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Abstract: Artificial Potential Fields (APFs) are commonly used to control multi-agent systems
such as drone swarms, enabling behaviors like trajectory tracking, coordination, and collision
avoidance. However, APFs are typically hand-crafted and require extensive tuning, limiting
their adaptability. To address this, we propose an evolutionary strategy based on Genetic
Programming (GP) to automatically synthesize vector-valued controllers that replace traditional
APF components for attraction, synchronization, and repulsion. Controllers are evolved in
a 3D quadrotor simulation with realistic dynamics and evaluated on position and velocity
errors during coordinated trajectory tracking. Results show that the evolved controllers match
or outperform classical APFs, enabling emergent coordination without manual design. This
demonstrates the potential of evolutionary synthesis for scalable, adaptive multi-agent control.

Keywords: Autonomous Mobile Robots, UAVs, Evolutionary Algorithms, Decentralized
Control, Trajectory Tracking and Path Following

1. INTRODUCTION

Coordinating multiple aerial robots is a central challenge
in swarm robotics, with applications in monitoring, agri-
culture, and disaster response (Debie et al. (2023); Arnold
et al. (2018)). Artificial potential fields (APFs) are com-
monly used for decentralized control by encoding attrac-
tive and repulsive forces (Klančar et al. (2022); Sfeir et al.
(2011)). While effective, classical APFs require manual
tuning and suffer from issues like local minima (Kam
(2017)).

To overcome these limitations, prior work has introduced
enhancements such as adaptive fields, velocity alignment,
and formation schemes (see Huang et al. (2019); Selvam
et al. (2021); Fujimori et al. (2014); Handayani et al.
(2015)). However, most rely on fixed structures that limit
adaptability. Genetic programming (GP) offers a flexible
alternative by evolving control laws from simulation or
feedback, as seen in Horváth et al. (2021); Meza-Sánchez
et al. (2019); Neupane and Goodrich (2019); Besada et al.
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(2010); li Su and Wang (2021), though many efforts ignore
physics or constrain the solution space.

We propose a method to evolve interpretable vector-valued
APF controllers using strongly typed GP for quadrotor
swarms. The evolved expressions synthesize attraction and
synchronization terms from kinematic inputs and are eval-
uated in a full 3D simulation with realistic quadrotor
dynamics. Unlike traditional APFs, our approach searches
over symbolic expressions, enabling novel coordination
strategies. Results show improved multi-agent trajectory
tracking and synchronized motion, demonstrating poten-
tial for scalable, adaptive control in aerial swarms.

2. ARTIFICIAL POTENTIAL FIELDS FOR MOBILE
ROBOT CONTROL

Artificial Potential Fields (APFs) are a popular frame-
work for decentralized control in multi-agent and swarm
robotics. Each agent computes its control input as the
sum of virtual forces derived from potential functions:
an attractive force toward the goal, and repulsive forces
to avoid collisions or restricted areas (Khatib (1986)). A
synchronization force can also be included to promote
coherent motion.
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The overall control law for agent i is:

ui = fatt(pi, pg) + frep(pi, pg) + fsync(vi, vg), (1)

where pi, vi are the position and velocity of agent i and
pg and vg are the goal position and velocity.

Attraction Potentials

Common attraction functions include:

• Quadratic: fatt = −ka(pi − pg)

• Conic: fatt = −ka ·
(pi−pg)

∥pi−pg∥+ϵ

• Logarithmic: fatt = −ka(pi − pg) · log(1 + ∥pi −
pg∥ + ϵ)

where pi and pg are the agents and target position
respectively, ka is the attraction gain that dictates how
strong of a pull the agent feels towards the target, and ϵ is
a small positive constant used to prevent division by zero
or the logarithm of zero.

Velocity Synchronization

To ensure smooth group motion, agents can reduce veloc-
ity mismatches:

• Linear damping: fsync = −ks(vi − vg)
• Exponential decay:

fsync = −ks(vi − vg)
(

1 − e−α∥vi−vg∥
)

• Saturation: fsync = −k · clip(vi − vg, −vmax, vmax)

where vi is the agent’s current velocity, and vg is the de-
sired target velocity, the gain ks determines how strongly
the agent aligns its velocity with the target, and α controls
how quickly the alignment force grows with increasing
velocity error. These are widely used in UAV tracking
to improve convergence and minimize overshoot (Bouček
et al. (2024); Zhao et al. (2023)).

Repulsion and Formation Control

Repulsive forces prevent collisions and help maintain for-
mation:

• Linear: frep = kr(pi − pj)

• Inverse-distance: frep =
kr(pi−pj)

d+ϵ

• Planar spacing (flocking-inspired):

frep = kr ·
pi−pj

∥pi−pj∥ (d0 − ∥pi − pj∥)

where kr is a gain and d0 is the desired inter-agent distance
(Olfati-Saber (2006); Ren and Beard (2005)).
frep,z = 0 allows lateral separation without disrupting
vertical coordination.

Despite their simplicity and real-time capabilities, classical
APFs require careful design and tuning. They can suffer
from local minima, oscillations, and poor scalability in
dynamic or dense swarms Rossi et al. (2018); Qin et al.
(2023).

3. EVOLUTIONARY COMPUTING FOR
CONTROLLER DESIGN

Designing control strategies for multi-agent robotic sys-
tems with realistic dynamics and coordination constraints

remains a significant challenge. Evolutionary computing
(EC) offers a powerful alternative by enabling the auto-
matic synthesis of control policies through optimization.
Among EC methods, genetic programming (GP) is partic-
ularly suited for evolving interpretable symbolic expres-
sions ( see Brameier and Banzhaf (2007); Koza (1994)). In
GP, each individual is a tree mapping inputs (Fig. 1) (e.g.,
position or velocity errors) to control outputs, constructed
from predefined primitives (e.g., sum, multiply) and ter-
minals (e.g., constants, random values). A population of
such trees is evaluated using task-specific fitness functions,
and evolved via selection, crossover, and mutation.

Individual Representa on

ep 

tan
-1 

tan
-1 a 

ev 

× 

+ 

tan
-1 (ep)+a(tan  (ev))-1 =

Fig. 1. Example tree representation of an Individual

In swarm and aerial robotics, Rezk et al. (2015) applied
EC to tasks such as obstacle avoidance, flocking, and
coordination Sperati et al. (2008), especially in scenarios
where analytical models are hard to define or manual
tuning is intractable. Recent studies, such as Jones et al.
(2018); Nikolos et al. (2007), have explored EC for evolving
behavior trees, reactive policies, and symbolic controllers
in both simulation and hardware.

In this work, we use GP to evolve artificial potential field
controllers for quadcopters. The evolved expressions oper-
ate directly on vector and scalar inputs (e.g., position and
velocity errors), enabling the discovery of novel, modular
strategies for attraction, repulsion, and synchronization,
promoting interpretability and reuse across tasks.

4. METHODOLOGY

We adopt a hierarchical evolutionary approach using Ge-
netic Programming (GP) to design control functions for
multi-agent quadrotor coordination. The control strategy
is developed in three sequential stages: attraction, syn-
chronization, and formation. Each stage builds upon the
evolved controllers from the previous one, promoting mod-
ular and interpretable behaviors.

4.1 Stage 1: Attraction Function Evolution

In the first stage, we evolve an attraction function to drive
a single agent toward a fixed goal position. The evolved
function fatt maps:

fatt : (ep, ev, vdp, ∥ep∥) → R
3

where ep = pi −pg is the position error between the agent
and the target, ev = vi − vg is the velocity error, vdp is
the desired velocity derivative, and ∥ep∥ is the distance to
the goal.

The fitness function is the average Euclidean position error
over the trajectory:
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Fitnessatt =
1

T

T
∑

t=1

∥p(t) − pgoal(t)∥

The best individual is saved and used in subsequent stages
as a fixed baseline controller.

4.2 Stage 2: Synchronization Function Evolution

In the second stage, we evolve a synchronization function
fsync to minimize inter-agent velocity discrepancies. The
previously evolved attraction function is used without
modification. The input features to the synchronization
function remain the same.

The agents are initialized at different positions, and the
synchronization controller is tasked with reducing their
velocity differences while converging to the same goal. The
fitness function is:

Fitnesssync =
1

T

T
∑

t=1

∥vi(t) − vgoal(t)∥

where vi(t) is the velocity the agent at time t and vgoal is
the target velocity.

4.3 Stage 3: Formation Control via Repulsion

The final stage introduces a repulsion component frep to
maintain a target inter-agent distance and avoid collisions.
The full control law becomes:

ui = fatt + fsync + frep

The repulsion function frep depends on:

• Relative vector to neighbor epij = pi − pj .
• Distance to neighbors ∥epij∥.
• Desired distance between agents d.
• Relative velocity to neighbor evij = vi − vj .

frep : (epij, ∥epij∥ , evij, d) → R
3

The fitness function penalizes deviation from a desired
inter-agent spacing d and proximity violations:

Fitnessform =
1

T

∑

t

∑

i<j

(∥∆ij∥ − d)
2

+ kr I∥∆ij∥<dmin

where ∆ij = pi − pj denotes the relative position between
agents i and j. Here, kr is a penalty coefficient that
amplifies the cost when the distance between agents i and
j falls below a minimum threshold dmin, thus discouraging
collisions. I denotes the indicator function (equal to 1 if
the condition holds and 0 otherwise).

4.4 Evolutionary Setup

All controllers are encoded as typed GP trees using the
DEAP library. The primitive set includes vector opera-
tions, scalar-vector arithmetic, norms, nonlinearities (e.g.,
tanh, log, exp), and ephemeral constants. See Table 1

The evolution parameters are:

Table 1. Primitive set used in Genetic Pro-
gramming

Type Operations

Vector-Vector +, −, ×, ÷
Vector-Scalar vec ± scalar, vec · scalar, vec/scalar

Scalar-Vector scalar ± vec, scalar · vec, scalar/vec

Vector Unary log(x), exp(x), x
2,

√
x

Scalar Unary log(x), exp(x), x2,
√

x, sin(x), cos(x), tanh(x)
Vector Norms ∥x∥, x/∥x∥
Scalar Ops +, −, ×, ÷, |x|, −x
Constants 1.0, −1.0, 0.5, −0.5, π
Ephemerals Random vector, random scalar

• Population size: 100
• Generations: 100
• Selection: Tournament (size 3)
• Crossover: One-point
• Mutation: Uniform on full trees
• Tree depth limit: 12

Agent trajectories are visualized in 3D, enabling qualita-
tive assessment of navigation, synchronization, and forma-
tion behavior.

5. RESULTS

Agents simulation is based on a 6-DOF rigid-body dy-
namic model, including translational and rotational dy-
namics (Mellinger and Kumar, 2011), which is widely used
in quadrotor control literature. Each simulation runs for
5 seconds with a timestep of 10 ms. Fitness values are
computed per stage, and the best individual is stored after
evolution. Individuals are expression trees that combine
vector and scalar operations to define control laws; they
are evolved to minimize a fitness function based on naviga-
tion performance. The simulation begins with the drones
positioned at the following coordinates:

p1(0) =

[

0.5
0.0
0.0

]

, p2(0) =

[

−0.250
0.433
0.0

]

, p3(0) =

[

−0.250
−0.433

0.0

]

These initial positions were chosen to ensure that the
drones are evenly distributed around the origin (0, 0, 0),
forming a symmetric configuration. Constants ka, ks, and
kr were chosen to improve the performance of the desired
behavior.

5.1 Evolved Attraction Controller

The attraction component was evolved using Genetic
Programming (GP) to drive each agent toward a static
target located at (0, 0, 0.5) in 3D space.

Table 2 shows some of the Evolved Attraction Forces
and Mean Position Error (MPE) comparison with the
attraction APF mentioned in Section 2. Lower Mean
Positional Error, the closer the agents reach and remain
in the target position.

The evaluation criterion was the mean positional error
accumulated over the simulation execution. A value above
0.3 indicates, as shown in Fig. 2 and Fig. 3, that the
agents reach the target position, but its movement doest
end at that point. The agents passes the target, and then
they are pulled back. The evolved controller demonstrated
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This will allow us to assess real-world performance under
sensing noise, latency, and thrust limitations. Additional
directions include evolving behaviors in cluttered spaces,
adapting to dynamic obstacles, and combining our ap-
proach with learning-based perception modules.
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