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Abstract: During oil well drilling process, vibrations can reduce operating efficiency and
damage equipment. This paper presents a model that describes the coupled torsional, axial
and lateral dynamics of a drill string. Using a stability approach based on Lyapunov theory, the
controller gains that ensure system stability are determinated. Numerical simulations show that
the implemented control eliminates torsional and axial oscillations and significantly attenuates
lateral vibrations, contribuiting to improved overall drilling system performance.
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1. INTRODUCCIÓN

Diversos estudios han evidenciado que el rendimiento
de los sistemas de perforación puede verse gravemente
afectado por la presencia de vibraciones mecánicas, provo-
cando desgaste acelerado, pérdida de eficiencia y fallos
estructurales. Estas vibraciones, espećıficamente de tipo
torsional, axial y lateral, dan lugar a fenómenos como
stick-slip, bit-bounce y whirl, debido a su naturaleza
acoplada.

Frente a esta problemática, se han propuesto en la lite-
ratura diferentes estrategias de modelado para entender y
controlar estas dinámicas. Entre los modelos propuestos
se pueden mencionar los que emplean Ecuaciones Difer-
enciales Parciales (EDP) y Ecuaciones Diferenciales con
Retardo de tipo Neutral (EDRN). Boussaada et al. (2013)
y Saldivar et al. (2011) han utilizado estas herramientas
para estudiar las vibraciones torsionales y axiales, apli-
cando controles basados en retroalimentación retardada
y mecanismos de disipación de enerǵıa con resultados
favorables frente al stick-slip y bit-bouncing.

En el caso de la dinámica lateral, particularmente rel-
evante en pozos desviados, el enfoque predominante ha
sido el uso del Método de Elementos Finitos (FEM). Por
ejemplo, Li et al. (2020) analiza la influencia de factores
como el peso sobre la broca, la velocidad de rotación y
la fricción lateral en el comportamiento oscilatorio de la
sarta.

Además, estudios más recientes como el presentado en
Liu et al. (2022) proponen modelos acoplados no lineales
que integran las tres vibraciones principales mediante el
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método de la enerǵıa y el principio de Hamilton, con
énfasis en condiciones operativas extremas. Sus resultados
subrayan la importancia de ajustar parámetros como la
longitud de la sarta y la velocidad angular para reducir las
oscilaciones, recomendando también el uso de herramien-
tas de impacto torsional como solución práctica en tales
entornos.

A diferencia de trabajos como los de Márquez et al.
(2015) y Saldivar Márquez (2013), donde la dinámica
lateral se omite, en esta investigación se propone un
modelo completo que describe el acoplamiento entre las
tres dinámicas. La vibración torsional se modela mediante
una EDRN, mientras que las componentes axial y lateral
se representan con Ecuaciones Diferenciales Ordinarias
(EDO). A partir de este modelo, se realiza un análisis de
estabilidad empleando la teoŕıa de Lyapunov, que permite
calcular ganancias de control para eliminar las vibraciones
torsionales y axiales. Aunque no se actúa directamente
sobre la dinámica lateral, el análisis permite determi-
nar la atenuación de las vibraciones laterales debido al
acoplamiento con las dinámicas axial y torsional.

2. MODELO MATEMÁTICO

2.1 Dinámica torsional-axial

Considerando el modelo de la dinámica torsional pre-
sentado en Márquez et al. (2015) y el modelo de
la dinámica axial propuesto en Challamel (2000), la
dinámica torsional-axial acoplada puede describirse por

ν̇(t) =Dν̇(t− 2h) +Aν(t) +Bν(t− 2h)

+B1Ω(t− h) +B2ρ(t) +WΩ0

+ Cfϕn(t) + Crfϕn(t− 2h)

(1)
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donde

A =


−Λ− cb

IB
0 0

0 0 1

−µcb
m0

− k0
m0

− c0
m0

 , D =

[
Γ 0 0
0 0 0
0 0 0

]
(2)

B =

Γcb
IB

− ΓΛ 0 0

0 0 0
0 0 0

 ,W =

cb (Γ− 1)

IB
− Λ (Γ + 1)

0
0


(3)

B1 =

[
Θβt

0
0

]
, B2 =

 0
0

− c0
m0

 , Cr =

 Γ

IB
0
0

 , C =


− 1

IB
0

− µ

m0


(4)

ν(t) =
[
ϕ̄(t) z̄(t) ˙̄z(t)

]T
(5)

Γ =
βt − c̃GJ

βt + c̃GJ
, Λ =

c̃GJ

IB
, Θ =

2Λ

βt + c̃GJ
(6)

En el modelo se emplea como variable de estado el
error torsional definido como ϕ̄(t) = ϕ̇b(t) − Ω0, donde
ϕb(t) denota el desplazamiento angular en el extremo
inferior de la sarta de perforación, y Ω0 es la velocidad
rotacional nominal del rotor, la cual es constante. De
manera similar, el error axial se define como z̄(t) =
Zb(t) − ρ0t, donde Zb(t) es el desplazamiento axial del
ensamblaje en el extremo inferior (BHA, por sus siglas
en inglés Bottom Hole Assembly), y ρ0 representa la tasa
de penetración nominal constante. La velocidad angular
Ω(t), aplicada en la superficie por la mesa giratoria,
es la entrada de control de la dinámica torsional. En
paralelo, ρ(t) denota la velocidad axial impuesta en la
superficie y actúa como la entrada de control para la
dinámica axial. La velocidad de propagación de ondas
torsionales se expresa como c̃ =

√
ρa/G, donde ρa y

G representan la densidad y el módulo de corte de la
sarta de perforación. El retardo temporal asociado se
define como h = c̃L, siendo L la longitud de dicha
sarta. El parámetro βt representa el momento angular
en el extremo superior de la sarta, mientras que cb
denota el coeficiente de amortiguamiento viscoso, e IB
corresponde al momento de inercia del BHA. Además,
entre las propiedades geométricas y f́ısicas del sistema
se encuentra el segundo momento de área J . En cuanto
al subsistema axial, m0 representa la masa del oscilador
equivalente, c0 es el coeficiente de amortiguamiento, y
k0 indica la rigidez del resorte axial. La fuerza externa
relacionada con el torque aplicado en la broca, denotada
por fϕn(t), se define según Márquez et al. (2015) como:

fϕn(t) =
(
cϕ1 + cϕ2e

−γb|ϕ̄(t)+Ω0|
)
sign

(
ϕ̄(t) + Ω0

)
(7)

donde cϕ1 = wobrbµcb y cϕ2 = wobrb (µsb − µcb). Aqúı,
wob representa el peso nominal constante aplicado sobre
la broca, rb es el radio de la broca, µcb es el coeficiente
de fricción de Coulomb, y µsb es el coeficiente de fricción
estática. El parámetro γb indica la tasa de disminución de

la velocidad, y µ está definido como µ = 2 (rbµbitcbit)
−1

,
donde µbit corresponde al coeficiente de fricción de con-
tacto entre la broca y la roca. El coeficiente cbit se expresa
como cbit = 6+4ρbit

6+3ρbit
, siendo ρbit la tasa radial de incre-

mento en la densidad de cortadores. La función sign(a)
se define como en Márquez et al. (2015):

sign(a) =

{
1, a > 0
0, a = 0
−1, a < 0

(8)

2.2 Dinámica lateral

Con el fin de describir la dinámica lateral, se define la
variable r =

√
X(t)2 + Y (t)2 , donde X(t) y Y (t) son las

posiciones laterales del BHA en cada dirección. Siguiendo
las ideas propuestas en Fang et al. (2022), se considera
una tolerancia as entre el estabilizador y las paredes del
pozo, aśı como una tolerancia ac entre el collaŕın y las
paredes del pozo, con ac > as. De esta forma, se asume
que la posición radial r del BHA puede situarse en 3 casos:
r < as, as ≤ r < ac y r ≥ ac. Lo anterior, se puede
observar en la Figura 1.

Se define el centro de masa del BHA con respecto al centro
del pozo como:

CT
m =

(
X(t) + e cos

(
ϕ̄(t) + Ω0

)
, Y (t) + e sin

(
ϕ̄(t) + Ω0

))
(9)

donde e es la distancia excéntrica del BHA con respecto
a su centro geométrico. Para la obtención del modelo
que describe ésta dinámica se utiliza el formalismo de
Lagrange, el cual se define como en Fang et al. (2022):

∂

∂t

(
∂K

∂q̇

)
− ∂K

∂q
+

∂U

∂q
+

∂D

∂q̇
= F (10)

donde K, U y D son la enerǵıa cinética, potencial y
disipada del sistema, respectivamente. Además q es el vec-
tor de coordenadas generalizadas y F denota las fuerzas
externas. Dichas enerǵıas se definen como en Fang et al.
(2022):

K =
1

2
mlĊ

T
mĊm , D =

cl
2

(
Ẋ2(t) + Ẏ 2(t)

)
(11)

Fig. 1. Posiciones del BHA: A) r < as, B) as ≤ r < ac,
C) r ≥ ac

.
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U =


1

8
klX(t)2 +

1

8
klY (t)2, r < as

0, r ≥ as

(12)

donde ml, kl y cl representan la masa, la rigidez y el
coeficiente de amortiguamiento lateral equivalente. La
rigidez lateral equivalente se define como en Christoforou
and Yigit (2001):

kl =
EIcπ

4

2l3BHA

− TOB (t)π3

2l2BHA

− WOB (t)π2

2lBHA
(13)

donde E es el módulo de Young del material de la sarta
de perforación, Ic el momento de inercia del collar de
perforación, lBHA es la longitud del BHA, TOB(t) y
WOB(t) son el par sobre la broca y el peso sobre la broca,
las cuales son funciones que representan las fuerzas de
interacción de la broca con la superficie de perforación en
la dinámica torsional y axial, respectivamente. De acuerdo
con Márquez et al. (2015) y Challamel (2000), estas dos
últimas se definen como:
TOB (t) =cb

(
ϕ̄(t) + Ω0

)
+
(
cϕ1 + cϕ2e

−γb|ϕ̄(t)+Ω0|
)
sign

(
ϕ̄(t) + Ω0

)
(14)

WOB (t) = µTOB (t) (15)

Además, las fuerzas externas se definen como en Fang
et al. (2022):

fx =



0, r < as
1

ml
(FNs cos θ − FTs sin θ) , as ≤ r < ac

1

ml
(FN + FNs) cos θ

− 1

ml
(FT + FTs) sin θ

, r ≥ ac

(16)

fy =



0, r < as
1

ml
(FNs sin θ + FTs cos θ) , as ≤ r < ac

1

ml
(FN + FNs) sin θ

+
1

ml
(FT + FTs) cos θ

, r ≥ ac

(17)

con

FNs = −klδ cosα, FTs = klδ sinα (18a)

FN = −kc

√
(r − ac)

3
, FT = µcFNsign(v) (18b)

δ =

√(
X(t)− 1

2
as cos θ

)2

+

(
Y (t)− 1

2
as sin θ

)2

(19)

v =
1

r

(
X(t)Ẏ (t)− Y (t)Ẋ(t)

)
+

dco
2

ϕ̇b(t) (20)

donde θ = cos−1 (X(t)/r), sinα = ac sin
(
tan−1 µs

)
/r,

cosα = ac cos
(
tan−1 µs

)
/r, µs es el coeficiente de fricción

de Coulomb entre el estabilizador y la pared del pozo, kc
es el coeficiente de rigidez de contacto de la pared del
pozo, µc y v son los coeficientes de fricción de Coulomb
y la velocidad relativa de contacto entre el collar y la
pared del pozo, y dco es el diámetro interno del collar de

perforación. Sustituyendo (11) y (12) en (10), se obtiene
el modelo que describe la dinámica lateral:

• Cuando r < as

ml

(
Ẍ(t)− ϕ̈b(t)esin (ϕb(t))− ϕ̇2

b(t)e cos (ϕb(t))
)

+
1

4
klX(t) + clẊ(t) = fx

ml

(
Ÿ (t) + ϕ̈b(t)e cos (ϕb(t))− ϕ̇2

b(t)esin (ϕb(t))
)

+
1

4
klY (t) + clẎ (t) = fy

(21)
• Cuando r ≥ as

ml

(
Ẍ(t)− ϕ̈b(t)esin (ϕb(t))− ϕ̇2

b(t)e cos (ϕb(t))
)

+clẊ(t) = fx

ml

(
Ÿ (t) + ϕ̈b(t)e cos (ϕb(t))− ϕ̇2

b(t)esin (ϕb(t))
)

+clẎ (t) = fy
(22)

que puede escribirse como:

˙̄x(t) =Axyx̄(t) + ExyFx

˙̄y(t) =Axy ȳ(t) + ExyFy
(23)

donde

Axy =



[
0 1

− kl
4ml

− cl
ml

]
, r < as

[
0 1

0 − cl
ml

]
, r ≥ as

(24)

x̄(t) =
[
X(t) Ẋ(t)

]T
, ȳ(t) =

[
Y (t) Ẏ (t)

]T
(25)

Exy = [0 1]
T

(26)

Fx = fx + ϕ̈b(t)e sin (ϕb(t)) + ϕ̇2
b(t)e cos (ϕb(t)) (27a)

Fy = fy − ϕ̈b(t)e cos (ϕb(t)) + ϕ̇2
b(t)e sin (ϕb(t)) (27b)

3. DINÁMICA ACOPLADA EN LAZO CERRADO

Con el objetivo de garantizar que los errores de velocidad
angular y axial tiendan a cero, y de esta forma atenuar
los fenómenos de stick-slip y bit-bouncing, se propone
el siguiente esquema de control, basado en las ideas
presentadas en Saldivar Márquez (2013):

Ω(t− h) =kϕϕ̄ (t− 2h)

− Γ (cb − IBΛ)− IBΛ− cb
IBβtΘ

Ω0

+
cϕ1

IBβtΘ
(1− Γ) sign

(
ϕ̄ (t− 2h) + Ω0

)
(28)

y

ρ(t) =kz z̄ (t)−
µcb
c0

Ω0 −
µ

c0
c1ϕsign

(
ϕ̄(t) + Ω0

)
(29)
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donde kϕ y kz son las ganancias de control. Por lo
tanto, sustituyendo (28) y (29) en (1) y considerando la
dinámica lateral (23), el modelo acoplado en lazo cerrado
se describe por

ν̇(t) =Dν̇(t− 2h) + Āν(t) + B̄ν(t− 2h) (30a)

+ Cfϕn(t) + Crf̄ϕn(t− 2h)

˙̄x(t) =Axyx̄(t) + ExyFx (30b)

˙̄y(t) =Axy ȳ(t) + ExyFy (30c)

donde

Ā =


−Λ− cb

IB
0 0

0 0 1

−µcb
m0

− 1

m0
(k0 + c0kz) − c0

m0

 (31)

B̄ =

Γ
(

cb
IB

− Λ

)
+ kϕβtΘ 0 0

0 0 0
0 0 0

 (32)

f̄ϕn(t) =
(c1ϕ

Γ
+ cϕ2e

−γb|ϕ̄(t)+Ω0|
)
sign

(
ϕ̄(t) + Ω0

)
4. ANÁLISIS DE ESTABILIDAD

El análisis de estabilidad tiene como finalidad encontrar
los valores adecuados de las ganancias kϕ y kz que
garanticen la estabilidad del sistema. Aunque la dinámica
lateral no se controla de forma directa, este estudio
permite evaluar cómo la eliminación del fenómeno stick-
slip influye en su estabilidad.

4.1 Dinámica torsional-axial

Tomando en cuenta que
∣∣∣e−γb(ϕ̄(t)+Ω0)

∣∣∣ ≤
∣∣∣e−γb(ϕ̄(t))

∣∣∣
para Ω0 ≥ 0, se cumple que

|fϕn (t)| ≤ δϕ1
∣∣ϕ̄(t)∣∣∣∣f̄ϕn (t− 2h)

∣∣ ≤ δϕ2
∣∣ϕ̄(t− 2h)

∣∣ (33)

donde δϕ1 y δϕ2 son constantes positivas conocidas.

Con base en el Teorema 4 (Estabilidad exponencial)
descrito en Saldivar Márquez (2013), se llega a la siguiente
proposición:

Proposición 1. Sea el sistema (30a), donde las fuerzas
fϕn(t) y f̄ϕn(t − 2h) están acotadas por (33). Se garan-
tiza estabilidad exponencial o σ-estabilidad del sistema
(donde σ es la tasa de decaimiento de las trayectorias)
si existen matrices simétricas definidas positivas P , Q, R
y S, y escalares constantes kϕ y kz tal que la siguiente
desigualdad matricial se satisfaga:
ξ̄11

√
2P

√
2δϕ1C

T
1/2TC1/2 ξ12 0 ξ13

∗ −I 0 0 0 0
∗ ∗ −I 0 0 0
∗ ∗ ∗ ξ̄44 δϕ2C

T
r1/2

TCr1/2 ξ23
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ξ33

 < 0

(34)

donde

ξ̄11 = PÃ+ ÃTP +Φ1Ã+ S −R

+ δ2ϕ1C
T [T + I]CΥ

(35a)

ξ12 = eσ2hΦ1

[
B̄ − σD

]
+ eσ2hP

[
B̄ − σD

]
+R (35b)

ξ13 = eσ2hΦ1D + eσ2hPD (35c)

ξ̄44 = eσ2hΦ2

[
B̄ − σD

]
− S −R

+ δ2ϕ2C
T
r [T + 2I]CrΥ

(35d)

ξ23 = eσ2hΦ2D (35e)

ξ33 = eσ2hΦ3 −Q (35f)

Φ1 = ÃT [T + 2I] (35g)

Φ2 =
[
B̄ − σD

]T
[T + 2I] (35h)

Φ3 = DT [T + 2I]D (35i)

Υ =

[
1 0 0
0 0 0
0 0 0

]
, Ã = Ā+ σI (35j)

Cr1/2 =

[√
Γ

IB
0 0

]T
, C1/2 =

[√
1

IB
0

√
µ

m0

]T
(35k)

4.2 Dinámica lateral

Dado que la dinámica torsional-axial es exponencialmente
estable, ϕ̇b(t) → Ω0, ϕ̈b(t) → 0, z̄(t) → 0 y ˙̄z(t) → 0. Por
lo tanto, la dinámica lateral puede reescribirse como:

˙̄x(t) = Āxyx̄(t) + ExyF̄x

˙̄y(t) = Āxy ȳ(t) + ExyF̄y

(36)

donde

Āxy =



Āxy1 =

 0 1

− k̄l
4ml

− cl
ml

 , r < as

Āxy2 = Āxy3 =

[
0 1

0 − cl
ml

]
, r ≥ as

(37)

con k̄l = kl, F̄x = Fx, y F̄y = Fy, para ϕ̇b = Ω0.
Luego

∣∣F̄x

∣∣ ≤ F̄|xy| y
∣∣F̄y

∣∣ ≤ F̄|xy|, con F̄|xy| =
∣∣Ω2

0e
∣∣ +∣∣∣ 1

ml

(
FN + F̄Ns

)∣∣∣ + ∣∣∣ 1
ml

(
FT + F̄Ts

)∣∣∣, donde F̄Ns = FNs,

y F̄Ts = FTs, para ϕ̇b = Ω0. Por lo tanto,∣∣F̄i

∣∣ ≤ ∣∣Ω2
0e
∣∣+ ∣∣∣∣2k̄lml

∣∣∣∣ (|x̄1(t)|+ |ȳ1(t)|+ |as|)

+

∣∣∣∣FN

ml

∣∣∣∣+ ∣∣∣∣FT

ml

∣∣∣∣ (38)

donde i = {x, y}. Para el análisis de estabilidad de
la dinámica lateral, considere la función de Lyapunov
definida como:

Vxy = x̄T (t)Qxx̄(t) + ȳT (t)Qy ȳ(t) (39)
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donde Qx = QT
x > 0 y Qy = QT

y > 0. Calculando la
derivada, se obtiene:

V̇xy = ˙̄xT (t)Qxx̄(t) + x̄T (t)Qx ˙̄x(t)

+ ˙̄yT (t)Qy ȳ(t) + ȳT (t)Qy ˙̄y(t)
(40)

Sustituyendo la dinámica lateral (36) en (40) y definiendo
Wx = ĀT

xyQx + QxĀxy y Wy = ĀT
xyQy + QyĀxy, sigue

que:

V̇xy =x̄T (t)Wxx̄(t) + ȳT (t)Wy ȳ(t)

+ F̄xE
T
xyQxx̄(t) + x̄T (t)QxExyF̄x

+ F̄yE
T
xyQy ȳ(t) + ȳT (t)QyExyF̄y

(41)

Luego, sustituyendo la cota superior (38) en (41) y
definiendo W̄x = Wx + Rx + RT

x , W̄y = Wy + Ry +
RT

y , Rx = QxExyΨ
T , Ry = QyExyΨ

T , Rxy = Rx +

RT
y , y F̄xy = Exy

(∣∣Ω2
0e
∣∣+ ∣∣∣ 2k̄l

ml

∣∣∣ |as|+ ∣∣∣FN

ml

∣∣∣+ ∣∣∣FT

ml

∣∣∣), con
Ψ =

[∣∣∣∣2k̄lml

∣∣∣∣ 0]T , se obtiene que

V̇xy ≤x̄T (t)W̄xx̄(t) + ȳT (t)W̄y ȳ(t) + x̄T (t)Rxy ȳ(t)

+ ȳT (t)RT
xyx̄(t) + F̄T

xyQxx̄(t) + x̄T (t)QxF̄xy

+ F̄T
xyQy ȳ(t) + ȳT (t)QyF̄xy

(42)

que puede re-escribirse como:

V̇xy ≤ ηTxyξxyηxy (43)
donde

ηxy =
[
x̄(t) ȳ(t) F̄xy

]T
, ξxy =

W̄x Rxy Qx

RT
xy W̄y Qy

Qx Qy 0

 (44)

Note que, debido al cero en la diagonal principal de
ξxy, solo se puede garantizar estabilidad en el sentido
de Lyapunov. Estos resultados se pueden resumir en la
siguiente proposición.

Proposición 2. Sea el sistema (36), donde las fuerzas F̄x

y F̄y están acotadas como se indica en (38). Si existen
matrices simétricas definidas positivas Qx, y Qy tales que
la desigualdad matricial ξxy ≤ 0 es factible, donde ξxy
está definido en (44), entonces se garantiza la estabilidad
en el sentido de Lyapunov del sistema.

5. RESULTADOS NUMÉRICOS Y DISCUSIÓN

Los parámetros utilizados en los modelos torsional y axial
empleados en las simulaciones se obtuvieron de Márquez
et al. (2015), mientras que los correspondientes a la
dinámica lateral provienen de Fang et al. (2022).

De acuerdo con la Proposición 1, se obtienen las ganancias
de los controladores:

kϕ = −0.036, kz = −0.3 (45)

La Figura 2 muestra el comportamiento stick-slip carac-
teŕıstico en la respuesta en lazo abierto, donde la veloci-
dad angular del BHA vaŕıa entre cero y casi el doble de la
velocidad nominal. En contraste, al aplicar el control en
lazo cerrado, se observa que dicha velocidad converge al
valor deseado Ω0 = 11 rad/s, evidenciando la efectividad
de la estrategia de control propuesta.

En la Figura 3 se observa cómo, en lazo abierto, el error
en la velocidad axial oscila alrededor de cero, reflejando
el fenómeno conocido como bit-bouncing, propio de las
oscilaciones en dicha dirección. Al activar el control, este
error disminuye progresivamente hasta estabilizarse, lo
que indica una eliminación efectiva de las vibraciones
axiales.

La Figuras 4 y 5 muestran oscilaciones irregulares en
los ejes X y Y , propias del whirling, bajo dinámica
no controlada. Aunque no se controla directamente, la
respuesta lateral en lazo cerrado reduce su amplitud tras
10 segundos, coincidiendo con la estabilización torsional,
lo que evidencia el acoplamiento entre ambas dinámicas.

Fig. 2. Velocidad angular ϕ̇b(t) = ϕ̄(t)+Ω0 en lazo abierto
(LA) con Ω(t) = Ω0 = 11 rad/s y ρ(t) = ρ0 =
0.1 m/s, y en lazo cerrado (LC) con los controladores
(28) y (29).

Fig. 3. Velocidad del error axial ˙̄z(t) = Żb(t) − ρ0 en
lazo abierto (LA) con Ω(t) = Ω0 = 11 rad/s y
ρ(t) = ρ0 = 0.1 m/s, y en lazo cerrado (LC) con
los controladores (28) y (29).
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Fig. 4. Velocidad lateral Ẋ(t) en lazo abierto (LA) con
Ω(t) = Ω0 = 11 rad/s y ρ(t) = ρ0 = 0.1 m/s, y en
lazo cerrado (LC) con los controladores (28) y (29).

Fig. 5. Velocidad lateral Ẏ (t) en lazo abierto (LA) con
Ω(t) = Ω0 = 11 rad/s y ρ(t) = ρ0 = 0.1 m/s, y en
lazo cerrado (LC) con los controladores (28) y (29).

6. CONCLUSIONES

En este trabajo se analiza la estabilidad de un sistema
de perforación que presenta acoplamiento entre las vi-
braciones torsionales, axiales y laterales. Se desarrolló
una estrategia de control para los subsistemas torsional
y axial utilizando un enfoque basado en la teoŕıa de Lya-
punov. El estudio demuestra que los controladores prop-
uestos garantizan la estabilidad exponencial en dichas
dinámicas, lo que permite que los errores de velocidad
converjan a cero y que el BHA siga adecuadamente las
velocidades nominales definidas en superficie.

Aunque la dinámica lateral no cuenta con una acción
de control directa, se observó que, una vez estabilizada
la dinámica torsional, las amplitudes de las vibraciones
laterales disminuyen y tienden a comportarse de manera
más regular. Tanto el análisis teórico como los resultados
numéricos respaldan que este comportamiento está asoci-
ado con la estabilidad en el sentido de Lyapunov en dicha
componente.

La efectividad del control se evaluó mediante simulaciones
en lazo abierto y cerrado, mostrando la supresión efectiva
del stick-slip y bit-bounce en las dinámicas torsional y
axial, destacando beneficios indirectos del control. En

conjunto, los resultados demuestran el potencial del es-
quema propuesto para mejorar el desempeño del sistema
de perforación.
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