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Abstract:
This work addresses the problem of stability and control in second-order linear systems with
two unstable poles and time delay. For this purpose, an observer–predictor scheme capable of
estimating the signal before the delay affects the system is proposed. The estimated signal is
used in the control stage to close the loop and design a PID controller for the system without
delay. The necessary and sufficient condition that guarantees the existence of parameters that
stabilize the proposed scheme is established. Furthermore, it is verified that the control strategy
is able to follow step-type references and reject external disturbances of the same type. Finally,
the effectiveness of the proposed scheme is verified by means of a simulation example.
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1. INTRODUCCIÓN

Los sistemas de control generalmente presentan retardos
debido a factores como el tiempo de procesamiento de
señales o el transporte de materiales en procesos industri-
ales. En plantas qúımicas, por ejemplo, el retardo puede
estar asociado con el tiempo que tarda un material en
recorrer una tubeŕıa. Además, en sistemas de control dig-
ital, la discretización de los datos y el tiempo de ciclo de
la computadora también contribuyen a generar retardos
de tiempo (Franklin et al., 1986). El fenómeno del retardo
de tiempo también existe en muchas otras aplicaciones de
ingenieŕıa como, la transmisión de videos (Khalek et al.,
2013), los sistemas de control en red (Heemels et al., 2010)
y comunicación (Yang et al., 2017).

Los procesos que presentan un retardo de tiempo signi-
ficativo en comparación con su constante de tiempo son
dif́ıciles de controlar. Esto se debe a que el término del
retardo aparece impĺıcito en la ecuación caracteŕıstica al
cerrar el lazo de control, lo que genera polos adicionales en
el plano complejo, dificultando el análisis de estabilidad.
Además, el retardo de tiempo disminuye el margen de fase
y de ganancia en el lazo cerrado, lo que puede llevar a la
inestabilidad (Tamani, 2014).

Para solucionar esta problemática algunos autores han
propuesto estrategias utilizando controlares clásicos como
por ejemplo, en Lee et al. (2010) se propone uti-

lizar controladores del tipo Proporcional/ Proporcional-
Integral(P/PI) y Proporcional-Derivativo/ Proporcional-
Integral- Derivativo (PD/PID) para estabilizar sistemas
retardados con un polo inestable y n polos estables. En
Novella-Rodŕıguez et al. (2019) se propone utilizar contro-
ladores del tipo Proporcional-Derivativo/ Proporcional-
Integral-Derivativo (PD/PID) para estabilizar sistemas
retardados con dos polos inestables. Ambos trabajos re-
alizan un análisis en el dominio de la frecuencia con el fin
de establecer las condiciones necesarias y suficientes que
aseguren la estabilidad de sistema.

Por otro lado, una de las estrategias más utilizadas para
estabilizar sistemas con retardo es el predictor de Smith
(SP) (Smith, 1957). Esta estrategia consiste en compensar
el retardo de tiempo anticipando la salida futura, es decir,
estimando la señal de salida antes del retardo. Sin em-
bargo, esta técnica solo funciona para sistemas estables.
A partir de esto, varios autores han propuesto diversas
modificaciones al predictor de Smith para poder utilizarlo
en sistemas inestables. Como por ejemplo, en Márquez-
Rubio et al. (2024) se propone una ligera modificación al
SP para estabilizar sistemas retardados, espećıficamente
aquellos de cualquier orden con un polo inestable. Esta
modificación consiste en agregar una o dos ganancias a
la estructura del SP. Además, se establecen las condi-
ciones necesarias y suficientes para garantizar la existen-
cia de ganancias estabilizantes y se realiza una prueba de
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seguimiento de referencias y rechazo de perturbaciones.
Otro resultado se presenta en Barragan-Bonilla et al.
(2022) basado en el enfoque de predicción, donde se
plantea el diseño de un observador/predictor para sis-
temas retardados de alto orden con un polo en el origen
y otro inestable. Esta estrategia utiliza tres ganancias
ajustables en la etapa de estimación y un controlador PID
de dos grados de libertad en la etapa de control.

En el presente trabajo se propone una estrategia para
estabilizar y controlar sistemas lineales de segundo orden
con dos polos inestables y retardo de tiempo. Se propone
un esquema observador–predictor con el fin de estimar las
variables internas del proceso. Al tener una adecuada es-
timación de la señal antes del retardo, es posible utilizarla
para cerrar el lazo y diseñar un controlador del tipo PID
para el sistema libre de retardo.

El trabajo se divide de la siguiente manera: en la Sección
II se describe la clase de sistemas abordados. En la Sección
III se presentan los resultados preliminares, donde se
analiza la estabilidad de un esquema de inyección con
dos ganancias, el cual se usa en el esquema propuesto.
En la Sección IV se presenta el esquema observador–
predictor, aśı como la prueba de convergencia. En la
Sección V se muestra la etapa de control implementada
al esquema observador–predictor y se realiza la prueba
de seguimiento de referencias y rechazo de perturbaciones
externas de señales de tipo escalón. En la Sección VI se
presenta un ejemplo con los resultados en simulación. Por
último, en la Sección VII se muestran las conclusiones de
este trabajo.

2. CLASE DE SISTEMAS

Considérese la siguiente clase de sistemas lineales de una
sola entrada y una sola salida (SISO) con retardo de
tiempo a la salida,

Y (s)

U(s)
= bG1(s)G2(s) e

−τs = G(s) e−τs, (1)

con,

G1(s) =
1

(s− a1)
, (2)

G2(s) =
1

(s− a2)
, (3)

donde U(s) y Y (s) representan las señales de entrada
y salida respectivamente, b > 0 denota la ganancia del
sistema, τ ≥ 0 es el retardo de tiempo que se supone
conocido y es constante, a1, a2 > 0 corresponden a las
posiciones de los polos inestables en el plano s y G(s) es
la función de transferencia sin considerar el retardo de
tiempo.

Aplicando al sistema (1) una estrategia de control clásico
basada en una retroalimentación de la salida, de la forma,

U(s) = [R(s)− Y (s)]C(s), (4)

donde R(s) es la nueva entrada de referencia y C(s) es el
controlador, genera un sistema en lazo cerrado dado por,

Y (s)

R(s)
=

C(s)G(s)e−τs

1 + C(s)G(s)e−τs
. (5)

Cabe destacar que el término e−τs en el denominador
de la función de transferencia (5), implica una ecuación
caracteŕıstica de lazo cerrado con un número infinito de
ráıces, lo que dificulta el análisis de estabilidad.

3. RESULTADOS PRELIMINARES

El siguiente resultado establece la condición de estabili-
dad de un sistema retardado de segundo orden con dos
polos inestables, usando un controlador PD.

Lema 1. Novella-Rodŕıguez et al. (2019) y Vázquez-
Guerra et al. (2019), considere el sistema (1) y una ley
de control dada por (4), donde C(s) es un controlador PD
de la forma, C(s) = kp(kds − 1). Entonces, existen kp y

kd que estabilizan al sistema en lazo cerrado Y (s)
R(s) , si y

solo si,

τ <
1

a1
+

1

a2
−

√
1

a21
+

1

a22
. (6)

La función de transferencia de lazo cerrado asociado al
lema 1 esta dada por,

Y (s)

R(s)
=

bkp(kds− 1)e−τs

(s− a1)(s− a2) + bkp(kds− 1)e−τs
(7)

donde su ecuación caracteŕıstica se expresa como,

(s− a1)(s− a2) + bkp(kds− 1)e−τs = 0 (8)

Los parámetros estabilizantes del controlador PD rela-
cionados al Lema 1 se determinan por las siguientes ecua-
ciones.

• La ganancia kd queda establecida por la siguiente
expresión,

kd >
1

a1
+

1

a2
− τ. (9)

• La ganancia kp se determina por el siguiente inter-
valo,

a1a2
bF (ωc1)

< kp <
a1a2

bF (ωcq )
(10)

con:

· q = 0 para F (ωc2) < F (ωc0) < F (ωc1)
· q = 2 para F (ωc0) < F (ωc2) < F (ωc1)

donde,

F (ωc∗ ) =

√√√√√ 1 + k2
d
ω2
c∗(

ω2
c∗

a21
+ 1

)(
ω2
c∗

a22
+ 1

) (11)

Para determinar los parámetros del controlador PD, se
sigue el siguiente procedimiento:
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1. Verificar la ecuación de estabilidad (6). Si se cumple,
continuar con el paso 2; de lo contrario, un contro-
lador PD no puede estabilizar al sistema (1).

2. Seleccionar un valor de kd usando (9).
3. Con el kd seleccionado, determinar ωc0 = 0, ωc1 y

ωc2 , correspondientes a la primera y segunda frecuen-
cia de cruce que satisfacen la siguiente ecuación,

arctan

(
ωcq

a1

)
+arctan

(
ωcq

a2

)
−arctan(kdωcq )−ωcq τ−π = −π,

(12)

4. Calcular el rango de kp con (10) usando el kd
seleccionado y las frecuencias obtenidas. Finalmente,
elegir un valor de kp dentro del intervalo resultante.

La demostración del Lema 1 puede revisarse en el dominio
de la frecuencia, como se indica en Novella-Rodŕıguez
et al. (2019) y en Vázquez-Guerra et al. (2019).

3.1 Esquema de inyección.

En este apartado se presenta un resultado fundamental
que define la condición de estabilidad para un esquema de
inyección como el que se ilustra en la Fig. 1. Este esquema
será utilizado más adelante en el diseño del observador–
predictor.

Fig. 1. Esquema de una inyección de la salida.

Lema 2. Considere el sistema (1) con una inyección de
la salida como se muestra en el esquema de la Fig. 1.
Entonces, existen g1 y g2, de modo que el sistema en lazo

cerrado Y1(s)
U1(s)

es estable si y solo si,

τ <
1

a1
+

1

a2
−

√
1

a21
+

1

a22
. (13)

Demostración 1. Considere la función de transferencia
Y1(s)
U1(s)

de lazo cerrado del esquema de la Fig. 1, dada por,

Y1(s)

U1(s)
=

be−τs

(s− a1) (s− a2) + (a1g1 − g2)
(

g1
a1g1−g2

s− 1
)
e−τs

,

(14)
donde su ecuación caracteŕıstica es,

(s− a1) (s− a2) + (a1g1 − g2)

(
g1

a1g1 − g2
s− 1

)
e−τs (15)

Nótese que las ecuaciones caracteŕısticas (8) y (15) pre-
sentan parámetros libres de diseño, en el primer caso
son kp y kd mientras que en el segundo corresponden
a g1 y g2. Al redefinir los parámetros de la ecuación
(15) como: g1

a1g1−g2
= kd y a1g1 − g2 = kp, se obtiene

una forma equivalente a la ecuación caracteŕıstica (8). En
consecuencia, la condición de estabilidad establecida en

el Lema 1 para (8) también es la válida para (15). Por
lo tanto, existen ganancias de g1 y g2 que garantizan la
estabilidad del sistema descrito por (1) con el esquema de
inyección mostrado en la Fig.1, si y solo si τ < 1

a1
+ 1

a2
−√

1
a2
1
+ 1

a2
2
.

Los parámetros estabilizantes para el sistema de la Fig.1
quedan establecidos por las siguientes expresiones,

• La ganancia g1 se determina por la siguiente ecuación,

g1 = α1α2. (16)

• La ganancia g2 queda establecida por,

g2 = α2(a1α1 − 1). (17)

Donde,

α1 >
1

a1
+

1

a2
− τ. (18)

y
a1a2
f(ωc1)

< α2 <
a1a2
f(ωci)

, (19)

con:

• i = 0 para f(ωc2) < f(ωc0) < f(ωc1)
• i = 2 para f(ωc0) < f(ωc2) < f(ωc1)

donde,

f(ωc∗ ) =

√√√√√ 1 + α2
1 ω

2
c∗(

ω2
c∗

a21
+ 1

)(
ω2
c∗

a22
+ 1

) (20)

Para obtener los parámetros estabilizantes del esquema de
inyección de la Fig.1, se sigue la siguiente metodoloǵıa:

1. Verificar que se cumpla la condición de estabilidad
(13). Si se cumple, continuar con el paso 2; en
caso contrario, no existen ganancias de g1 y g2 que
estabilicen el sistema (1) con la inyección ilustrada
en la Fig. 1.

2. Seleccionar un valor de α1 utilizando (18).
3. A partir del valor seleccionado de α1, determinar las

frecuencias ωc0 = 0, ωc1 y ωc2 , siendo ωc1 y ωc2 las
dos primeras soluciones positivas que satisfacen la
siguiente ecuación:

arctan

(
ωci

a1

)
+arctan

(
ωci

a2

)
−arctan(α1ωci )−ωciτ−π = −π,

(21)

la cual se resuelve a través de métodos numéricos; la
opción más común es el método de Newton-Raphson,
aunque también pueden emplearse bisección o her-
ramientas de software como MATLAB (fzero) o
Python (fsolve).

4. Usando las frecuencias obtenidas en el paso anterior,
calcular el rango de α2 con la ecuación (19) y
seleccionar un valor dentro del intervalo resultante.

5. Con los valores seleccionados de α1 y α2, determinar
la ganancia g1 usando (16).

6. Finalmente, obtener la ganancia g2 utilizando la
ecuación (17).
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Fig. 2. Observador–predictor propuesto sin acción de
control.

4. ESTRATEGIA DE ESTIMACIÓN

En esta sección se demostrará que el observador–predictor
propuesto, representado en la Fig. 2, garantiza la conver-
gencia de x̂(t) hacia x(t), de manera que la diferencia
de las señales tienden a cero a medida que transcurre
el tiempo. Esta condición se establece en el siguiente
teorema.

Teorema 1. Considere el esquema observador–predictor
dado en la Fig. 2. Entonces existen ganancias g1 y g2 tal
que el ĺımt→∞ = [x̂(t) − x(t)] = 0 si y solo si τ < 1

a1
+

1
a2

−
√

1
a2
1
+ 1

a2
2
con,

x(t) =

[
x1(t)
x2(t)

]
, (22)

y

x̂(t) =

[
x̂1(t)
x̂2(t)

]
. (23)

Demostración 2. Considere el esquema observador – pre-
dictor dado en la Fig. 2. La dinámica completa de este
esquema en espacio de estados se puede expresar como,

ẋ1(t)
ẋ2(t)
ˆ̇x1(t)
ˆ̇x2(t)

 =

a2 1 0 0
0 a1 0 0
0 0 a2 1
0 0 0 a1


x1(t)
x2(t)
x̂1(t)
x̂2(t)



+

 0 0 0 0
0 0 0 0
g1 0 −g1 0
g2 0 −g2 0


y(t)0ŷ(t)

0

+

0b0
b

u(t),

(24)

[
y(t+ τ)
ŷ(t+ τ)

]
=

[
1 0
0 1

] [
x1(t)
x̂1(t)

]
. (25)

Definiendo el error de predicción de los estados como
ex(t) = [x̂(t) − x(t)] y la estimación del error de salida
como ey(t) = ŷ(t) − y(t), es posible describir el compor-
tamiento de las señales de error como,[

ėx1
(t)

ėx2
(t)

ey(t+ τ)

]
=

[
a2 1 −g1
0 a1 −g2
1 0 0

][
ex1

(t)
ex2

(t)
ey(t)

]
. (26)

Ahora considere una representacion en espacio de estados
de (14), la cual se puede escribir de la siguiente forma,

Fig. 3. Observador–predictor propuesto con acción de
control.[
ω̇1(t)
ω̇2(t)

y1(t+ τ)

]
=

[
a2 1 −g1
0 a1 −g2
1 0 0

][
ω1(t)
ω2(t)
y1(t)

]
+

[
0
b
0

]
u1(t). (27)

Como se puede observar (26) y (27) son similares. Por
lo tanto, la condición de estabilidad del sistema (27)
establecida por el Lema 2 es equivalente a la condición
de estabilidad para el sistema (26). Entonces, para que
el error de predicción ex(t) → 0 cuando t → ∞, debe
cumplir la condición necesaria y suficiente τ < 1

a1
+ 1

a2
−√

1
a2
1
+ 1

a2
2
.

5. SEGUIMIENTO DE REFERENCIA Y RECHAZO
DE PERTURBACIONES

Después de lograr la convergencia entre los estados del
esquema observador–predictor, x̂(t), y los estados de la
planta, x(t), es posible diseñar un controlador para el
sistema sin retardo usando la señal estimada x̂1(t) o
bien la señal ŷ(t + τ) como se observa en la Fig. 3 .
Es importante mencionar que la estrategia de control es
independiente de la estrategia de estimación presentada
en el apartado anterior.

En esta sección se demostrará que el esquema de control
propuesto puede seguir referencias de tipo escalón y
rechazar perturbaciones externas del mismo tipo.

Para ello, se empleará un controlador PID, definido como,

CPID(s) = kp + kds+
ki
s
. (28)

Dado lo anterior, se establece el siguiente Lema.

5.1 Seguimiento de referencia.

Lema 3. Considere el esquema mostrado en la Fig. 4 con

τ < 1
a1

+ 1
a2

−
√

1
a2
1
+ 1

a2
2
, donde g1 y g2 son ganancias

estabilizantes, C(s) es un controlador PID de la forma
(28), P (s) = 0 y R(s) = γ

s . Entonces, se cumple que el
limt→∞ y(t) = γ.

Demostración 3. La función de transferencia Y (s)
R(s) asoci-

ada al esquema de la Fig. 4 con P (s) = 0, está dada por,
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Fig. 4. Esquema simplificado del observador–predictor
propuesto con acción de control.

Y (s)

R(s)
=

C(s)G(s)e−τs
[
G2(s)e−τs (G1(s)g2 + g1) + 1

]
(C(s)G(s) + 1) [G2(s)e−τs (G1(s)g2 + g1)] + C(s)G(s) + 1

.

(29)

Donde G(s), G1(s) y G2(s) son de la forma (1), (2) y (3)
respectivamente.

Aplicando el teorema del valor final a y(t) derivado de la
función de transferencia dada por (29) con una señal de
entrada de tipo escalón de la forma R(s) = γ

s . Se obtiene,

lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

s
Y (s)

R(s)

γ

s
= γ (30)

Esto demuestra que el esquema de la Fig. 4 sigue referen-
cias de tipo escalón.

5.2 Rechazo de perturbaciones.

Lema 4. Considere el esquema mostrado en la Fig. 4 con

τ < 1
a1

+ 1
a2

−
√

1
a2
1
+ 1

a2
2
, donde g1 y g2 son ganancias

estabilizantes, C(s) es un controlador PID de la forma

(28), R(s) = 0 y P (s) = β
s . Entonces, se cumple que el

limt→∞ y(t) = 0.

Demostración 4. La función de transferencia Y (s)
P (s) asoci-

ada al esquema de la Fig. 4 con R(s) = 0, está dada por,

Y (s)

P (s)
=

G(s)e−τs
[
G2(s)e

−τs (G1(s)g2 + g1) + C(s)G(s)(1 − e−τs) + 1
]

(C(s)G(s) + 1)
[
G2(s)e−τs (G1(s)g2 + g1)

]
+ C(s)G(s) + 1

.

(31)

Donde G(s), G1(s) y G2(s) son de la forma (1), (2) y (3)
respectivamente.

Aplicando el teorema del valor final a y(t) derivado de
la función de transferencia (31) con una perturbación de

tipo escalón P (s) = β
s . Se obtiene,

lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

s
Y (s)

P (s)

β

s
= 0 (32)

Esto demuestra que el esquema de la Fig. 4 rechaza
perturbaciones de tipo escalón.

Fig. 5. Primeras frecuencias positivas que cruzan por −π.

6. RESULTADOS EN SIMULACIÓN

A continuación, se evaluará la efectividad de la estrategia
propuesta a través del siguiente ejemplo en simulación.

Ejemplo 1. Considere el siguiente proceso inestable con
retardo, representado por la función de transferencia:

Y (s)

U(s)
=

1.2

(s− 1.5)(s− 0.78)
e−0.2s. (33)

Se procede a resolver el problema de la siguiente manera:

1. Se verifica que se cumpla la condición del Teorema 1.
Como en este caso τ = 0.2 < 0.5, se puede continuar
con el siguiente paso.

2. De la ec. (18) se obtiene que α1 > 1.74. Se elige un
valor α1 = 15.

3. Para un valor de α1 = 15, se obtienen las frecuencias
de interés: ωc1 = 1.38 rad/s y ωc2 = 6.05 rad/s,
como se observa en la Fig. 5. Estas frecuencias
corresponden a las dos primeras soluciones positivas
que satisfacen la ecuación (21).

4. Con la ec. (19), se obtiene que 0.1559 < α2 < 0.4189,
del cual se elige α2 = 0.2.

5. Con los parámetros obtenidos en los pasos anteriores.
Se calcula g1 usando(16), y se obtiene que g1 = 3.

6. Finalmente, usando (17) se obtiene que g2 = 4.3.

Para la simulación se empleó la estructura de la Fig.
3, con las ganancias g1 y g2 previamente obtenidas. El
controlador PID definido en la ecuación 28 se implemento
con kp = 15, ki = 18 y kd = 8. Se aplicó una entrada de
tipo escalón R(s) = 1, considerando condiciones iniciales
de 0.1 en la planta y nulas en el observador-predictor.
Además, se aplicó una perturbación P (s) = 1, a los 16
segundos después de iniciar la simulación.

En la Fig. 6 se observa que ex(t) = 0 en estado esta-
cionario. Esto indica que el observador-predictor logra
una estimación adecuada de los estados x̂(t) respecto a
los estados reales x(t) de la planta.

La respuesta del sistema se muestra en la Fig. 7, donde
se observa que la señal de salida alcanza la referencia
deseada y se mantiene estable tras la perturbación apli-
cada. En la misma Fig. 7, se compara el desempeño del
sistema al emplear la estrategia presentada por Novella-
Rodŕıguez et al. (2019) al utilizar un controlador PID de
la forma kp(kds−1+ ki

s ) con ganancias kp = 0.17, ki = 2 y
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Fig. 6. Convergencia de las señales ex(t).

Fig. 7. Comparación de la respuesta de salida.

kd = 15. Los resultados muestran que la estrategia basada
en el esquema observador–predictor con acción de control
presenta un mejor desempeño en el estado transitorio:
el sistema se estabiliza más rápido y las oscilaciones son
de menor magnitud, lo que refleja una mejor respuesta.
Con el fin de sustentar estos resultados, en la Tabla 1
se presentan los indices de rendimiento obtenidos en una
simulación de 28 segundos para ambas estrategias, lo
que permite realizar una comparación cuantitativa de sus
desempeños.

Tabla 1. Comparación de ı́ndices de
rendimiento.

Estrategias
Acción de control u(t) Salida y(t)

ISE ITSE IAE ITAE ISE ITSE IAE ITAE

Novella, 2019 479.5 402.8 37.2 254.5 38.78 545.4 30.43 441.5

Propuesta 3720 224.4 35.86 167 28.47 403.4 28.05 397

7. CONCLUSIÓN

En este trabajo se propuso una estrategia de control para
sistemas retardados con dos polos inestables, basada en
un esquema observador–predictor para estimar la señal
antes del retardo y utilizarla en la etapa de control. Se
demostró que el esquema se estabiliza con ganancias g1
y g2, si y solo si, se cumple la condición τ < 1

a1
+ 1

a2
−√

1
a2
1
+ 1

a2
2
, lo que garantiza la convergencia de la señal

estimada hacia la real. Aunque esta condición también se
cumple en los trabajos previos como Novella-Rodŕıguez
et al. (2019) y Vázquez-Guerra et al. (2019), donde se uti-
liza un controlador PD, la ventaja del esquema propuesto
es que permite diseñar el controlador para el sistema sin
retardo, facilitando el uso de controladores clásicos (PI,

PID) o modernos (retroalimentación de estados, entre
otros). Ademas, los resultados obtenidos en simulación
mostraron un mejor desempeño al aplicar la estrategia
propuesta en este trabajo en comparación con la estrate-
gia presentada por Novella-Rodŕıguez et al. (2019). Como
trabajo futuro, este análisis puede extenderse a una clase
más general de sistemas, como aquellos de alto orden con
dos polos inestables.
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