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Abstract: Artificial Potential Fields (APFs) are commonly used to control multi-agent systems
such as drone swarms, enabling behaviors like trajectory tracking, coordination, and collision
avoidance. However, APFs are typically hand-crafted and require extensive tuning, limiting
their adaptability. To address this, we propose an evolutionary strategy based on Genetic
Programming (GP) to automatically synthesize vector-valued controllers that replace traditional
APF components for attraction, synchronization, and repulsion. Controllers are evolved in
a 3D quadrotor simulation with realistic dynamics and evaluated on position and velocity
errors during coordinated trajectory tracking. Results show that the evolved controllers match
or outperform classical APFs, enabling emergent coordination without manual design. This
demonstrates the potential of evolutionary synthesis for scalable, adaptive multi-agent control.

Keywords: Autonomous Mobile Robots, UAVs, Evolutionary Algorithms, Decentralized
Control, Trajectory Tracking and Path Following

1. INTRODUCTION

Coordinating multiple aerial robots is a central challenge
in swarm robotics, with applications in monitoring, agri-
culture, and disaster response (Debie et al. (2023); Arnold
et al. (2018)). Artificial potential fields (APFs) are com-
monly used for decentralized control by encoding attrac-
tive and repulsive forces (Klancar et al. (2022); Sfeir et al.
(2011)). While effective, classical APFs require manual
tuning and suffer from issues like local minima (Kam
(2017)).

To overcome these limitations, prior work has introduced
enhancements such as adaptive fields, velocity alignment,
and formation schemes (see Huang et al. (2019); Selvam
et al. (2021); Fujimori et al. (2014); Handayani et al.
(2015)). However, most rely on fixed structures that limit
adaptability. Genetic programming (GP) offers a flexible
alternative by evolving control laws from simulation or
feedback, as seen in Horvéth et al. (2021); Meza-Sénchez
et al. (2019); Neupane and Goodrich (2019); Besada et al.
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(2010); li Su and Wang (2021), though many efforts ignore
physics or constrain the solution space.

We propose a method to evolve interpretable vector-valued
APF controllers using strongly typed GP for quadrotor
swarms. The evolved expressions synthesize attraction and
synchronization terms from kinematic inputs and are eval-
uated in a full 3D simulation with realistic quadrotor
dynamics. Unlike traditional APFs, our approach searches
over symbolic expressions, enabling novel coordination
strategies. Results show improved multi-agent trajectory
tracking and synchronized motion, demonstrating poten-
tial for scalable, adaptive control in aerial swarms.

2. ARTIFICIAL POTENTIAL FIELDS FOR MOBILE
ROBOT CONTROL

Artificial Potential Fields (APFs) are a popular frame-
work for decentralized control in multi-agent and swarm
robotics. Each agent computes its control input as the
sum of virtual forces derived from potential functions:
an attractive force toward the goal, and repulsive forces
to avoid collisions or restricted areas (Khatib (1986)). A
synchronization force can also be included to promote
coherent motion.
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The overall control law for agent ¢ is:

u; = att(piv pg) + frep(pia pg) + fsync(vi7 Vg)7 (1)
where p;, v; are the position and velocity of agent i and
pgy and v, are the goal position and velocity.

Attraction Potentials

Common attraction functions include:

o Quadratic: f,i, = —k,(p; — Py)
o Conic: fop = —k, - %
o Logarithmic: f,;v = —ko(p; — pg) - log(1 + |lp; —

Pg” +€)

where p; and p, are the agents and target position
respectively, k, is the attraction gain that dictates how
strong of a pull the agent feels towards the target, and € is
a small positive constant used to prevent division by zero
or the logarithm of zero.

Velocity Synchronization

To ensure smooth group motion, agents can reduce veloc-
ity mismatches:

e Linear damping: f,,,. =

e Exponential decay:
foyne = —ks(vi — vg) (1 — eellvi—vgll

e Saturation: fy,,. = —k - clip(v; — Vg, —Umax, Umax)

—ks(vi —vg)

where v; is the agent’s current velocity, and v, is the de-
sired target velocity, the gain k; determines how strongly
the agent aligns its velocity with the target, and « controls
how quickly the alignment force grows with increasing
velocity error. These are widely used in UAV tracking
to improve convergence and minimize overshoot (Boudek
et al. (2024); Zhao et al. (2023)).

Repulsion and Formation Control

Repulsive forces prevent collisions and help maintain for-
mation:

e Linear: f,., = k.(p; — p;)

. kr(Pi—Pj
e Inverse-distance: f, = %

e Planar spacing (flocking-inspired):
frep = ki ooy (do — [IPi — pjlI)
where k, is a gain and dj is the desired inter-agent distance
(Olfati-Saber (2006); Ren and Beard (2005)).
frep,. = 0 allows lateral separation without disrupting
vertical coordination.

Despite their simplicity and real-time capabilities, classical
APFs require careful design and tuning. They can suffer
from local minima, oscillations, and poor scalability in
dynamic or dense swarms Rossi et al. (2018); Qin et al.
(2023).

3. EVOLUTIONARY COMPUTING FOR
CONTROLLER DESIGN

Designing control strategies for multi-agent robotic sys-
tems with realistic dynamics and coordination constraints

remains a significant challenge. Fvolutionary computing
(EC) offers a powerful alternative by enabling the auto-
matic synthesis of control policies through optimization.
Among EC methods, genetic programming (GP) is partic-
ularly suited for evolving interpretable symbolic expres-
sions ( see Brameier and Banzhaf (2007); Koza (1994)). In
GP, each individual is a tree mapping inputs (Fig. 1) (e.g.,
position or velocity errors) to control outputs, constructed
from predefined primitives (e.g., sum, multiply) and ter-
minals (e.g., constants, random values). A population of
such trees is evaluated using task-specific fitness functions,
and evolved via selection, crossover, and mutation.

Individual Representation

= tan?(ep)+a(tan’(ev))

Fig. 1. Example tree representation of an Individual

In swarm and aerial robotics, Rezk et al. (2015) applied
EC to tasks such as obstacle avoidance, flocking, and
coordination Sperati et al. (2008), especially in scenarios
where analytical models are hard to define or manual
tuning is intractable. Recent studies, such as Jones et al.
(2018); Nikolos et al. (2007), have explored EC for evolving
behavior trees, reactive policies, and symbolic controllers
in both simulation and hardware.

In this work, we use GP to evolve artificial potential field
controllers for quadcopters. The evolved expressions oper-
ate directly on vector and scalar inputs (e.g., position and
velocity errors), enabling the discovery of novel, modular
strategies for attraction, repulsion, and synchronization,
promoting interpretability and reuse across tasks.

4. METHODOLOGY

We adopt a hierarchical evolutionary approach using Ge-
netic Programming (GP) to design control functions for
multi-agent quadrotor coordination. The control strategy
is developed in three sequential stages: attraction, syn-
chronization, and formation. Each stage builds upon the
evolved controllers from the previous one, promoting mod-
ular and interpretable behaviors.

4.1 Stage 1: Attraction Function FEvolution

In the first stage, we evolve an attraction function to drive
a single agent toward a fixed goal position. The evolved
function f,; maps:

faee (epvemvdpv ”ep”) — RS

where e, = p; — pgy is the position error between the agent
and the target, e, = v; — v, is the velocity error, v, is
the desired velocity derivative, and ||e,|| is the distance to
the goal.

The fitness function is the average Euclidean position error
over the trajectory:
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T
. 1
Fitnessar = ; [P(t) = Pgoar (1)

The best individual is saved and used in subsequent stages
as a fixed baseline controller.

4.2 Stage 2: Synchronization Function Fvolution

In the second stage, we evolve a synchronization function
fiync to minimize inter-agent velocity discrepancies. The
previously evolved attraction function is used without
modification. The input features to the synchronization
function remain the same.

The agents are initialized at different positions, and the
synchronization controller is tasked with reducing their
velocity differences while converging to the same goal. The
fitness function is:

T
. 1
Fitnessgync = T Z [|Vi(t) — Vgoal (2) ||
t=1

where v;(t) is the velocity the agent at time ¢ and vgoa is
the target velocity.

4.8 Stage 3: Formation Control via Repulsion

The final stage introduces a repulsion component f;., to
maintain a target inter-agent distance and avoid collisions.
The full control law becomes:

u; = fore + fs.ync + frcp
The repulsion function f.., depends on:

Relative vector to neighbor epy; = p; — p;.
Distance to neighbors |lepj;]|.

Desired distance between agents d.

Relative velocity to neighbor evy; = v; — v;.

foep : (epyj, |lepyj|, evyj, d) — R?

The fitness function penalizes deviation from a desired
inter-agent spacing d and proximity violations:

1
Fitnesstorm = 7 SO UAG] - d)? + ke Lja <
t i<y
where A;; = p; — p; denotes the relative position between
agents ¢ and j. Here, k, is a penalty coefficient that
amplifies the cost when the distance between agents i and
j falls below a minimum threshold dy,in, thus discouraging
collisions. I denotes the indicator function (equal to 1 if
the condition holds and 0 otherwise).

4.4 Evolutionary Setup

All controllers are encoded as typed GP trees using the
DEAP library. The primitive set includes vector opera-
tions, scalar-vector arithmetic, norms, nonlinearities (e.g.,
tanh, log, exp), and ephemeral constants. See Table 1

The evolution parameters are:

Table 1. Primitive set used in Genetic Pro-
gramming

Operations

Jrv — X, =+

vec * scalar, vec - scalar, vec/scalar
scalar + vec, scalar - vec, scalar/vec
log(z), exp(x), «°, V&

log(x), exp(x), 2, /x, sin(x), cos(z), tanh(z)

Type
Vector-Vector
Vector-Scalar
Scalar-Vector
Vector Unary
Scalar Unary

Vector Norms ||z, =/||z||

Scalar Ops +, -, X, =, |z], —z

Constants 1.0, —1.0, 0.5, —0.5, 7
Ephemerals Random vector, random scalar
e Population size: 100

e Generations: 100

e Selection: Tournament (size 3)

e Crossover: One-point

e Mutation: Uniform on full trees

e Tree depth limit: 12

Agent trajectories are visualized in 3D, enabling qualita-
tive assessment of navigation, synchronization, and forma-
tion behavior.

5. RESULTS

Agents simulation is based on a 6-DOF rigid-body dy-
namic model, including translational and rotational dy-
namics (Mellinger and Kumar, 2011), which is widely used
in quadrotor control literature. Each simulation runs for
5 seconds with a timestep of 10 ms. Fitness values are
computed per stage, and the best individual is stored after
evolution. Individuals are expression trees that combine
vector and scalar operations to define control laws; they
are evolved to minimize a fitness function based on naviga-
tion performance. The simulation begins with the drones
positioned at the following coordinates:

0.5 —0.250 —0.250
p1(0) = [0.0] . p2(0) = [0.433] ., p3(0) = l—o.433]
0.0 0.0 0.0

These initial positions were chosen to ensure that the
drones are evenly distributed around the origin (0,0, 0),
forming a symmetric configuration. Constants kg, ks, and
k, were chosen to improve the performance of the desired
behavior.

5.1 Evolved Attraction Controller

The attraction component was evolved using Genetic
Programming (GP) to drive each agent toward a static
target located at (0,0,0.5) in 3D space.

Table 2 shows some of the Evolved Attraction Forces
and Mean Position Error (MPE) comparison with the
attraction APF mentioned in Section 2. Lower Mean
Positional Error, the closer the agents reach and remain
in the target position.

The evaluation criterion was the mean positional error
accumulated over the simulation execution. A value above
0.3 indicates, as shown in Fig. 2 and Fig. 3, that the
agents reach the target position, but its movement doest
end at that point. The agents passes the target, and then
they are pulled back. The evolved controller demonstrated
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Table 2. Attraction controller comparison
(lower is better).

Controller MPE
Evolved Individual 1
log (tanh(7)) - ep 0.4200
Evolved Individual 2
tanh (sin(|lep|])) - [(sin(|lep]) — [lepl) - ep] ~ 0.4546
Evolved Individual 3
—0.01143 - ||ep|| - €p 0.3912
Quadratic (kq = 0.2) 0.4746
Conic (kq = 0.2) 0.5469
Logarithmic (kq = 0.2) 0.4934
Evolved Attraction Trajectory
—— Drone 1
Drone 2
—— Drone 3
® Goal 1.0
0.8
06 E
N

Fig. 2. Evolved Individual 1 Attraction Trajectory

Quadratic Attraction Trajectory

—— Drone 1

Drone 2

—— Drone 3
® Goal 1.0
0.8

0.6

Z (m)

Fig. 3. Quadratic Attraction Trajectory

superior performance when compared to classical potential
field formulations. The evolved controller exhibited a more
direct and stable convergence to the target, with reduced
overshoot and trajectory oscillations, as evident from both
the fitness metrics and trajectory.

5.2 Fvolved Synchronization Term

To promote coherent group behavior, a synchronization
term was evolved that operates on the relative error (e,),
velocity error (e,), and desired velocity (vap). When com-
bined with the evolved or benchmark attraction term, this
component significantly reduced inter-agent velocity dis-
crepancies. The fitness function was based on the average
magnitude of velocity errors over time (Mean Velocity Er-

ror, MVE). The resulting controllers produced trajectories
in which agents maintained temporal coherence during
movement, facilitating coordinated navigation toward the
target location as shown in Fig. 4.

Table 3. Synchronization controller compari-
son (lower is better).

Controller MVE
Evolved Individual 1

—0.5 - (4dep + €y) 0.0290
Evolved Individual 2

—05 0.0358
Jveos

Vdp + ey

Evolved Individual 3

—0.5 - (ey + 4ep) 0.0379
Linear Damping (ks = 0.2) 0.0425
Exponential Decay (ks = 0.2) 0.0455
Saturated Alignment (ks =0.2) 0.0471

Evolved Synchronization Trajectory

—— Drone 1

Drone 2

—— Drone 3
® Goal 1.0

0.8

Fig. 4. Evolved Individual 1 Synchronization Trajectory

5.8 Formation Maintenance via Fvolved Repulsion

Formation control was achieved by evolving a repulsion
term to regulate inter-agent distances. The fitness function
penalized both excessive proximity (collision risk at 0.2 m)
and deviation from a desired target formation radius (set
at 0.3 m). The repulsion controllers were trained using
GP with inputs including pairwise distance vectors and
velocity information, trying to maintain the Mean Forma-
tion Error (MFE) as close to 0 as possible. Simulation
results presented in Table 4 and in Fig. 5 show that
the evolved term maintained agents within the desired
formation envelope while enabling progression toward the
global objective. A negative MFE means the drone has
moved inside the desired formation radius, being closer to
the target than intended. The emergent behavior exhibited
consistent spatial distribution with no observed collisions
throughout the trials.

5.4 Integrated Multi-Agent Behavior (Trajectory)

To assess generalization and robustness, the evolved at-
traction, synchronization, and repulsion controllers were
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Table 4. Formation control (repulsion) perfor-
mance (lower is better).

Controller MFE
Evolved Individual 1
—ey - tanh(vgp) -0.0260
Evolved Individual 2
(52)  (Vap — 0.5) - vap -0.0870
Evolved Individual 3
e, - sin(—0.3) -0.0271
Planar distance-based repulsion (k, =0.2)  0.1789
Linear (kr = 0.1) -0.1619
Inverse Distance (k, = 0.1) -0.1574
Evolved Repulsion Trajectory
—— Drone 1
Drone 2
—— Drone 3 .6
® Goal 5
04 E
03N

4
-0.2
0.0 0.2

X(my ~= 04 06

Fig. 5. Evolved Individual 1 Repulsion Trajectory

evaluated in a scenario involving a moving target. Specif-
ically, the target followed a circular trajectory in the
horizontal plane, centered at (0,0,0.5) with a radius of
0.5 meters and angular velocity w = Z7, completing one
revolution over the course of the simulation.

Under this dynamic reference, agents were initialized at
random positions and tasked with tracking the moving
target while maintaining inter-agent spacing and velocity
synchronization. The individuals used in this evaluation,
as well as the classical APF functions selected for compar-
ison, are shown in Table 5.

w; = L4 + frep + fsynca (2)
Table 5. Function Selection.

APF Controller

fatt: Quadratic Attraction

fsync: Linear Damping

frep: Planar distance-based repulsion

Evolved Controller
fatt: log (tanh(7)) - ep
fsync: —0.5 - (dep + €)
frep :—ey - tanh(vgp)

Table 6. Trajectory performance comparison
(lower is better).

Controller MPE MFE
Evolved Controller  0.0245 -0.0260
APF Controller 0.0814 0.087

The results shown in Table 6 demonstrated that the con-
trollers generalized beyond static conditions: all agents
successfully followed the circular trajectory with minimal
positional lag and velocity mismatch. The repulsion term
effectively preserved inter-agent distances, preventing col-
lisions despite continuous reorientation and acceleration.
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Evolved Trajectory Individual

—— Drone 1

Drone 2
—— Drone 3 1.0
——- Goal Trajectory

Fig. 6. Evolved Trajectory Individual

Benchmark Repulsion Trajectories

—— Drone 1

Drone 2
—— Drone 3 1.0
——- Goal Trajectory

Fig. 7. APF Trajectory Individual

The quadcopters demonstrated coordinated and coherent
motion along the trajectory of the moving target, main-
taining a loose yet consistent circular formation around it
as shown in Fig 6. The MPE and MFE across multiple
runs remained low, indicating reliable performance under
dynamic conditions. These findings highlight the capacity
of the evolved modular potential field components to gen-
eralize effectively to time-varying objectives, underscoring
their suitability for decentralized control in multi-agent
systems operating in non-static environments.

6. CONCLUSION

This paper presented an evolutionary framework for syn-
thesizing artificial potential field controllers for swarm co-
ordination in aerial robotics. Using strongly typed genetic
programming, we evolved interpretable, vector-valued con-
trol laws for attraction, repulsion, and synchronization,
which operate directly on kinematic variables such as
position and velocity errors. These controllers were eval-
uated in a realistic simulation of quadrotor dynamics,
demonstrating smooth convergence, inter-agent coordina-
tion, and robustness to initial conditions.

In future work, we aim to validate the evolved controllers
on real hardware using the Crazyflie platform. We plan to
transfer the evolved expressions to onboard control code
and deploy them in an indoor motion capture environment.
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This will allow us to assess real-world performance under
sensing noise, latency, and thrust limitations. Additional
directions include evolving behaviors in cluttered spaces,
adapting to dynamic obstacles, and combining our ap-
proach with learning-based perception modules.
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