realizada
a, iniciando en el estado s, dicho valor es calculado con los
valores Q de cada una de las redes criticas, como se tienen 2
redes resulta:

Q =7+ y *min (Ql(s, ap; 01), Q2(s, ap; 92)) &)
donde:

e y: Factor de descuento con valor de 0.9.

e (q: Valor Q de la primera red critica cuyas entradas
son: s, @, ; con parametros 6.

e (,: Valor Q de la segunda red critica cuyas entradas
son: s, a, ; con parametros 8,.

4.5 Arquitectura de las Redes Neuronales (Actor y Critico)

Este trabajo emplea una arquitectura de redes neuronales
basada en el algoritmo Soft Actor-Critic (SAC) (Shuhuan et
al., 2025), modificada para incluir una segunda red critica. Esta
modificacion mejora la politica del agente, en comparacion
con la arquitectura SAC original que emplea una sola red
critica (Husam y Oscar, 2024), ademas se emplea la funcion
de activacion Rectified Linear Unit (ReLU), definida como
f(x) =max (0,x). Esta funciéon no fue seleccionada
arbitrariamente, sino que se adopta siguiendo el disefio
propuesto en la investigacion de Husam y Oscar (2024),
quienes demostraron su efectividad en problemas de
navegacion autéonoma con aprendizaje por refuerzo profundo.
La arquitectura neuronal se ilustra en la Fig. 3 y esta
compuesta por cuatro capas:

e (Capas completamente conectadas (FC): Dos capas
FC, cada una con 256 neuronas, procesan la
informacion del vector de estado. Estas capas realizan
transformaciones no lineales de la entrada mediante
ReLU, extrayendo caracteristicas relevantes para la
toma de decisiones.

e (Capas de salida especificas: La red actor genera la
distribucion de probabilidad de las acciones (v, w)
utilizando softmax para limitar las velocidades. Y en
el caso de las redes criticas gemelas, en su salida, se
estima el valor de la calidad de la accién realizada (Q)

de los estados-accion utilizando una funcion
sigmoidal.

2n-256n-256n0-1n

)
Estada
@ Exiendido
Red Critica 1 [x,.8,v,w]
Accidn
[ Wyl
2n-2560-256n-1n g
@ Calidad de

la accion ¢

I RPUrcna

Red Critica 2

Figura 3. Representacion grafica de la arquitectura de DRL.
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Figura 4. Esquema del sistema hibrido propuesto basado en DRL y
DWA.

La Fig. 4 ilustra el sistema de navegacion hibrido propuesto.
Tanto el algoritmo DWA como el DRL generan
velocidades reales (v, w;.) y predichas (U, W),
respectivamente. Luego, un mecanismo basado en la entropia
combina estas salidas para producir velocidades hibridas
(vi, wy) que guia al robot al siguiente estado.

4.6 Incorporacion de la Entropia para la Accion Hibrida

Para mejorar la exploracion del espacio de acciones y mitigar
el riesgo de convergencia prematura a optimos locales, se
introduce un mecanismo de transicion basado en la entropia.
Este mecanismo pondera las acciones sugeridas por el
algoritmo de aprendizaje por refuerzo DRL y el DWA,
utilizando un parametro o que se ajusta dindmicamente en
funcién de la entropia del sistema.

La entropia Hse calcula a partir de la distribucion de
probabilidades de las acciones propuestas por la red actor del
agente RL, mostrada en la siguiente ecuacion. (Shuhuan et al.,
2025)

H=—(v, * log(vp) + wy, * log(wp)) (6)

El pardmetro o se encarga de hacer la transicion entre los
valores predichos por la red y los valores dados por el control
DWA. o se actualiza mediante una funcién sigmoide que
depende de H, un umbral de entropia (H,mprai), Y una
constante de velocidad de transicion (k=0.5). (Shuhuan et al.,
2025)

a=1/1+ exp(—k * (Hymprar — H))) (7N

Considerando que la entropia de una distribucion de
probabilidad siempre es positiva y, para el caso de una
distribucion discreta con n posibles resultados, su valor
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maximo es log,(n) (Jinding et al., 2024). En este caso, se
tienen dos salidas (velocidad lineal y angular), asi que el valor
maximo de entropia es log,(2) = 1. Sin embargo, dado que
se usa el logaritmo natural (/) en lugar del logaritmo en base
2, el valor maximo de nuestra entropia sera In(2) = 0.693.

Dado esto, se experimentd con valores de Hy,,,-q; dentro del
rango 0.1 a 0.6. Este rango cubre una gama de situaciones:

e Valores bajos (0.1 - 0.3): Indican que la red necesita
tener una alta confianza (baja entropia) para tomar el
control. Esto es util si la tarea es compleja o si
requiere una transicion muy gradual.

o Valores medios (0.3 - 0.5): Representan un equilibrio
entre la confianza de la red y la velocidad de la
transicion.

o Valores altos (0.5 - 0.6): Indican que la red puede
tomar el control incluso con una incertidumbre
moderada. Esto es til si la tarea es simple o si se
quiere una transicion mas rapida.

Para nuestro caso, el valor usado fue de Hypmprar = 0.3.

Tomando en cuenta lo anterior, es posible obtener las
velocidades hibridas con (8) y (9).

vy =a(v,) + (1 —a)(vy) (8)

wy, = a(w,) + (1 — a)(w,) )

El pardmetro a se define como un coeficiente de transicion
dindmico que pondera las velocidades propuestas por el DWA
y el DRL. Su valor depende de la entropia del sistema,
permitiendo una transicion gradual: cuando 0—0, el control se
asemeja al DWA, y cuando a— 1, se aproxima al DRL. De esta
manera, o regula el grado de influencia del controlador a lo
largo del proceso de navegacion. En términos practicos, o
funciona como un regulador adaptativo: al inicio otorga mayor
peso al control clasico del DWA para estabilizar la
navegacion, y conforme el agente gana confianza (menor
entropia), transfiere progresivamente el control hacia el DRL.

5. EVALUACION DEL ALGORITMO PROPUESTO

Para evaluar el rendimiento del algoritmo propuesto, se
realizaron experimentos de navegacion autdbnoma en entornos
simulados donde se proyectan obstaculos de manera aleatoria
para cada episodio, es decir, ningun entorno se parece a otro.
Un ejemplo de episodio se muestra en la Fig. 5.

En la Fig. 5 se muestra la posicion de los obstaculos marcados
con puntos negros, mientras que la “x”, es decir, el objetivo se
mantiene en la misma posicién en cada simulacién, al igual
que el agente representado por el rectangulo cuyo punto de
inicio es (0,0) y su trayectoria local estd dada por la linea
naranja.

La trayectoria realizada por el agente en el entorno se muestra
en la Fig. 6. Enfaticemos que, durante la simulacion, el DWA
genera trayectorias locales las cuales se van modificando en
cada paso. Sin embargo, en la Fig. 6 s6lo se muestra la
trayectoria efectiva seguida hasta alcanzar la meta.

e [ ]
175 °
150 = =
. &
—_ %
£ us
= o g
£ 100
Q
c . &
o 75 -®
¥} o o. °
£ 50 .5
25 . 3
00 1
-5 0 5 0 15 20 b1

Posicidn en X (m)

Figura 5. Ejemplo de entorno de navegacion autobnoma.

16

Posicion en Y (m)

00 25 S0 75 100 125 150 175 200
Posicion en X (m)

Figura 6. Trayectoria final recorrida por el agente desde (0,0) hasta
la coordenada (20,15).

En la Fig. 7 se observa la evolucion de la velocidad lineal a lo
largo de los pasos del robot para tres componentes: v,
(velocidad del DWA), v, (velocidad del DRL) y v, (velocidad
hibrida). A medida que avanza el tiempo, todas las velocidades
presentan una ligera disminucion, esto puede deberse a que el
robot se acerca gradualmente al objetivo, lo que requiere una
reduccion de la velocidad para evitar sobrepasarlo. Ademas,
vy, se sitlia consistentemente entre las velocidades generadas
(vryvp), lo que confirma su naturaleza como una
combinacion de ambos enfoques. Esta tendencia intermedia
permite una navegacion mas suave y adaptable, evitando los
cambios bruscos de velocidad que podrian ocurrir si se
dependiera exclusivamente de uno de los algoritmos.

Por otra parte, el término paso se refiere al cambio de estado
del agente definido por (2).

La Fig. 8 muestra la evolucion de la velocidad angular en
funcién de los pasos del robot para los tres métodos. Se
observa que la velocidad w, comienza con valores negativos
considerables y decrece ain mas con el tiempo, lo que indica
una tendencia del DWA a realizar giros amplios. En contraste,
la velocidad wy,, correspondiente al DRL, se incrementa
gradualmente, reflejando una estrategia que favorece giros
mas controlados y estables conforme avanza el aprendizaje. La
velocidad angular hibrida wy, se mantiene en un rango mas
moderado, equilibrando el comportamiento del DWA y la
adaptacion progresiva del DRL.
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Figura 7. Evolucion de las velocidades lineales generadas por el
DWA (v), el DRL (v,) y la combinacién hibrida (v,) a lo largo
de los pasos del robot.
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Figura 8. Evolucion de las velocidades angulares generadas por el
DWA (w;), el DRL (wy,) y la combinacion hibrida (wy,) a lo largo
de los pasos del robot.

Para evaluar el desempefio del método hibrido se utilizaron dos
métricas principales:

o Tasa de éxito.: Porcentaje de pruebas en las que el
robot alcanzé el objetivo dentro de un tiempo limite
predefinido (10000 pasos de tiempo). Esta métrica
cuantifica la capacidad del algoritmo para guiar al
robot de manera eficiente hacia el objetivo, incluso en
presencia de obstaculos. Se registraron las tasas de
éxito tanto para el algoritmo hibrido como para el
DWA y DRL utilizado de forma independiente,
permitiendo una comparacion directa de su
rendimiento. Mostrado en la Tabla 1.

o Tiempo de planificacion de ruta: El tiempo de
planificacion de ruta también es un indicador
importante para medir la capacidad de navegacion

autonoma. Registramos el numero de pasos
planificados para 100 episodios, como se muestra en
la Fig. 9.
Tabla 1. Tasa de éxito de los métodos de navegacion
DWA DRL HIBRIDO
91% 47% 96%

La Tabla 1 compara la tasa de éxito de tres enfoques distintos
de navegacion: DWA, DRL y el método HIBRIDO, que
integra ambos.

El método HIBRIDO alcanza el mejor desempefio con una tasa
de éxito del 96%, superando tanto al enfoque tradicional DWA

(91%) como al basado unicamente en DRL (47%). Este
resultado evidencia que, si bien DRL por si solo aun no iguala
la fiabilidad de DWA, su integracion dentro de un esquema
hibrido mejora sustancialmente el rendimiento.

Esto sugiere que el enfoque hibrido se beneficia de las
fortalezas de ambos métodos: la capacidad reactiva y robusta
de DWA frente a obstaculos, y la capacidad de adaptacion y
aprendizaje de politicas 6ptimas de DRL. La fusion a través de
un mecanismo de seleccion basado en entropia permite obtener
decisiones mas eficaces, resultando en una mayor tasa de éxito.

En la Fig. 9, se observa que el método DWA presenta los
menores tiempos de planificacion, con una gran cantidad de
episodios finalizados en menos de 500 pasos, lo que indica
trayectorias cortas y eficientes. Por otro lado, el método DRL
muestra un alto nimero de episodios que alcanzan el limite
maximo de 10,000 pasos, lo que implica que en muchos casos
el agente no logré llegar al objetivo, evidenciando
inestabilidad y falta de confiabilidad en su comportamiento
autonomo. En contraste, el enfoque hibrido logra reducir
significativamente la cantidad de episodios fallidos respecto al
DRL puro, manteniéndose en una zona intermedia, con una
mayor proporcién de episodios exitosos que no exceden los
5000 pasos.

Tiempo de planificacion de ruta

12000

10000 @ e® e Sy
[ ] L T,
o o ° &
8000
o
2 6000 g @ @ Hibrido
o (J
I DA
4000 oo &° &g (] © DAL
® DWA
2000
0 = =
0 20 40 60 80 100 120
Episodio

Figura 9. Comparacion del tiempo de planificacion de ruta, medido
en pasos por episodio, entre los métodos DWA, DRL y el enfoque
hibrido propuesto.

Adicionalmente, se analiz6 el comportamiento del mecanismo
de transicion basado en entropia, monitoreando la evolucion
del parametro a a lo largo de las pruebas, ilustrado en Fig. 10.
Esto permitid evaluar la efectividad del mecanismo para
equilibrar la exploracion y la explotacion, y su influencia en la
toma de decisiones del robot.

Valor o

0.5006
0.5005
0.5004

0.5003

Valor

0.5002
0.5001

05
0 1000 2000 3000 4000 5000

Paso

Figura 10. Evolucion del pardmetro « en la trayectoria de la Fig. 6.
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Como se muestra en la Fig. 10, el valor de o se incrementa
progresivamente a medida que avanzan los pasos del robot. En
otras palabras, las velocidades propuestas por el algoritmo
DWA van perdiendo peso, mientras que las generadas por el
DRL adquieren mayor relevancia en el calculo de las
velocidades hibridas.

6. CONCLUSION Y TRABAJO FUTURO

Este trabajo present6 un sistema de navegacion hibrido para
robots moviles que combina la eficiencia y robustez del
Algoritmo de Ventana Dinamica (DWA) con la capacidad
adaptativa del Aprendizaje por Refuerzo Profundo (DRL)
mediante una arquitectura actor-critico. Los resultados de las
simulaciones mostraron que el enfoque hibrido propuesto,
basado en la combinacion del algoritmo DWA y el aprendizaje
por refuerzo profundo (DRL), supera tanto al método DWA
como al DRL por separado en términos de tasa de éxito y
eficiencia. Con una tasa de éxito del 96%, el enfoque hibrido
demuestra una mayor robustez en la navegacion autéonoma,
reduciendo considerablemente la cantidad de episodios
fallidos que se observan en el DRL puro (47%). Aunque el
algoritmo DWA mostré los tiempos de planificacion mas
bajos, también present6d limitaciones en la adaptabilidad a
entornos mas complejos. En contraste, el enfoque hibrido
logré un equilibrio entre eficiencia y adaptabilidad,
manteniendo tiempos de planificacion aceptables y evitando el
estancamiento observado en el DRL.

Si bien nuestros resultados demuestran la eficacia del enfoque
hibrido en entornos simulados, es importante reconocer que
existen ciertas limitaciones. Por ejemplo, no hemos
considerado la influencia de factores como el ruido en los
sensores o las imperfecciones en el control del robot, como
siguiente paso, se considera explorar como estos factores
afectan el rendimiento del sistema y como se podrian mitigar
sus efectos para la validacién del mismo en un robot fisico, lo
que permitird evaluar su desempeflo en un entorno real y
considerar las limitaciones y desafios que surgen al interactuar
con el mundo fisico. Esto abrira la puerta a futuras
investigaciones enfocadas en la robustez del sistema ante
imprevistos y la adaptacion a las particularidades del robot y
su entorno.
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