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Resumen: This paper investigates the design of an observer for linear systems with commensu-
rate delays affected by bounded unknown inputs, assuming that the system is observable in the
presence of such inputs. The observer proposed by Hou is employed, as well as information from
the system output and its derivatives, which are approximated using the high-order Levant’s
differenciator, to enable finite-time reconstruction of the system trajectories.
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1. INTRODUCCION

La reconstruccion de las trayectorias del sistema es un area
de estudio de suma importancia en el control automatico,
sobre todo en la implementacién de leyes de control. En
particular, en sistemas con retardos conmensurados, en
trabajos como el de Hautus (1983), Fattouh et al. (1999),
Conte et al. (2003), Hou et al. (2002), Bejarano and Zheng
(2014), se ha estudiado el concepto de observabilidad asi
como las condiciones para el diseno de observadores, tanto
con entradas desconocidas como sin ellas.

Como ejemplos, para el caso sin entradas desconocidas, se
tiene el observador presentado en el trabajo de Hou et al.
(2002), en donde, utilizando la matriz de observabilidad y
un cambio de coordenadas, es posible compensar los térmi-
nos del retardo mediante una retroalimentacién de salida.
Para sistemas con entradas desconocidas, el trabajo de
Zheng et al. (2015), propone, mediante la descomposicién
del sistema y un cambio de coordenadas, un observador el
cual debe satisfacer la condicién de observabilidad, ademés
de que la salida debe tener grado relativo 1 con respecto
a las perturbaciones. Dicha condicién puede ser bastante
restrictiva, por lo que Trentelman et al. (2001) buscan
disenar un observador para sistemas que no cumplan esta
condicién de acoplamiento.

El verificar la condicién de observabilidad, utilizando su
matriz correspondiente, no es condiciéon suficiente para
reconstruir el estado, debido a las entradas desconocidas.
Por lo que en Bejarano and Zheng (2014), se propone un
algoritmo del tipo de Molinari (1976), mediante el cual se
puede verificar la condicién de observabilidad con entradas

También se muestra como realizar la reconstruccién de las
trayectorias del estado utilizando informacién de la salida
y sus derivadas.

Aunque, la estimacion de las derivadas es un obstéculo,
este se puede solucionar utilizando la metodologia pre-
sentada en Levant (2003). En trabajos como los de Frid-
man et al. (2007), Bejarano et al. (2009), Bejarano and
Fridman (2010), se ha estudiado la estimacién del estado
para sistemas sin retardos y con entradas desconocidas en
donde se han utilizando técnicas de modos deslizantes de
alto orden para calcular las derivadas y poder realizar la
reconstruccién de las trayectorias en tiempo finito.

La siguiente notacién sera utilizada: R es el campo de
numeros reales, N es el conjunto de nimeros enteros posi-
tivos, R[d] es el anillo de polinomios sobre el campo R cuya
indeterminada es 6, R7*"[4] son matrices de dimensién gxr
cuyos elementos son polinomios, Inv[P(§)] hace referencia
al conjunto de factores invariantes de la matriz polinomial
P(9).

El articulo se estructura de la siguiente forma, en la
Seccién 2 se presenta el planteamiento del problema, asi
como el tipo de sistemas a considerar. En la Seccién 3, se
presenta la forma general para realizar la reconstruccién
de las trayectorias. En la Seccién 4 se muestran los resul-
tados obtenidos, en la primer parte mostrando el andlisis
del sistema transformado, y en la segunda parte con la
reconstruccién de las trayectorias. Un ejemplo ilustrativo
es presentado en la Seccion 5 y, finalmente, se presentan
las conclusiones en la Seccién 6.
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2. PLANTEAMIENTO DEL PROBLEMA Y SISTEMA
A CONSIDERAR

Los sistemas lineales con retardos conmensurados presen-
tan la siguiente estructura

x(t) = ZaAjsc(t —Jjh)+ Zd Djw(t — jh)
i a )

y(t) = Cja(t - jh)
=0

En donde z(t) € R, y(t) € RP y w(t) € R™ son el vector
de las trayectorias del estado, vector de salida y el vector
de entradas desconocidas respectivamente; ng,n.,ng > 0.
La condicién inicial del sistema se encuentra dada por
la funcién continua a trozos ¢(t) : [-nh,0] — R"=, con
n = max{ng, Ne,ng}-
Para facilitar el andlisis, se utilizard el operador del retardo
d : x(t) — z(t — h), con el cual el sistema (1) puede
representarse con la siguiente estructura
z(t) = A(8)z(t) + D(0)w(t) @)
y(t) = C(0)x(t)

Las matrices A(d) € R*=*"=[§], C'(§) € RP*™[§] y D(0) €
R™*™[§] pertenecen al anillo polinomial R[d].

El objetivo es realizar la reconstruccién de las trayectorias
del estado en tiempo finito, ain en presencia de entradas
desconocidas y utilizando sélo informacion de la salida.

3. PRELIMINARES

Para sistemas de la forma (2), la condicién de observabili-
dad con entradas desconocidas se puede verificar mediante
el algoritmo tipo Molinari (1976), presentado en Bejarano
and Zheng (2014). El algoritmo se modific6 ligeramente
debido a que en el presente trabajo no se consideran
perturbaciones en la salida, ademads se realizé un arreglo
distinto de las matrices, como se muestra a continuacion.
Por definicién

A1(0) = C(6) = N1(9). 3)
En el primer paso se tiene
S1(6) = [A1(0)D(5) ],

[gzggg on(é) = T1(6) [ A1(0)A(5) A1(8)D(8)],

00 = | 43|

Para los siguientes pasos el algoritmo es

Fi. (0
Sk(8) = [Ak<§>(D)<6>} LR

{Gk+1(5) Fk+1(5):| — T3,(6) [ G (9) Fy.(9)

(4)

Api(®) 0 AL(5)A(S) A(d)D(S) |

_ | Nk(9)
Ni41(0) = {Akﬂ(‘s)] '

()
Donde Ty(d), K > 1, son matrices unimodulares que
transforman a Si(d) a su forma normal de Hermite,
Kailath (1980).
En Bejarano and Zheng (2014) se demostré que existe
un menor entero positivo k* € R tal que Inv[Ng«(J)] =
Inv[Ng=4;(8)], i > 1, los cuales son independientes de la

son unicas, las matrices Ng«(J) y Ni+4:(d) tampoco son
Unicas, sin embargo, sus factores invariantes no se alteran.
El algoritmo (4)-(5) se resume de la siguiente forma. Dado
que y(t) estd libre de perturbaciones es posible derivarla,
sin embargo, no es posible derivar por segunda vez debido
a que aparece el efecto de la perturbacién en y(t). Por
lo que la derivada se separa en una parte “sucia”’, que
contiene el efecto de las entradas desconocidas, y una
“limpia”, la cual si es posible derivar. Concatenando las
senales libres de perturbaciones se verifica la condicion de
observabilidad; si ain no se tiene suficiente informacion
para la reconstruccion de las trayectorias, se utiliza la
iltima senal “sucia” y la derivada de la ltima parte
“limpia” para obtener nueva informacion.

La reconstruccion de los estados se puede realizar mediante
la concatenacion de todas las senales “limpias”, es decir

y(t) Ay (5)

0 As(5)
. = : z(t), (6)

pl ] LAk ()

Y(t) = Ni=(0)(t).
El vector Y(t) contiene informacién de la salida y combina-~
ciones lineales de sus derivadas. El término Q,EQ)
la parte “limpia”de la derivada en el paso k.
Para el cédlculo de las derivadas, se tiene el diferenciador
propuesto por Levant (2003), no obstante, su implemen-
tacion requiere que la senal a diferenciar se encuentre
acotada, lo cual no siempre es posible si el sistema es
inestable.
Por lo tanto, se propone utilizar un observador con el cual
obtener un error de salida acotado si la entrada descono-
cida se encuentra acotada

Ye(t) = y(t) — 9(t). (7)
En donde §(t) representa la salida obtenida al utilizar el
observador.
Suposicion 1. Se considera que la entrada desconocida w(t)
se encuentra acotada, ||w(t)|| < w™.
Suposicion 2. La matriz Ny« () es unimodular por colum-
nas, es decir, tiene n, factores invariantes constantes.
En Bejarano and Zheng (2014) también se probd que si
se satisface la Suposicidn 2, el sistema es fuertemente
observable.

representa

4. RESULTADOS PRINCIPALES
4.1 Transformacion del sistema

En Hou et al. (2002) se propone un observador tipo Luen-
berger para sistemas observables sin entradas desconocidas
mediante el siguiente cambio de coordenadas

§(t) = P(6)x(t). (8)
Donde &£(t) € R™, y P(§) € R™*"=[j] es una matriz
unimodular por columnas. Las matrices satisfacen las
siguientes relaciones
P(5)A(5) = AP(3) + E(5)CoP(3),
P()D(8) = D(9), (9)
C(8) = CoP(9).
En donde (Ag, Cp) son matrices constantes y observables.
Aplicando el cambio de coordenadas (8) al sistema (2)

eleccién de Ty (), es decir, dado que las matrices T () no 1 $ptenemos

Copyright® AMCA, ISSN: 2594-2492
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£(t) = Aok (t) + E(0)y(t) + D(5)w(?). (10)
El observador propuesto por Hou et al. (2002), donde
w(t) = 0, tiene la siguiente estructura

() = Aod(t) + E@)y(t) + L (y(t) - Coé()) . (1)
Utilizando el observador (11) y definiendo el error
et) = &(t) — £(1). (12)

con e(t) € R™, es posible obtener el siguiente sistema
dindmico del error
é(t) = Ae(t) + D(S)w(t),
Ye(t) = Ce(t).
Donde A = Ay — LCy, C = Cy y ye(t) € RP es el error de
salidas del sistema (1) y (11). La matriz L se elige tal que
(Ag — LCp) sea una matriz Hurwitz.

(13)

4.2 Reconstruccion de las trayectorias

La salida del sistema (13) es una sefial acotada por la
Suposicion 1.
Realizando el procedimiento para la reconstruccién de e(t)
siguiendo el algoritmo (4)-(5), es posible tener una repre-
sentacién como en (6) y, de Bejarano and Zheng (2021), es
posible concluir que las trayectorias del sistema se pueden
estimar a través de combinaciones de las derivadas de y(¢).
Lemma 1. Es posible representar el vector Y(t) en (6)
como

Y(t) = Q- (8, D)y ). (14)
Donde Q-+ (0, D) es una matriz polinomial de operadores
0 y D que representa al operador derivada.

Proof. Por definicién se tiene
y(t) = A1(0)x(t).
Al derivar se tiene
d
(1) = DlLy(t).
Sea J1(6,D) = DI, con I, la matriz identidad de dimen-
sién p. Para alguna matriz unimodular T} (d) tenemos

(1)
oy — |92 ()
0=

g (1) = T ()20, Dy (1),
y(t P ]
A = t '
)= Lm0
En donde T1(2) (0) representa las filas de Ty(8) tal que
77 (5) [ A1(8)D(5)] = 0.
De 92(t) solo es posible derivar g£2)

= T1(8)J1(5, D)y(t),

, por lo que, concate-
nando g)él)(t) y ngém (t) v, para alguna T5(9), se tendria

) 5D (¢t I 0
gs(t) = [Zzz)gt;_ = T5(9) [0 DAQ((;):| T1(6)J1(6, D)y (1),
357 (t) = 157 (8) 128, D)y 1),
yg; ) ¢
i) | = | T@R6.D) |y
U3 | T57(0)J2(,D)

I 0

Donde J(6,D) = {0 D, 5)

} T1(0)J1(d, D). Continuando

y(g) [ @ Ip

yg 7,7 (6)1(6,D)

i = | TPOLGD) |y,
2 | T2 (8) i —1(6,D)

y(t) = sz*(67 D)y(t).

En donde Jy- (5,D) = {é DAO (5) ] T —1(8) - 1(6,D).

a
Por lo tanto, para el sistema (13), se realiza la reconstruc-
ciéon de las trayectorias del error mediante el algoritmo
(4)-(5) obteniendo
Q- (0, D)yelt) = Nie (9)et). (15)
Sustituyendo (12) en (15) y regresando a las coordenadas
originales tenemos

Ni- () P(8)z(t) = - (8, D)ye(t) + Ni- (5)E(t).  (16)
Lemma 2. Asumiendo que la Suposicidn 1 se satisface,

entonces N+ (6) P(8) también tiene n, factores invariantes
constantes.

La demostracién se puede consultar en el Apéndice.
Por lo tanto, z(t) se puede expresar mediante la siguiente
igualdad

< +
o) = (Ve @PE) QD)

+ (Ni=(8)P(8)) " Ni- (8)E(2).

(17)

Donde se satisface (]\7/'1*(5)P(5))+ (N (8)P(8)) = I, -
En la primer parte de (17) aparecerdn combinaciones li-
neales de las derivadas del error de salida y.(t), es reco-
mendable primero realizar la multiplicacién de matrices y
posteriormente construir las senales a derivar.

Para el calculo de las derivadas, se utilizara el diferenciador
de Levant de alto orden presentado en Levant (2003)

Zo(t) = vo(),

vo(t) = —Xolz0(t) — f(8)|"/ "D sign(zo(t) — £(£)) + 21 (t),
21(t) = vi(t),

v1(t) = =Milz1(t) — vo(8)| " sign(z1(t) — vo(t)) + 22(2),

2. (t) = =N\psign(z-(t) — vr—1(2)).
(18)
En donde f(t) representa la funcién a diferenciar, r es el
grado de la derivada a calcular, sign(-) es la funcién signo
v Ai, 0 <4 < r, es constante.

5. EJEMPLO ILUSTRATIVO

Considere el sistema de estructura (2) con las siguientes
matrices

§1 0 0
A(&):[oo 1 ],D(é):[l},
-302-9 B)
1090
0(5)_[001]'

Verificando la condicion de observabilidad con el algoritmo

de esta forma se tendria que
Copyright© AMCA, ISSN: 2594-2492
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106
Ny(6) = [O 0 1] , Inv[N2(0)] ={1,1,1}.
010
El sistema es observable, sin embargo, no satisface la
condicion para el diseno de un observador tipo Luenberger

{0y # {1}
~~ ~~
Inv[C(8)D(9)] Inv[D(6)]

Se utiliza el cambio de coordenadas (8) y se disefia el
observador (11) con las siguientes matrices

10 6
b 70
P(d) = 0152;45 L= 1023 ’
_ s 52;85
-3 M
E(6) = %_35263—352_454'1
_ 15g35 62 —46 -5

Realizando el analisis de la dinamica del error ;ieﬁnida en

(13), se obtuvo

1 0 0 0
~ 0 1 0 0
Ns3(9) = -7 30 1 -0 ,
2 2_1 2
a5 356 6 75 30
2 d
1 0
0 1
Q2300,D)=| D —6D
1
M2 2192, © 552
0D* 6“D +2D(2 75)_

La reconstruccién de las trayectorias usando (17) es

1 -5 1-600
75 5 .
z(t) = D+7 0D - ye(t) + 0—51-9 £(t).
0 1 01700

Representado como funcién del tiempo tenemos

Yey (t)7_ Yea (t - h)
72!51 + y€1 (t) - §y62 (t - h) - yez (t - h)

Ye, (t) R
. §i(t) —&(t—h)
+ —gfz(t —h)+&(t) =&t —h)
&a(t)

Utilizando el diferenciador mostrado en (18) para el calcu-
lo de la derivadas, se tiene que la funcién a derivar es

F() = Ye, (1) = ye, (t — D).

Por lo que los estados estimados son
ft)
7yel - §y62 (t -
Ye, (t) )

. §1(t) — &t —h)
+ *iéz(t —h)+ &a(t) — &alt — D)
&o(t)

x(t) =

&(t) = h) 4 z(t)

Copyright® AMCA, ISSN: 2594-2492
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Figura 1. Trayectorias del sistema.

— i 0-&0
% (0 -&,(0)
— x5 (1) “33 {t)

=— Tiempo ()

_40-

Figura 2. Error usando el observador de Hou z(t) — £(¢).

T ool — 5 ()-%)
2t 2 (=% (1)
_45 - xa () =% (1)

Figura 3. Error usando el diferenciador de Levant z(t) —
Z(t).

En donde z(t) es la salida del diferenciador y, después de

cierto tiempo, z1(t) — f(¢).

Para efectos de simulacién, se consideré un retardo de

h = 0.1s y perturbacién w(t) = 5cos(t) — 1.5sin(5t).

En la Fig. 1, se puede observar que el sistema es inestable,
por lo que tratar de reconstruir las trayectorias utilizando
solo informacién de la salida y sus derivadas no seria
posible.

Sin embargo, al utilizar primero un observador para apro-
ximar los estados a una regién acotada, como se muestra
en la Fig. 2, es posible utilizar estd senal para estimar los
estados en tiempo finito como se muestra en la Fig. 3, y
por lo tanto &(t) — x(¢) en tiempo finito.

6. CONCLUSIONES

Se ha propuesto un observador para sistemas con retardos
conmensurados y entradas desconocidas acotadas, rela-
jando las condiciones existentes ya que s6lo se supone
que el sistema es fuertemente observable y se encuentra
afectado por entradas desconocidas acotadas a pesar de
1481 la salida no tenga grado relativo uno con respecto a

https://doi.org/10.58571/CNCA.AMCA.2025.023



XX Congreso Latinoamericano de Control Automatico (CLCA 2025)
13-17 de Octubre, 2025. Cancun, Quintana Roo, México

las perturbaciones.

La reconstruccion de las trayectorias se realiza utilizando
el observador de Hou, obteniendo una senal del error de
salida, la cual se encuentra acotada por la perturbacion y,
por lo tanto, es posible utilizar el diferenciador de Levant
para calcular aproximaciones de las derivadas.

Cabe mencionar que el sistema opera desde t = —nh, el
observador de Hou en el instante ¢ = 0 y el diferenciador
de Levant en un tiempo ¢ > 0 una vez la funcién f(t) se
pueda derivar.

Como trabajo a futuro, se considerara el caso cuando el
sistema (1) no satisface la Suposicidn 2, es decir, el sistema
no es observable.
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APENDICE. PRUEBA LEMA 2

Proof. Considere dos sistemas 31 = (A(d), D(0),C(9)) vy
3y = (A,D(0),C) cuyas matrices satisfacen la siguiente
relacion

P(5)A(5) = AP(6) + E(5)CP(5),
P(3)D(3) = D(5),
C(5) = CP().

Aplicando el algoritmo (4)-(5) a ambos sistemas, es po-
sible calcular matrices Ny~ (8) y N;-(0) respectivamente,
mediante matrices unimodulares Ty (4) y T;(0) para k =

1, k*yl=1,..,1"
Por definicién se tiene
A1 (0) = C(8) = CP(§) = AL P(6).
Para el sistema ¥ se tiene que
S1(0) = [A1(9)D() ] = [A1D(9) ] -
Por lo tanto, se tiene que
[ggg; F?é‘”} —T1(8) [AL(8)A®G) AD(5)].
En donde
Ga(8) = G2(8)P(6) + Ri(6)A1 P(6),
F5(8) = Fy(6), )
Ao (6) = A2(8)P(6) + Q(1,2)(6) A1 P(8).
Para la siguiente iteracién se tiene
_ [ B0 Fy(9)
540 = | 3,000 = |80 s TaEr) )
I 0 F5(9)
a6 | -T2 I} 52(0) = [Am <6>] |
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La multiplicaciéon de una matriz unimodular por una ma-
triz polinomial, no altera sus factores invariantes. Utilizan-
do la matriz T5(0) se tiene

God) B()] o [ Ga(0)  F(0)
[Ai@ 0 ]TQ(‘”{M&)A(&) Ra(8)D(5)

Donde se tienen las Siguientes igualdades

728 = To0) | _riga) 7
G3(0) = Gs (6)P(8) + Ra(6)A1 P(0),

F3(5) = Fy(9), - B
A3(8) = A3(0)P(9) + Q1,3 (0) A1 P(d) + Q(2,3)A2(6) P(0).

Continuando de esta forma se tendria que

{rlf_l(a) ?]Sl*—l((” {Ali@)(éD)((S)]

Utilizando la matriz Tj«_1(8) se tendria

{@*(5) Fl*(é)} — T (6) [ Sra® P ] '

Ap(6) 0 Al 1(6)A(B) A1 (8)D(5)
En donde
T =10 | 1) 7|
G- (8) = Gi- () P(8) + Ri-—1(8) A1 P(9),
Fi(6) = Fl*( )
-1

A= (8) = A= () P(5) + Z Qi) (0)A;(6) P(3).

Concatenando todos los elementos Al(é) se tendria
[ A1(9)
Az (0)

Ap(0)P(0) + Qu l*)(é)Alp(é) + o+ Que—1,7)(6)As- P(9)
I 0 071 ALP(5)
Q(1,2)(9) I 0 - 0 Az (6)P(6)
— | Qu,3)(6) Q2,3)(6) I o 0 1 As(0)P(d) | |
Quin® - Qi@ 1) LAG)PO)

Ni-(8) = U(0)Ny- (0) P(6).

Por lo tanto, se ha calculado otra matriz N« (§) para el
sistema X1, el cual satisface la Suposicion 2. Como la
matriz U(6) es unimodular, al ser triangular inferior, no
se alteran los factores invariantes de Nj-(d)P(d), por lo
tanto, N;» () P(0) tiene los mismos factores invariantes que
N+ (0) y, por consiguiente, los mismos factores invariantes
que Ni«(9).
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