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Abstract: During oil well drilling process, vibrations can reduce operating efficiency and
damage equipment. This paper presents a model that describes the coupled torsional, axial
and lateral dynamics of a drill string. Using a stability approach based on Lyapunov theory, the
controller gains that ensure system stability are determinated. Numerical simulations show that
the implemented control eliminates torsional and axial oscillations and significantly attenuates
lateral vibrations, contribuiting to improved overall drilling system performance.
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1. INTRODUCCION

Diversos estudios han evidenciado que el rendimiento
de los sistemas de perforacién puede verse gravemente
afectado por la presencia de vibraciones mecénicas, provo-
cando desgaste acelerado, pérdida de eficiencia y fallos
estructurales. Estas vibraciones, especificamente de tipo
torsional, axial y lateral, dan lugar a fenémenos como
stick-slip, bit-bounce y whirl, debido a su naturaleza
acoplada.

Frente a esta problematica, se han propuesto en la lite-
ratura diferentes estrategias de modelado para entender y
controlar estas dindmicas. Entre los modelos propuestos
se pueden mencionar los que emplean Ecuaciones Difer-
enciales Parciales (EDP) y Ecuaciones Diferenciales con
Retardo de tipo Neutral (EDRN). Boussaada et al. (2013)
y Saldivar et al. (2011) han utilizado estas herramientas
para estudiar las vibraciones torsionales y axiales, apli-
cando controles basados en retroalimentacién retardada
y mecanismos de disipacién de energia con resultados
favorables frente al stick-slip y bit-bouncing.

En el caso de la dindmica lateral, particularmente rel-
evante en pozos desviados, el enfoque predominante ha
sido el uso del Método de Elementos Finitos (FEM). Por
ejemplo, Li et al. (2020) analiza la influencia de factores
como el peso sobre la broca, la velocidad de rotacion y
la friccién lateral en el comportamiento oscilatorio de la
sarta.

Ademsds, estudios més recientes como el presentado en
Liu et al. (2022) proponen modelos acoplados no lineales
que integran las tres vibraciones principales mediante el
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método de la energia y el principio de Hamilton, con
énfasis en condiciones operativas extremas. Sus resultados
subrayan la importancia de ajustar parametros como la
longitud de la sarta y la velocidad angular para reducir las
oscilaciones, recomendando también el uso de herramien-
tas de impacto torsional como solucién préactica en tales
entornos.

A diferencia de trabajos como los de Méarquez et al.
(2015) y Saldivar Mdarquez (2013), donde la dindmica
lateral se omite, en esta investigacion se propone un
modelo completo que describe el acoplamiento entre las
tres dinamicas. La vibracion torsional se modela mediante
una EDRN, mientras que las componentes axial y lateral
se representan con FEcuaciones Diferenciales Ordinarias
(EDO). A partir de este modelo, se realiza un anélisis de
estabilidad empleando la teoria de Lyapunov, que permite
calcular ganancias de control para eliminar las vibraciones
torsionales y axiales. Aunque no se actia directamente
sobre la dindmica lateral, el andlisis permite determi-
nar la atenuaciéon de las vibraciones laterales debido al
acoplamiento con las dindmicas axial y torsional.

2. MODELO MATEMATICO
2.1 Dinamica torsional-azial

Considerando el modelo de la dindamica torsional pre-
sentado en Madarquez et al. (2015) y el modelo de
la dindmica axial propuesto en Challamel (2000), la
dindmica torsional-axial acoplada puede describirse por
v(t) =Du(t — 2h) + Av(t) + Bu(t — 2h)

(1)
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En el modelo se emplea como variable de estado el
error torsional definido como ¢(t) = ¢y(t) — Q, donde
¢p(t) denota el desplazamiento angular en el extremo
inferior de la sarta de perforacién, y g es la velocidad
rotacional nominal del rotor, la cual es constante. De
manera similar, el error axial se define como ZzZ(t) =
Zy(t) — pot, donde Zp(t) es el desplazamiento axial del
ensamblaje en el extremo inferior (BHA, por sus siglas
en inglés Bottom Hole Assembly), y po representa la tasa
de penetracién nominal constante. La velocidad angular
Q(t), aplicada en la superficie por la mesa giratoria,
es la entrada de control de la dindmica torsional. En
paralelo, p(t) denota la velocidad axial impuesta en la
superficie y actia como la entrada de control para la
dindmica axial. La velocidad de propagacién de ondas
torsionales se expresa como ¢ = +/p,/G, donde p, y
G representan la densidad y el médulo de corte de la
sarta de perforacion. El retardo temporal asociado se
define como h = ¢L, siendo L la longitud de dicha
sarta. El parametro [; representa el momento angular
en el extremo superior de la sarta, mientras que c
denota el coeficiente de amortiguamiento viscoso, e Ip
corresponde al momento de inercia del BHA. Ademads,
entre las propiedades geométricas y fisicas del sistema
se encuentra el segundo momento de area J. En cuanto
al subsistema axial, mg representa la masa del oscilador
equivalente, ¢y es el coeficiente de amortiguamiento, y
ko indica la rigidez del resorte axial. La fuerza externa
relacionada con el torque aplicado en la broca, denotada
por fen(t), se define segin Mérquez et al. (2015) como:

fon(t) = (%1 + C¢2€7%|¢;(t)+90‘) sign (¢(t) + Qo) (7)

donde cg1 = WobTpfch Y Cop2 = WobTs (thsb — ep). Aqul,
Wep Tepresenta el peso nominal constante aplicado sobre
la broca, 1 es el radio de la broca, ue, es el coeficiente
de friccién de Coulomb, y pgp es el coeficiente de friccién
estatica. El pardmetro -, indica la tasa de disminucién de
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la velocidad, y p estd definido como pu = 2 (Tb,ubitcbit)*l,
donde ;e corresponde al coeficiente de friccién de con-
tacto entre la broca y la roca. El coeficiente ¢;;; se expresa

Appis e ! :
COmo Cp;p = gi;gi;z, siendo py;¢ la tasa radial de incre-

mento en la densidad de cortadores. La funcién sign(a)
se define como en Marquez et al. (2015):

a>0

L,
sign(a) = { 0, a=0 (8)
-1,a<0

2.2 Dindmica lateral

Con el fin de describir la dindmica lateral, se define la
variable r = /X (t)2 4+ Y (¢)? , donde X(t) y Y (¢) son las
posiciones laterales del BHA en cada direccién. Siguiendo
las ideas propuestas en Fang et al. (2022), se considera
una tolerancia as entre el estabilizador y las paredes del
pozo, asi como una tolerancia a. entre el collarin y las
paredes del pozo, con a. > as. De esta forma, se asume
que la posicién radial » del BHA puede situarse en 3 casos:
r < as, s < r < a.y r > a. Lo anterior, se puede
observar en la Figura 1.

Se define el centro de masa del BHA con respecto al centro
del pozo como:
CL = (X(t) +ecos (¢(t) + Qo) , Y (t) + esin (¢(t) + Qo))
(9)
donde e es la distancia excéntrica del BHA con respecto
a su centro geométrico. Para la obtencién del modelo
que describe ésta dinamica se utiliza el formalismo de
Lagrange, el cual se define como en Fang et al. (2022):

0 <8K ) oK 0oU 0D

— =)+ —+—==F
ot \ 04 dq dq aq
donde K, U y D son la energia cinética, potencial y
disipada del sistema, respectivamente. Adem4s ¢ es el vec-
tor de coordenadas generalizadas y F' denota las fuerzas
externas. Dichas energias se definen como en Fang et al.
(2022):

C

Ry Y Y
K = 3miChCn , D=3 (X (t)+Y (t))

Estabilizador B
ag BHA
y

(10)

(11)

B

Pared i
ﬂ )

B 0

Pared

Estabilizador

Fig. 1. Posiciones del BHA: A) r < ag, B) as < r < a,
C)r>ac
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1 1
gle(t)2 + gle(t)z, r<a,

U= (12)

0, > a
donde my, k; y ¢ representan la masa, la rigidez y el
coeficiente de amortiguamiento lateral equivalente. La
rigidez lateral equivalente se define como en Christoforou
and Yigit (2001):

El.m TOB((t)m® WOB (t)n?
20304 20204 2lpHA
donde E es el médulo de Young del material de la sarta
de perforacién, I. el momento de inercia del collar de
perforacion, Ipga es la longitud del BHA, TOB(t) y
WOB(t) son el par sobre la broca y el peso sobre la broca,
las cuales son funciones que representan las fuerzas de
interaccion de la broca con la superficie de perforacion en
la dindmica torsional y axial, respectivamente. De acuerdo
con Mérquez et al. (2015) y Challamel (2000), estas dos

dltimas se definen como:

TOB (t) =Cp (Q_S(t) + Q())
+ (C¢1 + C¢26_%|J)(t)+90|) sign (é(t) + QO)
(14)
WOB () = uTOB (t) (15)

Ademds, las fuerzas externas se definen como en Fang
et al. (2022):

Ky

(13)

0, r<as
1
o (Fnscost — Frgsinf), as <r < a
1
— 1
fo = — (Fn + Fns) cosf (16)
my
]_ ’ r Z Ac
R (FT + FTs) sin @
m
Oa r<ag
— (Fnssin® + Fpgcosf), as <r < ae
m
— 1
Jy= —(Fy + Fys)sin® (17)
m
1 ) T Z Q¢
+— (Fr + Frg)cosf
m
con
Fyns = —kjdcosa, Frs =kdsina (18a)

Fy = —ke\/(r —ac)®,  Fr = pcFysign(v)  (18b)

= (x0 Jocos) + (v10 - L) 10

v= L (XOV0) - YOX0) + ) (@0)

donde § = cos™! (X (t)/r), sina = acsin (tan™' p,) /r,
cosa = acos (tan™! yi5) /1, ps es el coeficiente de friccién
de Coulomb entre el estabilizador y la pared del pozo, k.
es el coeficiente de rigidez de contacto de la pared del
pozo, p. v v son los coeficientes de fricciéon de Coulomb
v la velocidad relativa de contacto entre el collar y la
pared del pozo, y d., es el didmetro interno del collar de
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perforacién. Sustituyendo (11) y (12) en (10), se obtiene
el modelo que describe la dindmica lateral:

e Cuando r < ag

mi (X (6) = du(t)esin (an(t)) = G (t)e cos (6n(1) )
—l&kle(t) FaX() = f,
mi (V(2) + du(t)e cos (@n(1)) — G (t)esin (91,(1)) )

FLRY () eV (1) = J,

(21)
e Cuando r > a,
mi (X (1) = d(esin (6u(1)) ~ G(t)e cos (6n(1)))
+CZX(t) = fac
mi (V(2) + du(t)e cos (@n(1)) — G (t)esin (94,(1)) )
“rClY(t) = fy
(22)
que puede escribirse como:
j(t) :Axy'f(t) + EzyF:z
§(t) =Auy (1) + Euy F, (23)
donde
0o 1
[h Cal,r<as
oy = 4ml my (24)

2 =[x x@)] 90 = ve]" 25

Fy = fo + dp(t)esin(dy(t)) + dj(t)ecos (44(t)  (27a)
Fy = fy — $u(t)ecos (¢u(t)) + G (t)esin (dp(t))  (27b)

3. DINAMICA ACOPLADA EN LAZO CERRADO

Con el objetivo de garantizar que los errores de velocidad
angular y axial tiendan a cero, y de esta forma atenuar
los fenémenos de stick-slip y bit-bouncing, se propone
el siguiente esquema de control, basado en las ideas
presentadas en Saldivar Marquez (2013):

Q(t — h) =kyo (t — 2h)
F(Cb — IBA) —IBA— Cp

- 1550 o
Col B . y
+ 55,0 (1 —T)sign (¢ (t —2h) + Qo)
(28)
y
p(t) =k.z (t) — ﬂQo - ﬂcl(lgsign (é(t) + Qo) (29)
Co Co
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donde kg y k. son las ganancias de control. Por lo
tanto, sustituyendo (28) y (29) en (1) y considerando la
dindmica lateral (23), el modelo acoplado en lazo cerrado
se describe por

v(t) =Du(t — 2h) + Av(t) + Bu(t — 2h) (30a)
+ Cf¢n(t) + Crf¢n<t — 2h)
z(t) =AsyT(t) + Eyy Fy (30Db)
y(t) =Auyy(t) + Eyy F, (30c)
donde
Cy
) —A - 7. 0 0
A= . 0 1 (31)
Y2 (ko + coks) ——2
mo mo 0
. r(;”—A) + k30 00
_ B
B d 00 (32)
0 00

fon(t) = (C% + C¢2€77b‘¢;(t)+90|) sign (¢(t) + Qo)

4. ANALISIS DE ESTABILIDAD

El anélisis de estabilidad tiene como finalidad encontrar
los valores adecuados de las ganancias ks y k. que
garanticen la estabilidad del sistema. Aunque la dindmica
lateral no se controla de forma directa, este estudio
permite evaluar cémo la eliminacién del fenémeno stick-
slip influye en su estabilidad.

4.1 Dindmica torsional-axial

B(t)+00)

Tomando en cuenta que ‘e_%( < ‘e_%(‘g(t))‘

para €y > 0, se cumple que

| fen (8)] < 61 |0(2)]
|[fon (t = 20)| < 842 |(t — 2h))|
donde 641 y dg2 son constantes positivas conocidas.

(33)

Con base en el Teorema 4 (Estabilidad exponencial)
descrito en Saldivar Méarquez (2013), se llega a la siguiente
proposicién:

Proposicién 1. Sea el sistema (30a), donde las fuerzas
fon(t) y fon(t — 2h) estan acotadas por (33). Se garan-
tiza estabilidad exponencial o o-estabilidad del sistema
(donde o es la tasa de decaimiento de las trayectorias)
si existen matrices simétricas definidas positivas P, @, R
y S, y escalares constantes k4 y k. tal que la siguiente
desigualdad matricial se satisfaga:

&1 V2P \@5¢101T/2TC1/2 12 0 13
* =1 0 0 0 0
* * -1 _O 0 0 <0
* ok * Eaa 5¢QC£/2TCr1/2 23
* * * * -1 0
* * * * * &33
(34)
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donde
1 =PA+ATP+®,A+S—R
+65,CT [T+ 11CY
12 = €72"®y [B—oD] +e”*"P [B—0D]| + R (35b)

(35a)

€13 = e7?"® D + e7?"PD (35¢)

¢y =e"?"®dy [B—0oD] - S - R

€ 62 P2 [B—0D] (354)

+02,CF [T +21) C,. Y

&o3 = €7Dy D (35e)

{33 = 703 — Q (35f)

&, = AT [T + 21 (35g)

®, = [B—oD]" [T +21] (35h)

®3 = DT [T +2I| D (35i1)
too]

T=1000|,A=A+oI (35§)
000
Crl/Q

(om0

4.2 Dindamica lateral

35k)

Dado que la dindmica torsional-axial es exponencialmente
estable, ¢y (t) — Qo, ¢p(t) — 0, 2(t) = 0y 2(t) — 0. Por
lo tanto, la dindmica lateral puede reescribirse como:

F(t) = AuyZ(t) + By Fy

. - - (36)
y(t) = Agyy(t) + Euy F),
donde
0 1
Aep=| ki a |, r<as
_ 4
Ay, = e (37)
B 0 1
Azy2:Azy3_ 0 ,i 7T2as
my

con ky = ki, }_7} = Iy, y Fg = Fy, para éb = Q.
Luego |F$| < Flay) vy ‘Fy| < Flay), con Flgy| = ‘Qge| +

(Fy + Fxs)| + | (Fr+ Fr,)|, donde Fy, = Fy.,
y Fry = Frg, para (z.ﬁb = )y. Por lo tanto,

1
my

— 2k |, _
|Bif <[] + |7 ] (218 + |52 (1) + Jas])
(38)
F F
i) | ET
my my

donde i = {z,y}. Para el anédlisis de estabilidad de
la dindmica lateral, considere la funcién de Lyapunov
definida como:

Vay = 27 ()Qa7(t) + " (£)Qy5(t) (39)
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dondeQm:Q£>0yQy:

QZ > 0. Calculando la
derivada, se obtiene:

sz =z" (t)ij(t) + jT(t)in'(t)
+T ()Quy(t) + 5" (1)QyY(t)

Sustltuyendo la dindmica lateral (36) en (40) y definiendo

= AT Qa: + Qx zy Y W - Ag;yQy + Qy Ty 51gue
que:

Voy =27 ()W,2(t) + 4" (t)W,5(t)
+ FoEL,Qu2(t) + 27 (1) Qu vy Fy
+ F, ET yQuy(t) + §" ()QyEwyFy

Luego, sustituyendo la cota superior (38) en (41) y
deﬁmendo Wx = W + R, + RT, Wy = Wy + R, +

RZ,szy:Exy <|Q e|+’2kl |as\+’ ),con

v |2

my
szgf()Wx() g () Wy(t) +
y" (t)RY, ()+FTme<)
+FTny(> 7 () QyFay

que puede re-escribirse como:

(41)

T
O} , se obtiene que

sz > na;yga:y'r/zy (43)
donde
. W, Ry Q.
Nzy = [j(t) ﬂ(t) Fa:y] ) facy = RT W Qy (44)
Qm Qy 0

Note que, debido al cero en la diagonal principal de
&zy, solo se puede garantizar estabilidad en el sentido
de Lyapunov. Estos resultados se pueden resumir en la
siguiente proposicién.

Proposicién 2. Sea el sistema (36), donde las fuerzas F,
y F, estan acotadas como se indica en (38). Si existen
matrices simétricas definidas positivas @, y @y tales que
la desigualdad matricial &, < 0 es factible, donde &,
estd definido en (44), entonces se garantiza la estabilidad
en el sentido de Lyapunov del sistema.

5. RESULTADOS NUMERICOS Y DISCUSION

Los parametros utilizados en los modelos torsional y axial
empleados en las simulaciones se obtuvieron de Marquez
et al. (2015), mientras que los correspondientes a la
dindmica lateral provienen de Fang et al. (2022).

De acuerdo con la Proposicién 1, se obtienen las ganancias
de los controladores:

kg = —0.036, k. = —0.3 (45)
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La Figura 2 muestra el comportamiento stick-slip carac-
teristico en la respuesta en lazo abierto, donde la veloci-
dad angular del BHA varia entre cero y casi el doble de la
velocidad nominal. En contraste, al aplicar el control en
lazo cerrado, se observa que dicha velocidad converge al
valor deseado Qy = 11 rad/s, evidenciando la efectividad
de la estrategia de control propuesta.

En la Figura 3 se observa cémo, en lazo abierto, el error
en la velocidad axial oscila alrededor de cero, reflejando
el fenémeno conocido como bit-bouncing, propio de las
oscilaciones en dicha direccién. Al activar el control, este
error disminuye progresivamente hasta estabilizarse, lo
que indica una eliminacién efectiva de las vibraciones
axiales.

La Figuras 4 y 5 muestran oscilaciones irregulares en
los ejes X y Y, propias del whirling, bajo dindmica
no controlada. Aunque no se controla directamente, la
respuesta lateral en lazo cerrado reduce su amplitud tras
10 segundos, coincidiendo con la estabilizaciéon torsional,
lo que evidencia el acoplamiento entre ambas dinamicas.

25

Qo = 1lrad/s
) —u(t) - LA
. [ O Y Y 2
|
| L T O
' I ..
z o
3 ,,J\J,/wJL,JJ,J\, | L1
Lo LM T T e T
3 YT
5|0 wm‘wm‘mmm
INERRRERERER ] RERERRRRENR
OAJ\J‘_‘“L‘“UHU“LLJ_L‘“L
-5
0 5 10 15 20 25 30 35 40 45 50
tiempo [s]

Fig. 2. Velocidad angular ¢y (t) = ¢(t)+£ en lazo abierto
(LA) con Qt) = Qo 11 rad/s y p(¢) 00
0.1 m/s, y en lazo cerrado (LC) con los controladores
(28) y (29).

—Z(t)— LA
—z(n - LC

z()[m/s]

20 25 30 3 40 45 50
tiempo [s]

Fig. 3. Velocidad del error axial 2(t) = Zy(t) — po en

lazo abierto (LA) con Q(t) = Q¢ = 1lrad/s y

p(t) = po = 0.1 m/s, y en lazo cerrado (LC) con
los controladores (28) y (29).
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—X(@) - LA
—X@) - LC

F'A W [“
I ‘H ‘H
| MM\ I ‘\

r |

| ‘H\
|
I
1

H

X()[m/s)

0 5 10 15 20 25 30 3 40 45 50
tiempo [s]
Fig. 4. Velocidad lateral X (t) en lazo abierto (LA) con

Q(t) =Qp =11 rad/s y p(t) =po = 0.1 rn/s7 y en

lazo cerrado (LC) con los controladores (28) y (29).
5 —Y(@)- LA
—Y(@)-LC
‘ ;
TR i ’
B TR il 10 ﬂ*
7 | | 1 |
2 HV A
S | TR | I
| “‘M{ ‘ M“ “H‘H‘”‘/H\ I \
s il I “‘\u
2
0 5 10 15 20 25 30 3 40 45 50
tiempo [s]
Fig. 5. Velocidad lateral Y (t) en lazo abierto (LA) con

Q(t) = Q9 =11rad/s y p(t) = po = 0.1 m/s, y en
lazo cerrado (LC) con los controladores (28) y (29).

6. CONCLUSIONES

En este trabajo se analiza la estabilidad de un sistema
de perforacién que presenta acoplamiento entre las vi-
braciones torsionales, axiales y laterales. Se desarroll$
una estrategia de control para los subsistemas torsional
y axial utilizando un enfoque basado en la teoria de Lya-
punov. El estudio demuestra que los controladores prop-
uestos garantizan la estabilidad exponencial en dichas
dindmicas, lo que permite que los errores de velocidad
converjan a cero y que el BHA siga adecuadamente las
velocidades nominales definidas en superficie.

Aunque la dindmica lateral no cuenta con una accién
de control directa, se observd que, una vez estabilizada
la dindmica torsional, las amplitudes de las vibraciones
laterales disminuyen y tienden a comportarse de manera
més regular. Tanto el andlisis tedrico como los resultados
numéricos respaldan que este comportamiento esta asoci-
ado con la estabilidad en el sentido de Lyapunov en dicha
componente.

La efectividad del control se evalué mediante simulaciones
en lazo abierto y cerrado, mostrando la supresion efectiva
del stick-slip y bit-bounce en las dindmicas torsional y
axial, destacando beneficios indirectos del control. En
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conjunto, los resultados demuestran el potencial del es-
quema propuesto para mejorar el desempeno del sistema
de perforacion.
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