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Abstract: The problem of safety control for linear systems with delay in the input is addressed
via an observer predictor. Under this approach, no implementation of any integral is required,
avoiding potential instability phenomena that might induce violation of the imposed constraints
in the state space. We provide some insights into how to select the parameters of the observer
predictor scheme to guarantee that the system trajectories remain within a given set of the state
space.
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1. PROBLEM STATEMENT AND PRELIMINARIES

We consider systems of the form

ẋ(t) = Ax(t) +Bu(t− τ), t ≥ 0, (1)

where A ∈ Rn×n, B ∈ Rn×m and τ ≥ 0 is the delay.
Throughout the paper, we refer to system (1) with τ = 0
as delay free system. We address the following problem:

Problem 1: Given a closed set C ⊂ Rn, construct a control
algorithm u that ensures that if x0 := x(0) ∈ Cλ ⊂ C then
x(t, x0) ∈ C for all t ≥ 0.

Problem 1 is commonly known in the literature as safety
control problem, and its relevance is evident from a prac-
tical point of view, particularly when the state variables
must remain within prescribed state-space constraints. In
the last decade, the notion of Control Barrier Functions
(CBF) has shown to be powerful to address this class of
problems. Barrier functions were first introduced for safety
verification by Prajna and Jadbabaie (2004) and then
applied within the context of control design by Wieland
and Allgöwer (2007). The interpretation of the control
design task based on CBF as quadratic programs was then
introduced by Ames et al. (2016). In this paper, we rely
on this notion to approach Problem 1.

To advance the formulation of the problem, we introduce
the concept of CBF in a formal framework.

1.1 Basic facts on CBF

Let us characterize the set C by a continuously differen-
tiable function h : Rn → R:

C ={x ∈ Rn : h(x) ≥ 0}
∂C ={x ∈ Rn : h(x) = 0}

Int(C) ={x ∈ Rn : h(x) > 0}.
Definition 1. (Ames et al., 2016) A continuously differen-
tiable function h : Rn → R is a Control Barrier Function
(CBF) defined on a set D, C ⊆ D ⊂ Rn, for delay free

system (1), if there exists an extended class K function
α 1 such that for all x ∈ C there exists u satisfying

ḣ(x) = ∇h(x) (Ax+Bu(x)) ≥ −α(h(x)). (2)

Hereafter, for the sake of simplicity, we consider α(h) =
αh, with α > 0.

In Ames et al. (2016), it is proved that, if h is a CBF on D
for delay free system (1), any Lipschitz continuous function
u : D → Rm guarantees that if x0 ∈ C then x(t, x0) ∈ C
for all t ≥ 0.

Thus, u such that solves Problem 1, with τ = 0, can be
constructed from the solution to the quadratic program
(QP) (Ames et al., 2014)

u⋆(x) = argmin
u∈Rm

∥u− udes(x)∥2

s.t.∇h(x) (Ax+Bu) ≥ −α(h(x)),
where

udes(x) = Kx,

with K ∈ Rm×n such that A + BK is stable. Moreover,
the QP has the explicit solution (Xu et al., 2015)

u⋆(x) = udes(x) + usafe(x), (3)

where

usafe(x) =


0 if ψ(x) ≥ 0

− (∇h(x)B)T

∇h(x)BBT∇h(x)T
ψ(x) otherwise

(4)

with ψ(x) = ∇h(x)(Ax + B udes(x)) + αh(x), which is
locally Lipschitz for x ∈ D whenever ∇h(x) ̸= 0 (for all
x ∈ D) is locally Lipschitz. This means that for any point
of D there is a neighbourhood D0 such that there exists
δ0 > 0 satisfying

∥u⋆(x)− u⋆(y)∥ ≤ (∥K∥+ δ0) ∥x− y∥, x, y ∈ D0. (5)

Control (3) ensures that the time derivative of a given CBF
h along the solutions of the delay free system (1) satisfies
(2), i.e.

ḣ(x) ≥ −αh(x). (6)

1 A function α : (−a1, a2) → (−∞,∞) is said to be an extended
class K function if it is continuous, strictly increasing and α(0) = 0.
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Fig. 1. System (1) with control (3) with τ = 0 and with
τ = 0.5.

Indeed, this is precisely the kind of condition that one
seeks to guarantee that the system trajectories remain
within a given set. The reason is the following: if x0 ∈ C,
then h(x0) ≥ 0, and from the solution of the differential
inequality follows that h(x(t)) ≥ 0, i.e. x(t, x0) ∈ C for all
t ≥ 0.

Example 1. To illustrate the ideas, let us consider a double
integrator, i.e. system (1) with

A =

(
0 1
0 0

)
, B =

(
0
1

)
, τ = 0.5.

Let the function

h(x) = (x1 + 3)2 + (x2 − 2)2 − 1

characterize the set C. Figure 1 depicts the solution of
the system on the plane (x1, x2) in closed-loop with
constructed controller (3), u(t) = u⋆(x(t)), α = 0.5,
K = − (1 1), considering control with and without input
delay. The gray line depicts the first case, and the cyan-
green the second. The magenta circle corresponds to the
prohibitive set.

1.2 The problem with the input delay

As shown by Example 1, the input delay is detrimental
to the invariance of the system trajectory. Relying on
predictor theory for systems of the form (1), an immediate
solution to Problem 1 is the construction of the controller
u⋆(x) via the predicted state xp(t) = x(t+τ), i.e u⋆(xp). In
fact, this solution was first proposed by Jankovic (2018).
Nevertheless, the solution within this framework is simple
only on the surface for two reasons:

(1) The implementation of the integral term in the pre-
dictor might lead to unstable response of the closed-
loop system and in turn to the violation of the safety
contraints; see Mondié and Michiels (2003) and the
references therein.

(2) While t < τ , the system trajectories evolve in open
loop and must be assumed that before τ the system
satisfies the state space constraints. The assumption
may fail if the delay is too large or the open-loop
dynamics are too fast.

Another approach that has proven effective in constructing
stabilizing control for (1), yet has not been applied to
Problem 1, is based on the implementation of observers
(Najafi et al., 2013). This paper is devoted to exploring
that direction.

The rest of the note is organized as follows. In the next
section, we introduce the observer predictor scheme, and
provide some guide to tune the corresponding parameters.
More precisely, we show that the observation error should
converge fast enough, while the gain matrix K should
be selected with care and not arbitrarily. In Section
3, we revisit Example 1 and illustrate the main points
discussed within Section 2. We closed the paper with some
concluding remarks in Section 4.

Notation: The gradient of a function f(x) is denoted by
∇f(x), while ∥ · ∥ stands for the Euclidian norm. The rest
of notation is standard, and when necessary, it is specified
throughout the paper.

2. SAFE OBSERVER PREDICTOR

The basic idea of the observer-predictor is the construction
of an observer of the form

ż(t) = Az(t) +Bu(t) + Le(t),

where
e(t) = z(t− τ)− x(t),

and L ∈ Rn×n is such that the solutions of

ė(t) = Ae(t) + Le(t− τ) (7)

exponentially converge to the origin. Then, the system is
given by

ẋ(t) = Ax(t) +Bu(t− τ)

ż(t) = Az(t) +Bu(t) + Le(t)

u(t) = ν(z(t)).

(8)

If the problem consists in the stabilization of (1), then
ν(z(t)) = udes(z(t)) and it is clear that when e(t) ≡ 0,
x(t) = z(t− τ) and u(t− τ) = ν(z(t− τ)) = Kx(t).

We consider the control in (3):

u(t) = ν(z(t)) = udes(z(t)) + usafe(z(t)). (9)

Once again, if e(t) ≡ 0, then the closed loop system is

ẋ(t) = Ax(t) +Bν(x(t)),

which by construction of ν satisfies (2). This is not the
case while e(t) ̸= 0. The main results are presented next.

Let
Cλ := {(φ, x) ∈ PCτ ×D : η(φ, x) ≥ 0} ,

where φ is the initial condition of system (7), PCτ denotes
the space of Rn-valued piecewise continuous functions
defined on [−τ, 0], and

η(φ, x) := −v 1
2 (φ) + λh(x),

with λ some positive number and v the complete type
functional (A.1) of system (7).

Theorem 1. Assume that there exists γL such that

γL = max
z∈Z

∥∇h(z)L∥,

where Z ⊂ D and let

λz =
(σ − α)β

γL
,

where α > 0 is given, and σ and β =
√
β1 are com-

puted from (A.4) and (A.2), respectively. If σ > α and
(φ, z0) ∈ Cλz , then z(t, z0) satisfying (8) remains within
C for all t ≥ 0.
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Proof. It is enough to prove that the time derivative of η
along the solutions of (8) satisfies

η̇(et, z) ≥ −αη(et, z)
for some α > 0. Indeed, this implies that if (z0, φ) ∈ Cλz

,

then η(et, z(t)) ≥ 0, and in turn that, h(z(t)) ≥ 1
λv

1
2 (et) ≥

0 for all t ≥ 0.

By construction of u,

ḣ(z) = ∇h(z) (Az +Bu+ Le) ≥ −αh(z) +∇h(z)Le.
Then, from (A.3) (see the Appendix),

η̇(et, z) + αη(et, z)

=− 1

2
v−

1
2 (et)

d

dt
v(et) + λḣ(z) + αη(et, z)

≥σv 1
2 (et)− α(λh(z)− η(et, z)) + λ∇h(z)Le(t)

=(σ − α)v
1
2 (et) + λ∇h(z)Le(t)

≥ ((σ − α)β − λγL) ∥e(t)∥, t ≥ 0,

where the last inequality follows from the lower bound
(A.2). The proof is concluded by considering λ = λz. 2

Remark 2. The parameter σ corresponds to an estimate
of the convergence rate of the observer error.

Since z(t− τ) = x(t)+ e(t), Theorem 1 implies that if e(t)
is sufficiently small for t ≥ τ then x(t) ∈ C for t ≥ τ . This
is achieved by a suitable choice of L.

The next result is focused on x(t).

Theorem 3. Let D0 be a neighborhood of any point from
C ⊂ D,

γ = max
x∈D0

∥∇h(x)B∥,

and

λ =
(σ − α)β

γ(∥K∥+ δ0)
,

where α > 0 is given, σ and β =
√
β1 are computed from

(A.4) and (A.2), respectively, and δ0 is the estimate in
(5). If σ > α and (φ, x0) ∈ Cλ, then x(t, x0) satisfying (8)
remains within C locally in time.

Proof. The proof follows the same arguments from those
of Theorem 1. Since we rely on (5), the statement holds
only locally in time.

Notice first that by construction of (9),

∥ν(x)− ν(y)∥ ≤ (∥K∥+ δ0)∥x− y∥, x, y ∈ D0

and
∇h(x) (Ax+Bν(x)) ≥ −αh(x).

Hence,

ḣ(x) =∇h(x)ẋ(t)
=∇h(x) (Ax(t) +Bν(z(t− τ)))

≥−∇h(x)B (ν(x(t))− ν(z(t− τ)))− αh(x(t))

≥− γ (∥K∥+ δ0) ∥x(t)− z(t− τ)∥ − αh(x(t))

=− γ (∥K∥+ δ0) ∥e(t)∥ −
α

λ
(v

1
2 (et) + η(et, x)),

and, from (A.3),

η̇(et, x) + αη(et, x)

=− 1

2
v−

1
2 (et)

d

dt
v(et) + λḣ(x) + αη(et, x)

≥(σ − α)v
1
2 (et)− λγ (∥K∥+ δ0) ∥e(t)∥

≥ ((σ − α)β − λγ (∥K∥+ δ0)) ∥e(t)∥.

(10)

The proof is finished by considering λ as in the statement
of the theorem. 2

Let us point out some remarks on the above theorem. First,
the locality in Theorem 3 can be removed by assuming
that the system trajectories evolve on a compact set D
containing C. In this case, the constants γ and δ0 can be
computed over D, albeit the constant λmight be too small,
depending on the definition of D.

Second, it offers insight into how to tune the design
parameters of (8) so that x(t, x0) stays within C. Indeed,
L should be such that σ is as bigger as possible, while
K should not be arbitrarily large. The above ensures a
sufficiently large λ to guarantee that the initial condition
x0 satisfies

λh(x0) ≥ v
1
2 (φ). (11)

Finally, for system (7), the initial condition is defined as

φ(θ) = z(θ − τ)− x(θ), θ ∈ [−τ, 0].
If

z(t− τ) =

{
z0 t = 0,
0, t ∈ [−τ, 0)

and x(t) = 0 for t ∈ [−τ, 0), then

φ(θ) =

{
z0 − x0, θ = 0,

0, θ ∈ [−τ, 0) (12)

Hence, the set Cλ reduces to

Cλ = {(φ, x0) ∈ PCτ ×D0 :

−
√
φ(0)V (0)φ(0) + λh(x0) ≥ 0

}
,

where V (0) is the delay Lyapunov matrix presented in the
Appendix. Consistently with Theorem 1, this expression
makes evident that for error function sufficiently small at
the initial time, even small values of λ might guarantee
that (11) holds, and that the trajectories remain within C.
Remark 4. If the estimate σ is not too conservative, The-
orems 1 and 3 might be used to obtain a region around
any initial condition for which safety of the closed-loop
trajectory is guaranteed, or to compute suitable gains L
and K.

3. ILLUSTRATION VIA NUMERICAL SIMULATION

We illustrate the highlighted points derived from Theorem
1 and Theorem 3 with Example 1 from the introduction.
Here, according to the definition of C in Section 1.1, we
refer to the region of the state space where h(x) < 0
as unsafe region, the magenta circle in the figures. We
focus on showing the system trajectories on the plane
(x1, x2) and omit graphs of them w.r.t. time as they are
not relevant to the discussion.

Figure 2 displays system trajectories of system (8) with
control (9) for different initial conditions, with

K = −10 (1 1) , and L = −0.75I2×2.

They clearly avoids the unsafe region in the plane.

However, as discussed in the previous section, the choice
of the gains is not trivial. We study three scenarios, each
of them aiming at illustrating respectively the discussed
points. The illustrated trade-off between gains is provided
for illustrative purposes only and should not be interpreted
as a basis for general conclusions.
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Fig. 2. System trajectories for different initial conditions
avoiding an unsafe set. The initial condition of the
first state variable is equal for all the cases, x10 = −7.

Fig. 3. First case: System trajectories for different values
of the gain K.

For the first scenario we set the observer gain L = −I2×2

and gains K

K1 = − (1 1) and K2 = − 1

10
(1 1) .

The results are depicted in Figure 3. The system solution
with K1 is depicted by the gray line, while the solution
with K2 by cyan-green. Gain K2 provides a slower re-
sponse of the closed-loop system, but keeps the system
trajectories within the safe set.

For the second scenario, we set the controller gain K = K1

and test two observer gains. The outcomes are presented
in Figure 4, where the gray line depicts the trajectory
corresponding to

L1 = −2.9I2×2,

while the cyan-green to

L2 = −I2×2.

From the estimates (A.4), it is clear that σ with L = L2

is bigger than with L = L1. Though barely noticeable,
the simulation indicates constraint violation due to slow
observer convergence when L = L2.

Finally, Figure 5 displays the results from the third sce-
nario, where we set K = K2 and L = L2 and consider
initial conditions

x0 = [−5 1.2]T

and
x0 = [−5 1]T .

Fig. 4. Second case: System trajectories for different values
of the gain L.

Fig. 5. Third case: System trajectories for different initial
conditions.

The gray line corresponds to the first and the cyan-green
line to the second. In both cases we are considering φ as
in (12) with z0 = 0.

Unfortunately, for this example, using Theorem 1 and 3
to tune gains or compute a safety region in terms of the
observer error is impractical, as the estimate σ provided
by (A.4) is too small.

4. CONCLUDING REMARKS

A partial solution to Problem 1 is provided by Theorem 1
and Theorem 3. The first one characterizes safety of the
system trajectories through the predicted state and the
corresponding error, while the second do it locally in time.
The results shed light on how to tune the gains of the
observer predictor scheme.

In contrast with the reported proposals in the literature,
we do not cope with implementation problems of the inte-
gral nor the open loop response during the interval [0, τ ],
while keeping simplicity of the scheme at the theoretical
level. A downside of adopting the presented approach is the
complexity in tuning the controller and observer gains, as
well as the computation of Cλ. The latter principally due
to the class of functional used in the analysis.

Ongoing research work is focused in achieving better es-
timates for Cλ and incorporating sequential subpredictors
to deal with larger delays.
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Appendix A. FACTS ON COMPLETE TYPE
FUNCTIONAL

The proof of the main result of the paper relies on the
complete type functional for system (7). We provide some
basic facts on it; see (Kharitonov, 2013, Chapter 2).
A complete type functional for system (7) with initial
condition φ ∈ PCτ is given by

v(φ) = v0(φ) +

∫ 0

−τ

φT (θ) (W1 + (τ + θ)W2)φ(θ)dθ,

(A.1)
where

v0(φ) = φT (0)V (0)φ(0)+2φT (0)

∫ 0

−τ

V (−τ−θ)A1φ(θ)dθ

+

∫ 0

−τ

φT (θ1)A
T
1

∫ 0

−τ

V (θ1 − θ2)A1φ(θ2)dθ2dθ1,

and V is the delay Lyapunov matrix of system (7) associ-
ated with W =W0 +W1 + τW2, with Wj > 0, j = 0, 1, 2.
The delay Lyapunov matrix is solution of a boundary
value problem and can be computed from the following
expression:

vec(V (θ)) = (I 0) eLθ(M +NeLτ )−1

(
0

− vec(W )

)
,

where θ ∈ [0, τ ],

M =

(
I 0

I ⊗AT
0 +AT

0 ⊗ I AT
1 ⊗ I

)
,

N =

(
0 −I

I ⊗AT
1 0

)
and

L =

(
AT

0 ⊗ I AT
1 ⊗ I

−I ⊗AT
0 −I ⊗AT

1

)
.

Here, the symbol ⊗ denotes the Kronecker product and
vec(·) stands for the vectorization of a matrix.

If system (7) is exponentially stable, the complete type
functional satisfies the following:

Property 1:
v(φ) ≥ β1∥φ(0)∥2 (A.2)

where β1 > 0 is such that

β1

(
AT

0 +A0 A1

AT
1 0

)
+

(
W0 0
0 W1

)
> 0.

Property 2: The time derivative along the solutions of (7)
satisfies

d

dt
v(et) + 2σv(et) ≤ 0, (A.3)

for some σ > 0, which can be estimated from the inequal-
ities

2σδ1 ≤ λmin(W0), 2σδ2 ≤ λmin(W2), (A.4)

where
δ1 = ∥U(0)∥(1 + ∥L∥τ),

and
δ2 = ∥L∥δ1 + (∥W1∥+ τ∥W2∥) .
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