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Resumen: This paper investigates the design of an observer for linear systems with commensu-
rate delays affected by bounded unknown inputs, assuming that the system is observable in the
presence of such inputs. The observer proposed by Hou is employed, as well as information from
the system output and its derivatives, which are approximated using the high-order Levant’s
differenciator, to enable finite-time reconstruction of the system trajectories.
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1. INTRODUCCIÓN

La reconstrucción de las trayectorias del sistema es un área
de estudio de suma importancia en el control automático,
sobre todo en la implementación de leyes de control. En
particular, en sistemas con retardos conmensurados, en
trabajos como el de Hautus (1983), Fattouh et al. (1999),
Conte et al. (2003), Hou et al. (2002), Bejarano and Zheng
(2014), se ha estudiado el concepto de observabilidad aśı
como las condiciones para el diseño de observadores, tanto
con entradas desconocidas como sin ellas.
Como ejemplos, para el caso sin entradas desconocidas, se
tiene el observador presentado en el trabajo de Hou et al.
(2002), en donde, utilizando la matriz de observabilidad y
un cambio de coordenadas, es posible compensar los térmi-
nos del retardo mediante una retroalimentación de salida.
Para sistemas con entradas desconocidas, el trabajo de
Zheng et al. (2015), propone, mediante la descomposición
del sistema y un cambio de coordenadas, un observador el
cual debe satisfacer la condición de observabilidad, además
de que la salida debe tener grado relativo 1 con respecto
a las perturbaciones. Dicha condición puede ser bastante
restrictiva, por lo que Trentelman et al. (2001) buscan
diseñar un observador para sistemas que no cumplan esta
condición de acoplamiento.
El verificar la condición de observabilidad, utilizando su
matriz correspondiente, no es condición suficiente para
reconstruir el estado, debido a las entradas desconocidas.
Por lo que en Bejarano and Zheng (2014), se propone un
algoritmo del tipo de Molinari (1976), mediante el cual se
puede verificar la condición de observabilidad con entradas
desconocidas para sistemas con retardos conmensurados.

También se muestra cómo realizar la reconstrucción de las
trayectorias del estado utilizando información de la salida
y sus derivadas.
Aunque, la estimación de las derivadas es un obstáculo,
este se puede solucionar utilizando la metodoloǵıa pre-
sentada en Levant (2003). En trabajos como los de Frid-
man et al. (2007), Bejarano et al. (2009), Bejarano and
Fridman (2010), se ha estudiado la estimación del estado
para sistemas sin retardos y con entradas desconocidas en
donde se han utilizando técnicas de modos deslizantes de
alto orden para calcular las derivadas y poder realizar la
reconstrucción de las trayectorias en tiempo finito.
La siguiente notación será utilizada: R es el campo de
números reales, N es el conjunto de números enteros posi-
tivos, R[δ] es el anillo de polinomios sobre el campo R cuya
indeterminada es δ, Rq×r[δ] son matrices de dimensión q×r
cuyos elementos son polinomios, Inv[P (δ)] hace referencia
al conjunto de factores invariantes de la matriz polinomial
P (δ).
El art́ıculo se estructura de la siguiente forma, en la
Sección 2 se presenta el planteamiento del problema, aśı
como el tipo de sistemas a considerar. En la Sección 3, se
presenta la forma general para realizar la reconstrucción
de las trayectorias. En la Sección 4 se muestran los resul-
tados obtenidos, en la primer parte mostrando el análisis
del sistema transformado, y en la segunda parte con la
reconstrucción de las trayectorias. Un ejemplo ilustrativo
es presentado en la Sección 5 y, finalmente, se presentan
las conclusiones en la Sección 6.
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2. PLANTEAMIENTO DEL PROBLEMA Y SISTEMA
A CONSIDERAR

Los sistemas lineales con retardos conmensurados presen-
tan la siguiente estructura

ẋ(t) =

na∑
j=0

Ajx(t− jh) +

nd∑
j=0

Djw(t− jh)

y(t) =

nc∑
j=0

Cjx(t− jh)

(1)

En donde x(t) ∈ Rnx , y(t) ∈ Rp y w(t) ∈ Rm son el vector
de las trayectorias del estado, vector de salida y el vector
de entradas desconocidas respectivamente; na, nc, nd ≥ 0.
La condición inicial del sistema se encuentra dada por
la función continua a trozos ϕ(t) : [−ηh, 0] → Rnx , con
η = max{na, nc, nd}.
Para facilitar el análisis, se utilizará el operador del retardo
δ : x(t) → x(t − h), con el cual el sistema (1) puede
representarse con la siguiente estructura

ẋ(t) = A(δ)x(t) +D(δ)w(t)
y(t) = C(δ)x(t)

(2)

Las matrices A(δ) ∈ Rnx×nx [δ], C(δ) ∈ Rp×nx [δ] y D(δ) ∈
Rnx×m[δ] pertenecen al anillo polinomial R[δ].
El objetivo es realizar la reconstrucción de las trayectorias
del estado en tiempo finito, aún en presencia de entradas
desconocidas y utilizando sólo información de la salida.

3. PRELIMINARES

Para sistemas de la forma (2), la condición de observabili-
dad con entradas desconocidas se puede verificar mediante
el algoritmo tipo Molinari (1976), presentado en Bejarano
and Zheng (2014). El algoritmo se modificó ligeramente
debido a que en el presente trabajo no se consideran
perturbaciones en la salida, además se realizó un arreglo
distinto de las matrices, como se muestra a continuación.
Por definición

∆1(δ) = C(δ) = N1(δ). (3)

En el primer paso se tiene

S1(δ) = [ ∆1(δ)D(δ) ] ,[
G2(δ) F2(δ)
∆2(δ) 0

]
= T1(δ) [ ∆1(δ)A(δ) ∆1(δ)D(δ) ] ,

N2(δ) =

[
N1(δ)
∆2(δ)

]
.

(4)

Para los siguientes pasos el algoritmo es

Sk(δ) =

[
Fk(δ)

∆k(δ)D(δ)

]
, k ≥ 2,[

Gk+1(δ) Fk+1(δ)
∆k+1(δ) 0

]
= Tk(δ)

[
Gk(δ) Fk(δ)

∆k(δ)A(δ) ∆k(δ)D(δ)

]
,

Nk+1(δ) =

[
Nk(δ)

∆k+1(δ)

]
.

(5)
Donde Tk(δ), k ≥ 1, son matrices unimodulares que
transforman a Sk(δ) a su forma normal de Hermite,
Kailath (1980).
En Bejarano and Zheng (2014) se demostró que existe
un menor entero positivo k∗ ∈ R tal que Inv[Nk∗(δ)] =
Inv[Nk∗+i(δ)], i ≥ 1, los cuales son independientes de la
elección de Tk(δ), es decir, dado que las matrices Tk(δ) no

son únicas, las matrices Nk∗(δ) y Nk∗+i(δ) tampoco son
únicas, sin embargo, sus factores invariantes no se alteran.
El algoritmo (4)-(5) se resume de la siguiente forma. Dado
que y(t) está libre de perturbaciones es posible derivarla,
sin embargo, no es posible derivar por segunda vez debido
a que aparece el efecto de la perturbación en ẏ(t). Por
lo que la derivada se separa en una parte “sucia”, que
contiene el efecto de las entradas desconocidas, y una
“limpia”, la cual si es posible derivar. Concatenando las
señales libres de perturbaciones se verifica la condición de
observabilidad; si aún no se tiene suficiente información
para la reconstrucción de las trayectorias, se utiliza la
última señal “sucia” y la derivada de la última parte
“limpia” para obtener nueva información.
La reconstrucción de los estados se puede realizar mediante
la concatenación de todas las señales “limpias”, es decir

y(t)

ŷ
(2)
2 (t)

...

ŷ
(2)
k∗ (t)

 =


∆1(δ)
∆2(δ)

...
∆k∗(δ)

x(t),

Y(t) = Nk∗(δ)x(t).

(6)

El vector Y(t) contiene información de la salida y combina-

ciones lineales de sus derivadas. El término ŷ
(2)
k representa

la parte “limpia”de la derivada en el paso k.
Para el cálculo de las derivadas, se tiene el diferenciador
propuesto por Levant (2003), no obstante, su implemen-
tación requiere que la señal a diferenciar se encuentre
acotada, lo cual no siempre es posible si el sistema es
inestable.
Por lo tanto, se propone utilizar un observador con el cual
obtener un error de salida acotado si la entrada descono-
cida se encuentra acotada

ye(t) = y(t)− ŷ(t). (7)

En donde ŷ(t) representa la salida obtenida al utilizar el
observador.
Suposición 1. Se considera que la entrada desconocida w(t)
se encuentra acotada, ||w(t)|| ≤ w+.
Suposición 2. La matriz Nk∗(δ) es unimodular por colum-
nas, es decir, tiene nx factores invariantes constantes.
En Bejarano and Zheng (2014) también se probó que si
se satisface la Suposición 2, el sistema es fuertemente
observable.

4. RESULTADOS PRINCIPALES

4.1 Transformación del sistema

En Hou et al. (2002) se propone un observador tipo Luen-
berger para sistemas observables sin entradas desconocidas
mediante el siguiente cambio de coordenadas

ξ(t) = P (δ)x(t). (8)

Donde ξ(t) ∈ Rnξ , y P (δ) ∈ Rnξ×nx [δ] es una matriz
unimodular por columnas. Las matrices satisfacen las
siguientes relaciones

P (δ)A(δ) = A0P (δ) + E(δ)C0P (δ),
P (δ)D(δ) = D̄(δ),

C(δ) = C0P (δ).
(9)

En donde (A0, C0) son matrices constantes y observables.
Aplicando el cambio de coordenadas (8) al sistema (2)
obtenemos

https://doi.org/10.58571/CNCA.AMCA.2025.023

XX Congreso Latinoamericano de Control Automático (CLCA 2025)
13-17 de Octubre, 2025. Cancún, Quintana Roo, México

Copyright© AMCA, ISSN: 2594-2492
133



ξ̇(t) = A0ξ(t) + E(δ)y(t) + D̄(δ)w(t). (10)

El observador propuesto por Hou et al. (2002), donde
w(t) = 0, tiene la siguiente estructura

˙̂
ξ(t) = A0ξ̂(t) + E(δ)y(t) + L

(
y(t)− C0ξ̂(t)

)
. (11)

Utilizando el observador (11) y definiendo el error

e(t) = ξ(t)− ξ̂(t). (12)

con e(t) ∈ Rnξ , es posible obtener el siguiente sistema
dinámico del error

ė(t) = Āe(t) + D̄(δ)w(t),
ye(t) = C̄e(t).

(13)

Donde Ā = A0 − LC0, C̄ = C0 y ye(t) ∈ Rp es el error de
salidas del sistema (1) y (11). La matriz L se elige tal que
(A0 − LC0) sea una matriz Hurwitz.

4.2 Reconstrucción de las trayectorias

La salida del sistema (13) es una señal acotada por la
Suposición 1.
Realizando el procedimiento para la reconstrucción de e(t)
siguiendo el algoritmo (4)-(5), es posible tener una repre-
sentación como en (6) y, de Bejarano and Zheng (2021), es
posible concluir que las trayectorias del sistema se pueden
estimar a través de combinaciones de las derivadas de y(t).

Lemma 1. Es posible representar el vector Y(t) en (6)
como

Y(t) = Ωk∗(δ,D)y(t). (14)

Donde Ωk∗(δ,D) es una matriz polinomial de operadores
δ y D que representa al operador derivada.

Proof. Por definición se tiene

y(t) = ∆1(δ)x(t).

Al derivar se tiene
d

dt
y(t) = DIpy(t).

Sea J1(δ,D) = DIp, con Ip la matriz identidad de dimen-
sión p. Para alguna matriz unimodular T1(δ) tenemos

ŷ2(t) =

[
ŷ

(1)
2 (t)

ŷ
(2)
2 (t)

]
= T1(δ)J1(δ,D)y(t),

ŷ
(2)
2 (t) = T

(2)
1 (δ)J1(δ,D)y(t),[

y(t)

ŷ
(2)
2

]
=

[
Ip

T
(2)
1 (δ)J1(δ,D)

]
y(t).

En donde T
(2)
1 (δ) representa las filas de T1(δ) tal que

T
(2)
1 (δ) [ ∆1(δ)D(δ) ] = 0.

De ŷ2(t) sólo es posible derivar ŷ
(2)
2 , por lo que, concate-

nando ŷ
(1)
2 (t) y Dŷ(2)

2 (t) y, para alguna T2(δ), se tendŕıa

ŷ3(t) =

[
ŷ

(1)
3 (t)

ŷ
(2)
3 (t)

]
= T2(δ)

[
I 0
0 D∆2(δ)

]
T1(δ)J1(δ,D)y(t),

ŷ
(2)
3 (t) = T

(2)
2 (δ)J2(δ,D)y(t), y(t)

ŷ
(2)
2

ŷ
(2)
3

 =

 Ip
T

(2)
1 (δ)J1(δ,D)

T
(2)
2 (δ)J2(δ,D)

 y(t).

Donde J2(δ,D) =

[
I 0
0 D∆2(δ)

]
T1(δ)J1(δ,D). Continuando

de esta forma se tendŕıa que


y(t)

ŷ
(2)
2

ŷ
(2)
3
...

ŷ
(2)
k∗

 =


Ip

T
(2)
1 (δ)J1(δ,D)

T
(2)
2 (δ)J2(δ,D)

...

T
(2)
k∗−1(δ)Jk∗−1(δ,D)

 y(t),

Y(t) = Ωk∗(δ,D)y(t).

En donde Jk∗(δ,D) =

[
I 0
0 D∆k∗ (δ)

]
Tk∗−1(δ)Jk∗−1(δ,D).

2

Por lo tanto, para el sistema (13), se realiza la reconstruc-
ción de las trayectorias del error mediante el algoritmo
(4)-(5) obteniendo

Ωl∗(δ,D)ye(t) = N̄l∗(δ)e(t). (15)

Sustituyendo (12) en (15) y regresando a las coordenadas
originales tenemos

N̄l∗(δ)P (δ)x(t) = Ωl∗(δ,D)ye(t) + N̄l∗(δ)ξ̂(t). (16)

Lemma 2. Asumiendo que la Suposición 1 se satisface,
entonces N̄l∗(δ)P (δ) también tiene nx factores invariantes
constantes.

La demostración se puede consultar en el Apéndice.
Por lo tanto, x(t) se puede expresar mediante la siguiente
igualdad

x(t) =
(
N̄l∗(δ)P (δ)

)+
Ω(δ,D)ye(t)

+
(
N̄l∗(δ)P (δ)

)+
N̄l∗(δ)ξ̂(t).

(17)

Donde se satisface
(
N̄l∗(δ)P (δ)

)+
(N̄l∗(δ)P (δ)) = Inx .

En la primer parte de (17) aparecerán combinaciones li-
neales de las derivadas del error de salida ye(t), es reco-
mendable primero realizar la multiplicación de matrices y
posteriormente construir las señales a derivar.
Para el cálculo de las derivadas, se utilizará el diferenciador
de Levant de alto orden presentado en Levant (2003)

ż0(t) = v0(t),

v0(t) = −λ0|z0(t)− f(t)|r/(r+1)sign(z0(t)− f(t)) + z1(t),
ż1(t) = v1(t),

v1(t) = −λ1|z1(t)− v0(t)|(r−1)/rsign(z1(t)− v0(t)) + z2(t),
...

żr(t) = −λrsign(zr(t)− vr−1(t)).
(18)

En donde f(t) representa la función a diferenciar, r es el
grado de la derivada a calcular, sign(·) es la función signo
y λi, 0 ≤ i ≤ r, es constante.

5. EJEMPLO ILUSTRATIVO

Considere el sistema de estructura (2) con las siguientes
matrices

A(δ) =

[
δ 1 0
0 0 1
−3 0 2− δ

]
, D(δ) =

[
0
1
δ

]
,

C(δ) =

[
1 0 δ
0 0 1

]
.

Verificando la condición de observabilidad con el algoritmo
(4), tenemos que
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N2(δ) =

[
1 0 δ
0 0 1
δ 1 0

]
, Inv[N2(δ)] = {1, 1, 1}.

El sistema es observable, sin embargo, no satisface la
condición para el diseño de un observador tipo Luenberger

{δ}︸︷︷︸
Inv[C(δ)D(δ)]

6= {1}.︸︷︷︸
Inv[D(δ)]

Se utiliza el cambio de coordenadas (8) y se diseña el
observador (11) con las siguientes matrices

P (δ) =


1 0 δ
0 0 1

0 1
δ2 − 4δ

2

0 0
δ − 5

2

 , L =

 7 0
0 3
12 0
0 2

 ,

E(δ) =



−2δ
δ2 + 8δ

2

−3
3δ + 9

2
12δ − 3δ2

2
δ3 − 3δ2 − 4δ + 1

15− 3δ

2
δ2 − 4δ − 5


.

Realizando el análisis de la dinámica del error definida en
(13), se obtuvo

N̄3(δ) =


1 0 0 0
0 1 0 0
−7 3δ 1 −δ

−37δ
35δ2 − 6

2
7δ

2− 13δ2

2

 ,

Ω3(δ,D) =


1 0
0 1
D −δD
−δD2 δ2D2 +

1

2
D
(
2− 7δ2

)
 .

La reconstrucción de las trayectorias usando (17) es

x(t) =

 1 −δ
D + 7 −δD − 7δ

2
0 1

 ye(t) +

 1 −δ 0 0

0 −δ
2

1 −δ
0 1 0 0

 ξ̂(t).
Representado como función del tiempo tenemos

x(t) =

 ye1(t)− ye2(t− h)

7ye1 + ẏe1(t)− 7

2
ye2(t− h)− ẏe2(t− h)

ye2(t)


+

 ξ̂1(t)− ξ̂2(t− h)

−1

2
ξ̂2(t− h) + ξ̂3(t)− ξ̂4(t− h)

ξ̂2(t)

 .
Utilizando el diferenciador mostrado en (18) para el cálcu-
lo de la derivadas, se tiene que la función a derivar es

f(t) = ye1(t)− ye2(t− h).

Por lo que los estados estimados son

x̂(t) =

 f(t)

7ye1 −
7

2
ye2(t− h) + z1(t)

ye2(t)


+

 ξ̂1(t)− ξ̂2(t− h)

−1

2
ξ̂2(t− h) + ξ̂3(t)− ξ̂4(t− h)

ξ̂2(t)

 .

Figura 1. Trayectorias del sistema.

Figura 2. Error usando el observador de Hou x(t)− ξ̂(t).

Figura 3. Error usando el diferenciador de Levant x(t) −
x̂(t).

En donde z1(t) es la salida del diferenciador y, después de

cierto tiempo, z1(t)→ ḟ(t).
Para efectos de simulación, se consideró un retardo de
h = 0.1s y perturbación w(t) = 5cos(t)− 1.5sin(5t).

En la Fig. 1, se puede observar que el sistema es inestable,
por lo que tratar de reconstruir las trayectorias utilizando
sólo información de la salida y sus derivadas no seŕıa
posible.

Sin embargo, al utilizar primero un observador para apro-
ximar los estados a una región acotada, como se muestra
en la Fig. 2, es posible utilizar está señal para estimar los
estados en tiempo finito como se muestra en la Fig. 3, y
por lo tanto x̂(t)→ x(t) en tiempo finito.

6. CONCLUSIONES

Se ha propuesto un observador para sistemas con retardos
conmensurados y entradas desconocidas acotadas, rela-
jando las condiciones existentes ya que sólo se supone
que el sistema es fuertemente observable y se encuentra
afectado por entradas desconocidas acotadas a pesar de
que la salida no tenga grado relativo uno con respecto a
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las perturbaciones.
La reconstrucción de las trayectorias se realiza utilizando
el observador de Hou, obteniendo una señal del error de
salida, la cual se encuentra acotada por la perturbación y,
por lo tanto, es posible utilizar el diferenciador de Levant
para calcular aproximaciones de las derivadas.
Cabe mencionar que el sistema opera desde t = −ηh, el
observador de Hou en el instante t = 0 y el diferenciador
de Levant en un tiempo t ≥ 0 una vez la función f(t) se
pueda derivar.
Como trabajo a futuro, se considerará el caso cuando el
sistema (1) no satisface la Suposición 2, es decir, el sistema
no es observable.
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APÉNDICE. PRUEBA LEMA 2

Proof. Considere dos sistemas Σ1 = (A(δ), D(δ), C(δ)) y
Σ2 =

(
Ā, D̄(δ), C̄

)
cuyas matrices satisfacen la siguiente

relación

P (δ)A(δ) = ĀP (δ) + E(δ)C̄P (δ),
P (δ)D(δ) = D̄(δ),

C(δ) = C̄P (δ).

Aplicando el algoritmo (4)-(5) a ambos sistemas, es po-
sible calcular matrices Nk∗(δ) y N̄l∗(δ) respectivamente,
mediante matrices unimodulares Tk(δ) y T̄l(δ) para k =
1, ..., k∗ y l = 1, ..., l∗.
Por definición se tiene

∆1(δ) = C(δ) = C̄P (δ) = ∆̄1P (δ).

Para el sistema Σ1 se tiene que

S1(δ) = [ ∆1(δ)D(δ) ] =
[

∆̄1D̄(δ)
]
.

Por lo tanto, se tiene que[
G̃2(δ) F̃2(δ)

∆̃2(δ) 0

]
= T̄1(δ)

[
∆1(δ)A(δ) ∆̄1D̄(δ)

]
.

En donde

G̃2(δ) = Ḡ2(δ)P (δ) +R1(δ)∆̄1P (δ),

F̃2(δ) = F̄2(δ),

∆̃2(δ) = ∆̄2(δ)P (δ) +Q(1,2)(δ)∆̄1P (δ).

Para la siguiente iteración se tiene

S2(δ) =

[
F̃2(δ)

∆̃2(δ)D(δ)

]
=

[
F̄2(δ)

∆̄2(δ)D̄(δ) + Γ2(δ)F̄2(δ)

]
,[

I 0
−Γ2(δ) I

]
S2(δ) =

[
F̄2(δ)

∆̄2(δ)D̄(δ)

]
.
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La multiplicación de una matriz unimodular por una ma-
triz polinomial, no altera sus factores invariantes. Utilizan-
do la matriz T̄2(δ) se tiene[

G̃3(δ) F̃3(δ)

∆̃3(δ) 0

]
= T̃2(δ)

[
G̃2(δ) F̃2(δ)

∆̃2(δ)A(δ) ∆̃2(δ)D(δ)

]
.

Donde se tienen las siguientes igualdades

T̃2(δ) = T̄2(δ)

[
I 0

−Γ2(δ) I

]
,

G̃3(δ) = Ḡ3(δ)P (δ) +R2(δ)∆1P (δ),

F̃3(δ) = F̄3(δ),

∆̃3(δ) = ∆̄3(δ)P (δ) +Q(1,3)(δ)∆̄1P (δ) +Q(2,3)∆̄2(δ)P (δ).

Continuando de esta forma se tendŕıa que[
I 0

−Γl∗−1(δ) I

]
Sl∗−1(δ) =

[
F̄l∗−1(δ)

∆̄l∗−1(δ)D̄(δ)

]
.

Utilizando la matriz T̄l∗−1(δ) se tendŕıa[
G̃l∗(δ) F̃l∗(δ)

∆̃l∗(δ) 0

]
= T̃l∗−1(δ)

[
G̃l∗−1(δ) F̃l∗−1(δ)

∆̃l∗−1(δ)A(δ) ∆̃l∗−1(δ)D(δ)

]
.

En donde

T̃l∗−1(δ) = T̄l∗−1(δ)

[
I 0

−Γl∗−1(δ) I

]
,

G̃l∗(δ) = Ḡl∗(δ)P (δ) +Rl∗−1(δ)∆1P (δ),

F̃l∗(δ) = F̄l∗(δ),

∆̃l∗(δ) = ∆̄l∗(δ)P (δ) +

l∗−1∑
j=1

Q(j,l∗)(δ)∆̄j(δ)P (δ).

Concatenando todos los elementos ∆̃l(δ) se tendŕıa
∆1(δ)

∆̃2(δ)

∆̃3(δ)
...

∆̃l∗(δ)

 =


∆̄1P (δ)

∆̄2(δ)P (δ) +Q(1,2)(δ)∆̄1P (δ)
∆̄3(δ)P (δ) +Q(1,3)(δ)∆̄1P (δ) +Q(2,3)(δ)∆̄2(δ)P (δ)

...
∆̄l∗(δ)P (δ) +Q(1,l∗)(δ)∆̄1P (δ) + · · ·+Q(l∗−1,l∗)(δ)∆̄l∗P (δ)



=


I 0 · · · 0

Q(1,2)(δ) I 0 · · · 0
Q(1,3)(δ) Q(2,3)(δ) I · · · 0

...
...

. . .
Q(1,l∗)(δ) · · · Q(l∗−1,l∗)(δ) I




∆̄1P (δ)
∆̄2(δ)P (δ)
∆̄3(δ)P (δ)

...
∆̄l∗(δ)P (δ)

 ,
Ñl∗(δ) = U(δ)N̄l∗(δ)P (δ).

Por lo tanto, se ha calculado otra matriz Ñl∗(δ) para el
sistema Σ1, el cual satisface la Suposición 2. Como la
matriz U(δ) es unimodular, al ser triangular inferior, no
se alteran los factores invariantes de N̄l∗(δ)P (δ), por lo
tanto, N̄l∗(δ)P (δ) tiene los mismos factores invariantes que

Ñl∗(δ) y, por consiguiente, los mismos factores invariantes
que Nk∗(δ).
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