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México (e-mail: jpliego@cicese.edu.mx)

Abstract: This research proposes a control algorithm that allows a group of wheeled mobile
robots to emulate the flocking behavior. The controller is designed in such a manner that linear
velocity measurements are not necessary either locally or in the exchange of information between
the group members. Given that in real life it is possible that not all the members of the group
to have knowledge of the desired flocking velocity, we propose a distributed observer. Moreover,
the proposed flocking controller works for either undirectional or bidirectional communication
topologies. To analyze the stability of the flocking algorithm and distributed observer, we employ
tools from linear systems theory. To demonstrate the correct functioning of the control law,
experimental tests are shown.
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1. INTRODUCTION

In recent years, researchers and engineers in the area of
automatic control and robotics have focused on study-
ing the collective behaviors observed in nature, such as
consensus, formation and flocking, to mention a few. The
interest in achieving collective behaviors in robotic swarms
is motivated by the fact that a group of robots can per-
form more complicated tasks than a single robot. Besides,
using multiple robots can reduce the operation time and
maintenance costs. Some tasks that a group of robots
can perform are search, surveillance, area mapping, object
transportation, to name a few.

In the works reported by (Ren, 2008; Hu and Lin, 2010;
Abdessameud and Tayebi, 2013) and (Rojo et al., 2019),
the problem of consensus is addressed. Ren (2008) pro-
poses several control algorithms with different properties
to tackle the consensus problem. Among these consen-
sus controllers, we can find, for example, a control law
with bounded input, a controller free of relative velocity
measurements and a control law for velocity tracking. Hu
and Lin (2010) consider the case of time delay in the
communication. Abdessameud and Tayebi (2013) propose
control algorithms with input saturation, the authors also
consider the case in which the velocities of the agents
are not available for feedback. Rojo et al. (2019) propose
to include a trajectory tracking term in the consensus
protocol to avoid collisions between the agents.

⋆ This work was supported by SECIHTI Ciencia Básica under grant
A1-S-31628.

The problem of formation is studied in the following works.
Abdessameud and Tayebi (2009) designed a controller
that achieves that a group of aerial vehicles replicate the
behavior of formation while they track a desired trajectory.
Bazoula and Nemra (2013) propose a control law that
allows to the agents of the group to adopt the graph form
used for the communication. In (Han et al., 2016; Zhao and
Zelazo, 2017) the problem of time varying formations is
analyzed, the difference between the first and second works
is the type of graph employing for the communication, Han
et al. (2016) use directed graph while Zhao and Zelazo
(2017) consider undirected connected graph.

On the other hand, the design of control laws to emulate
flocking behavior is studied in (Moshtagh et al., 2005),
where the authors propose control laws for nonholonomic
agents in two and three dimensions, it is important to
mention that the agents achieve the flocking behavior even
when the communication topologies are time varying. Shi
et al. (2009); Gao et al. (2017); Zhao et al. (2017) use
the leader-follower strategy to emulate the behavior under
study. The authors present numerical simulations to vali-
date the performance of the controller. In contrast to (Shi
et al., 2009; Gao et al., 2017),(Zhao et al., 2017) designed
a control law for nonlinear systems with nonholonomic
constraints. Ning et al. (2018) designed a flocking control
law for agents with double integrator dynamic based in
interaction rules of acute angle. The authors also include
in their controller a term to avoid collision. The control
algorithm proposed in (Jian et al., 2018), allows that
a group of quadrotors emulate the behavior of flocking,
to validate the performance of the controller numerical
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results are presented. In contrast with the above work,
Saif et al. (2019) present experimental results. On the
other hand, to minimize the steady state error caused by
unmodeled dynamics Saif et al. (2019) include an inte-
gral term in the control algorithm. In (Cheng and Wang,
2020) the problem of flocking is dealt as an optimization
problem, the proposed control was designed used potential
functions, to validate the control performance Cheng and
Wang (2020) have made experimental tests employ a group
of differential mobile robots. The case in which the desired
velocity is just known by some member of the group is
tackled in (Khaledyan et al., 2020), to solve the problem
the authors designed a distributed observer. In (Pliego
et al., 2023; Cetina et al., 2025), to solve the problem
of flocking the authors exploit the cascade structure of
the kinematic model of the differential mobile robot, to
demonstrate the performance of control laws experimental
test are shown.

In this research, we address the problem of flocking for
robots with nonholonomic constraints, the proposed con-
troller is free of linear velocity measurements, which is con-
venient in a practical case, since these measurements are
not always available. Moreover, given that an observer is
not required the calculations are simplified. Unlike (Pliego
et al., 2023), the proposed flocking controller works for
either undirected or directed communication topologies.
Besides, a distributed observer is proposed to overcome the
case in which not all the agents know the desired velocity.
The stability of the closed-loop system is exponential and
asymptotic. To validate the theory we show experimental
results.

2. PRELIMINARIES

2.1 Graph theory

Let G = (N , E) be a graph where N is the set of nodes
(agents or robots) and E is the set of edges E ∈ N ×N . A
graph is called directed, if its set of edges is order pair of N
and undirected, if the set of edges is unordered pair of N ,
in the case of a directed graph the information flows only in
one direction while in an undirected graph the information
flow is bidirectional. From graph theory is well known that
a graph can be represented mathematically by matrices.

The adjacency matrix A = [aij ] ∈ ℜN×N for a directed
graph is given by

aij =

{
1 j ∈ Ni

0 otherwise

where Ni is the set of neighbors that transmit information
to the agent i, N is the agents number, for an undirected
graph A is calculated by

aij =

{
1 if(i, j) ∈ E
0 otherwise

.

The degree matrix D ∈ ℜN×N is a diagonal matrix and
its components are given by

dij =


N∑
i=1

di if i = j

0 Otherwise

where dij are the components of D and di is the number
of nodes that are adjacents to node i.

The Laplacian matrix L of a directed or an undirected
graph is given by

L = D −A,

the Laplacian matrix from an undirected graph is symmet-
ric, for a directed graph the above is no always fulfilled, the
matrix L from an undirected or a directed graph has at
least one eigenvalue equal to zero, in the case of undirected
graph the rest of them are reals and positives, the nonzero
eigenvalues of a directed graph can be complex with real
part positive, the eigenvalue λ = 0 of L has associated
the eigenvector 1N = [1 · · · 1]⊤ ∈ ℜN , hence, it is easy to
proof that L1N = 0, if the eigenvalue λ = 0 has algebraic
multiplicity equal to one allows to say that an undirected
graph is connected or that a directed graph is strongly
connected (Ren et al., 2007).

2.2 Problem statement

In this work, we aim to emulate the flocking behavior,
according to the established for Craig Reynolds (1998),
so that the flocking behavior to exist, the members of the
group have to obey the following rules: cohesion, alignment
and separation. To achieve the above in this document the
control objective is defined as

lim
t→∞

pij(t)− δij = 0, lim
t→∞

vi(t) = vd(t) ∀i, j ∈ N , (1)

where pij(t) = pi(t) − pj(t) ∈ ℜ2 is the relative position,

vd ∈ ℜ2 is the desired velocity of the group and δij = δi−
δj ∈ ℜ2 is a constant vector that defines the geometry of
the formation.

2.3 Mathematical model of the differential mobile robot

Fig. 1. Differential mobile robot, where ωl and ωr are the
angular velocity of the wheels

The kinematic model that describes the translation motion
and attitude of a differential mobile robot (see Figure 1)
is given by

v = νRe1 (2a)

Ṙ = ωRS, (2b)

where p ∈ ℜ2 is the position vector that goes of the inertial
reference frame Σw to the body fixed frame Σb, v = ṗ,
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ν ∈ ℜ is the velocity magnitude and ω ∈ ℜ is the angular
velocity, both are the control inputs, e1 = [1 0]⊤ is the unit
vector in the axis x, R ∈ SO(2) is the rotation matrix
given by R = cos(θ)I + sin(θ)S where θ is the stering
angle. On the other hand, S ∈ so(2) is the Skew-symmetric
matrix represented by S = [e2 − e1], where e2 = [0 1]⊤ is
the unit vector in the axis y.

3. CONTROL ALGORITHMS

3.1 Velocity control algorithm

Before presenting the proposed flocking control algorithm,
we first designed a control algorithm for velocity tracking,
which is based on the dynamic feedback linearization
technique (Oriolo et al., 2002). To begin with the design of
the velocity control algorithm, the term λv (with λ > 0) is
added in the left and right hand sides of the first derivative
of the equation (2a) resulting in

v̇ + λv = ν̇Re1 + νṘe1 + λv, (3)

by using the property SR = RS and carrying out some
operations the equation (3) is rewritten as

v̇ + λv = R

[
ν̇ + λν
νω

]
= u, (4)

where u is a new auxiliary control input which is designed
afterwards. From (4), the control inputs ω and ν can be
obtained as follows[

ν̇ + λν
νω

]
= R⊤u =⇒

ν̇ = −λν + u⊤Re1

ω =
u⊤Re2

ν

,

the control input ν is obtained as the solution of ν̇ = −λν+
u⊤Re1 as long as ν(0) ̸= 0 to avoid an indetermination
in the control input ω, for further information about the
controller can be consulted the document (Montañez et al.,
2023)

3.2 Flocking control algorithm

Taking inspiration from (Montañez et al., 2022) and con-
sidering the equation (4) is obtained

ṗi = ϑi + ṽi (5a)

˙̃vi = −λivi − ϑ̇i + ui with i = 1, ...., N, (5b)

where ṽi = vi −ϑi ∈ ℜ2 is the velocity error and ϑi ∈ ℜ2

is a virtual input, for its design it is made use of the error
variable

ri = pi − pd − δi −φi (6)

where φi ∈ ℜ2 is an auxiliary variable used to avoid
employing the velocity measurements of each agent in
the exchange of information. To achieve formation it is
desirable that the dynamics of ri to have the following
form

ṙi = −c

N∑
j=1

aijrij , (7)

where c > 0 is the coupling gain, rij = pij − δij −φij and
φij = φi−φj . Differentiating (6) and equating it with (7),
and considering (5b) when performing some operations,
the proposed flocking control law is given by

ϑi = vd − kφiφi (8a)

φ̇ = −kφiφi + c

N∑
j=1

aijrij (8b)

ui = ϑ̇i + λiϑi, (8c)

where λi and kφi are positive gains, φi is obtained as
solution of (8b). It is important to emphasize that the
controller proposed is velocity-free both when exchanging
information among agents as when making velocity track-
ing, since to carry out velocity tracking the controller just
requires the desired velocity profile and its derivatives.

Given that in nature not all the agents of the group know
the desired velocity profile, we proposed a distributed
observer to tackle the problem. The structure of the
observer is given by

˙̂vd
i = −µ

 N∑
j=i

aij v̂
d
ij + bi(v̂

d
i − vd)

 , (9)

where µ > 0 is a gain, v̂d
i ∈ ℜ2 is an estimation of vd,

v̂d
ij = v̂d

i − v̂d
j ∈ ℜ2 and bi ∈ ℜ indicates which member of

the group know the desired velocity profile and it is defined
as

bi =

{
1 if i ∈ N d

0 otherwise
,

N d ⊂ N is the subset of all the agents that know vd, since
at least one agent knows vd is possible estimate it for the
agent i /∈ N d.

Proposition 1. Assume that G is undirected (connected)

or directed (strongly connected) and v̇d(t) → 0 as t → ∞
then, the distributed observer (9) guarantees that v̂d

i (t) →
vd(t) as t → ∞ for all i ∈ N .

Proof. To prove that v̂d
i (t) → vd(t) as t → ∞, we define

the following estimation error v̄d
i = v̂d

i − vd, getting its
first time derivative and using the Kronecker product ⊗,
the error dynamics v̄d

i in compact form are given by

˙̄vd
i = −µ(L⊗ I2)v̄

d − µ(D̄ ⊗ I2)v̄
d − 1N ⊗ v̇d

= −µ(M ⊗ I2)v̄
d − 1N ⊗ v̇d (10)

where v̄d
i − v̄d

j = v̂d
i − v̂d

j has been used, I2 ∈ ℜ2×2 is the

identity matrix, v̄d = [(v̄d
1)

⊤ · · · (v̄d
N )⊤]⊤ ∈ ℜ2N , D̄ =

diag{b1 · · · bN} ∈ ℜN×N and M = L+D̄ ∈ ℜN×N . Since
G has been supposed directed (strongly connected) or
undirected (connected), the eigenvalues of M are strictly
positives (Hong et al., 2006), hence, the matrix −µ(M ⊗
I2) is Hurwitz. According to (Hale, 2009) if v̇d(t) → 0 as
t → ∞, we concluded that limt→∞ v̄d(t) = 0 and it is

confirmed that v̂d
i (t) → vd(t). ■

Considering the equation (5) the time derivative of (6),
(8), the Kronecker product and the expression (10), the
closed-loop dynamics in compact form are given by

φ̇ = −(K ⊗ I2)φ+ c(L⊗ I2)r (11a)

ṙ = −(L⊗ I2)r + ṽ + v̄d (11b)

˙̃v = −(Λ⊗ I2)ṽ (11c)

˙̄vd = −µ(M ⊗ I2)v̄
d − 1N ⊗ v̇d, (11d)
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where φ = [φ⊤
1 ; · · · φ⊤

N ]⊤ ∈ ℜ2N , r = [r⊤1 ; · · · r⊤N ]⊤ ∈
ℜ2N and ṽ = [ṽ⊤

1 ; · · · ṽ⊤
N ]⊤ ∈ ℜ2N ,K = diag{kφ1 · · · kφN}

and Λ = diag{λ1 · · · λN}.
Proposition 2. The closed-loop (11) assuming that v̇d(t) =

0 or that v̇d(t) → 0 as t → ∞ has as equilibrium point
exponentially stable (φ, r, ṽ, v̄d) = (0,1N ⊗ r∗,0,0).

Proof. To analyze the stability of the equilibrium point,
we make change of coordinates (Nuño et al., 2011)

q = (Q⊗ In)r, (12)

where n is the state dimension, Q ∈ ℜN−1×N is given by

Q =


−1 + (N − 1)χ 1− χ −χ · · · −χ

−1 + (N − 1)χ −χ 1− χ
. . .

...
...

...
. . .

. . . −χ
−1 + (N − 1)χ −χ · · · −χ 1− χ

 (13)

with χ = (N −
√
N)/N(N − 1).

According to (Scardovi et al., 2010), (13) presents the
following properties

Q1N = 0, QQ⊤ = IN−1, Q
⊤Q = IN − 1

N
1N1⊤

N , (14)

hence, it follows that

q = (Q⊗ In) r = 0 =⇒ r = 1N ⊗ r∗. (15)

Then by considering the change of coordinates and taking
account (14) the closed-loop dynamics can be rewritten as

ξ̇ = Aξ +B(1N ⊗ v̇d) (16)

where ξ = [φ⊤ q⊤ ṽ⊤ (v̄d)⊤]⊤ ∈ ℜ2(4N−1), the matrix A
and B are defined respectively as

A =

−(K ⊗ I2) (H1 ⊗ I2) O O
O −(H2 ⊗ I2) (Q⊗ I2) (Q⊗ I2)
O O −(Λ⊗ I2) O
O O O −µ(M ⊗ I2)

 ,

B = [O O O I2N ]⊤ ∈ ℜ2(4N−1)×2N ,

where H1 = cLQ⊤, H2 = cQLQ⊤ and O are matrices
of adequate dimensions composed by zeros. Given that A
is an upper triangular block matrix and the matrices in
its diagonal are Hurwitz, then A is also Hurwitz, recall
that v̇d has to be zero or has to tend to zero (16) is a
linear system with equilibrium point exponentially stable,
with this result is confirmed that φij(t) → 0 and it is also
verified the shown in (15), this implies that ri(t) → r∗,
rij(t) → 0, therefore pij − δij = rij − φij → 0. The

analysis of stability also confirmed that vi(t) → v̂d
i →

vd
i (t) as t → ∞, then, the control objective is achieved in

the sense of (1) and of v̄d
i (t) = 0 as t → ∞.

4. EXPERIMENTAL RESULTS

To validate the theory shown in this document, we have
carried out experimental tests, to get the results four
differential mobile robots known as Khepera III have been
using, this robot is equipped with a DsPiC 30F5011 pro-
cessor, a RAM memory of 4 KB, eleven infrared sensors,
five ultrasonic sensors, two DC motors and one battery
of lithium polymer. To measure the position and attitude
of the robots six OptiTrack cameras have been employed.
The programming of the control algorithm was made in
the software Matlab using a sample time of 0.01 [s].

Fig. 2. Undirected graph in ring configuration

The graph used to communicate to each member of the
group is depicted in Figure 2. The desired velocity profile
is given by

vd =

[
0.035− 0.015(tanh(t− 20)− tanh(t− 35))

−0.015(tanh(t− 20)− tanh(t− 35))

]
[m/s],

in this experiment is proposed that just the first robot of
the group has knowledge of vd, hence D̄ = diag{1 0 0 0}.
The initial condition for control input νi with i = 1, ..., 4
were set as νi(0) = 0.01 [m/s], the initial conditions for

φi(0) are equal to zero, in the case of v̂d
i (0) the initial

condition were obtained from vd(t) in the instant zero,
the gains proposed were set as c = 1, λi = kφi = 2 and
µ = 10.5, the constants δi are δ1 = [−0.1 0.1]⊤ [m],
δ2 = [0.1 0.1]⊤ [m], δ3 = [−0.1 − 0.1]⊤ [m] and
δ1 = [0.1 − 0.1]⊤ [m].

Fig. 3. Estimated velocity: (a) axis x and (b) axis y

To demonstrate that the distributed observer has a good
performance in Figure 3 can be seen that the estimated
desired velocity of each agent tends to the desired velocity
profile even when just one agent knows it. Figure 4
shows the trajectory produced for the agent when tracking
the estimated velocity profile, of this result can be also
observed that the robots have achieved the desired pattern
established for the constant δi.

To validate the aforementioned in Figure 5 can be observed
that the relative position error measurements converge
to zero after of the transient time, for this reason we
can conclude that the robots have reached the desired
formation.
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Fig. 4. Generated trajectory for the agents and desired
formation

Fig. 5. Time evolution of relative position error: (a) axis x
and (b) axis y

For purposes of comparison the linear velocity of the
robots has been calculated using the kinematic model (2a),
as can be observed in the Figure 6 the linear velocity
measurements converge to the estimate desired velocities,
then considering this result and the shown in Figure 5 the
control objectives proposed in (1) have been accomplished,
now considering that the robots also maintain the same
attitude Figure 7 the flocking behavior in the sense of the
established for Craig Reynolds is achieved.

The control inputs required to achieve the control objec-
tive are depicted in Figure 8, in the case of the control
input νi (see Figure 8(a)) there is no zero-crossings, there-
for, there are no indeterminations in the control input ωi

(see Figure 8(b)).

5. CONCLUSIONS

The problem of flocking was addressed in this work, to
solve the problem a control law and a distributed observer
were designed employing theory of nonlinear control and
graph. It is important to mention that the controller
proposed does not require linear velocity measurements
to achieve the control objective. The above is very useful
in practice, given that the computational calculations are
reduced and the linear velocity sometime is not available
for feedback. On the other hand, the distributed observer

Fig. 6. Time evolution of velocity measurements of each
robot: (a) axis x and (b) axis y.

Fig. 7. Angular position of each agent

Fig. 8. Control Inputs: (a) magnitude of linear velocity and
(b) angular velocity.

allows emulating the behavior under study in a more
realistic way, since, as mentioned before in real life not
all the agents know the flocking velocity. Employing the
theory of linear control, it was proved that the closed-loop
system is exponentially asymptotically stable. Through
the results shown, we conclude that the controller presents
a good performance. As future research, we will study the
case of obstacle avoidance and attitude estimation.
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tributed integral control of multiple uavs: precise flock-
ing and navigation. IET Control Theory & Applications,
13(13), 2008–2017. doi:https://doi.org/10.1049/iet-
cta.2018.5684.

Scardovi, L., Arcak, M., and Sontang, E. (2010). Synchro-
nization of interconnected systems with applications to
biochemical networks: an input-output approach. IEEE
Transactions on Automatic Control, 55(6), 1367–1379.
doi:10.1109/TAC.2010.2041974.

Shi, H., Wang, L., and Chu, T. (2009). Flocking of
multi-agent systems with a dynamic virtual leader.
International Journal of Control, 82(1), 43–58. doi:
10.1080/00207170801983091.

Zhao, S. and Zelazo, D. (2017). Translational and scaling
formation maneuver control via a bearing-based ap-
proach. IEEE Transactions on Control of Network Sys-
tems, 4(3), 429–438. doi:10.1109/TCNS.2015.2507547.

Zhao, X.W., Guan, Z.H., Li, J., Zhang, X.H., and
Chen, C.Y. (2017). Flocking of multi-agent nonholo-
nomic systems with unknown leader dynamics and
relative measurements. International Journal of Ro-
bust and Nonlinear Control, 27(17), 3685–3702. doi:
https://doi.org/10.1002/rnc.3762.

https://doi.org/10.58571/CNCA.AMCA.2025.064

XX Congreso Latinoamericano de Control Automático (CLCA 2025)
13-17 de Octubre, 2025. Cancún, Quintana Roo, México

Copyright© AMCA, ISSN: 2594-2492
378


