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Abstract: This paper introduces a control scheme for first-order systems with substantial
time delays, grounded in a multipredictor approach. The proposed methodology employs
multiple prediction models (sub-predictors) in conjunction with output injection to enhance
the system’s stability and performance. Necessary and sufficient conditions ensuring system
stability are provided, and a systematic procedure is developed to determine the minimum
number of sub-predictors required to guarantee observer stability, thereby avoiding overly
complex design structures. The obtained results substantiate the effectiveness of the proposed
scheme in stabilizing systems with long delays, outperforming traditional control strategies. A
simulation example is presented to validate the proposal.
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1. INTRODUCCIÓN

El retardo de tiempo es un concepto fundamental en el
control automático, se refiere al desfase temporal entre
la aplicación de una entrada a un sistema dinámico y
la observación de su correspondiente efecto en la salida.
Este fenómeno, presente en una amplia gama de sistemas
f́ısicos como procesos qúımicos (Zhao et al. (2019)), de co-
municación(Zhang et al. (2019)), industriales (Han et al.
(2013)), entre otros, es crucial para un correcto modelado
y control, ya que se origina en factores intŕınsecos al
sistema, como el tiempo de transporte, la enerǵıa y la
inercia de la materia.

La estabilización de sistemas con retardo representa un
desaf́ıo significativo debido a la presencia del término
del retardo que introduce una dinámica compleja, lo
que genera una cantidad infinita de polos al analizar la
ecuación caracteŕıstica en lazo cerrado por lo que dificulta
la aplicación de técnicas de control clásicas.

Ante la necesidad de controlar sistemas con retardo surge
una estrategia que se basa en la predicción conocida
como el Predictor de Smith (PS), propuesto por Otto
J.M Smith, 1957. Este método se basa en la estimación
anticipada de la señal de salida del sistema, buscando
anticipar el efecto del retardo. Sin embargo, el PS presenta
una limitación fundamental: su aplicabilidad se restringe
a sistemas estables.

La investigación sobre el PS ha generado múltiples mod-
ificaciones a su estructura clásica, como en (Najafi et al.,
2013), el cual propone un esquema con múltiples obser-
vadores, y más tarde en los trabajos de (Fragoso-Rubio
et al., 2019) y (Hernández-Pérez et al., 2020) se presentan
mejoras en el esquema de estimación, sin embargo estos
trabajos carecen de un método para determinar el número
mı́nimo de sub-predictores para garantizar la convergen-
cia del observador, lo que puede llevar a soluciones innece-
sariamente complejas, como el diseño de observadores de
orden excesivamente alto, comprometiendo la eficiencia y
practicidad de la solución.

En el trabajo de Vilchis et al. (2024), se presenta un
método de control basado en multi-predicción (multi-
predictor) diseñado para estabilizar sistemas con retardos
de cualquier tamaño y mejorar su desempeño en lazo
cerrado. Esta estrategia emplea un modelo matemático
que describe la dinámica del sistema f́ısico. A partir de
éste, se construyen múltiples modelos predictivos o sub-
predictores que anticipan con precisión la salida futura,
compensando aśı los efectos del retardo y simplificando el
diseño de un controlador para el sistema libre de retardo
por medio de controladores clásicos, garantizando de esta
manera su estabilidad.

Con el fin de ampliar el conocimiento presentado en el
art́ıculo mencionado anteriormente, este trabajo ofrece las
siguientes contribuciones:
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• Desarrollar un esquema de control multi-predictor
diseñado para el mismo tipo de sistemas inestables de
primer orden con retardo. La novedad es la inclusión
de otra estrategia en etapa de estabilización que uti-
liza inyección de salida para asegurar la convergencia
de las variables internas del sistema.

• Establecer el número mı́nimo de sub-predictores que
puede tener la etapa de estimación. En donde se
demuestra que, gracias a la estrategia propuesta,
este número se reduce a la mitad en comparación
con el método utilizado en el art́ıculo previamente
mencionado.

El desarrollo de este trabajo se organiza en seis secciones.
Inicialmente, la Sección 2 plantea el problema y define el
tipo de sistemas considerados. A continuación, la Sección
3 establece las bases teóricas con resultados preliminares
sobre la estabilidad de sistemas de primer orden y la
obtención de parámetros para la estabilización de sub-
predictores mediante el uso de inyección de salida. La
Sección 4 presenta la contribución principal, el esquema
multi-predictor, y determina el número mı́nimo de sub-
predictores para la estabilidad del observador, en función
del retardo. La Sección 5 ilustra los resultados con un
ejemplo de simulación usando un controlador PID con
dos grados de libertad. Finalmente, la Sección 6 concluye
con observaciones finales.

2. PLANTEAMIENTO DEL PROBLEMA

El tipo de sistemas en los que se centra este trabajo
son sistemas lineales continuos que presentan un retardo
temporal, representados por la siguiente función de trans-
ferencia,

Y (s)

U(s)
= G(s)e−τs =

b

s− a
e−τs (1)

Aqúı, U(s) denota la señal de entrada, Y (s) la señal de
salida, τ el retardo de tiempo (considerado conocido) y
G(s) es la función de transferencia sin retardo.Al imple-
mentar un control clásico de retroalimentación unitaria
de salida al sistema (1), dado por,

U(s) = [R(s)− Y (s)]C(s) (2)

Donde R(s) es la referencia y C(s) es el controlador,
se obtiene un sistema en lazo cerrado con la siguiente
estructura,

Y (s)

R(s)
=

C(s)G(s)e−τs

1 + C(s)G(s)e−τs
(3)

La presencia del término de retardo, expresado como
e−τs, en la ecuación caracteŕıstica de (3) complica el
análisis de estabilidad. Esto se debe a que introduce un
número infinito de polos en el sistema en lazo cerrado, lo
que resulta en un sistema de orden infinito.

Por lo cual, el desarrollo de este trabajo se enfoca a re-
solver el desaf́ıo del retardo, espećıficamente para sistemas
inestables de primer orden. Se propone un esquema multi-
predictor que, independientemente del tamaño del retardo
de tiempo, logra la convergencia del observador con un
número ideal de sub-predictores.

3. RESULTADOS PRELIMINARES

3.1 Inyección de salida

En esta sub-sección se presenta la condición necesaria
y suficiente para estabilizar un sistema de primer orden
retardado usando una inyección de salida como la que se
muestra en la Fig. 1.

Fig. 1. Inyección de salida

Donde una representación en variables de estado puede
escribirse como,[

ẋ(t)
y(t+ τ)

]
=

[
a −bg2
c −g1

] [
x(t)
y(t)

]
+

[
b
0

]
u(t) (4)

Lema 1. (Del-Muro-Cuéllar et al. (2012)). Considere el
sistema retardado dado por la ec. (1) y el esquema de
inyección de la Fig. 1 donde g1 y g2 son parámetros de
diseño. Entonces, existen ganancias g1 y g2 tales que el

sistema Y (s)
U(s) es estable si y solo si,

τ <
2

a
(5)

Demostración. La función de transferencia equivalente a
la representación matricial en espacio de estados dada por
(4) del sistema de la Fig. 1 es la siguiente,

Y (s)

U(s)
=

b

(s− a)(1 + g1e−τs) + bg2e−τs
e−τs (6)

De esta representación se obtienen las condiciones de
estabilidad del sistema por medio de un análisis en la
ecuación caracteŕıstica de (6), cuya forma es la siguiente,

(s− a) + (g1s− ag1 + bg2)e
−τs = 0 (7)

Por otro lado, se considera un sistema auxiliar operando
en lazo abierto, representado por,

Yaux(s)

Uaux(s)
=

(g1s− ag1 + bg2)e
−τs

s− a
(8)

Si se aplica una retroalimentación unitaria al sistema
(8) dada por Raux(s) = Uaux(s) − Yaux(s) se obtiene el
sistema en lazo cerrado, dado por,

Yaux(s)

Raux(s)
=

(g1s− ag1 + bg2)e
−τs

(s− a) + (g1s− ag1 + bg2)e−τs
(9)

Dado que la ecuación caracteŕıstica del sistema con in-
yección, expresada en (7), coincide con la del sistema aux-
iliar en lazo cerrado (9), se propone realizar el análisis de
estabilidad utilizando el sistema auxiliar, cuya estructura
se detalla a continuación,

Yaux(s)

Uaux(s)
=

α1(1 + α2s)

s− a
e−τs (10)

Donde α1 = bg2 − ag1 y α2 = g1
bg2−ag1

.

https://doi.org/10.58571/CNCA.AMCA.2025.054

XX Congreso Latinoamericano de Control Automático (CLCA 2025)
13-17 de Octubre, 2025. Cancún, Quintana Roo, México

Copyright© AMCA, ISSN: 2594-2492
314



Observe que g1 y g2 son parámetros libres de diseño y
por lo tanto α1 y α2 también lo son. El diseño se aborda
mediante un análisis en el dominio de la frecuencia,
utilizando un diagrama de Nyquist. Para garantizar la
estabilidad del sistema en lazo cerrado (9) , se aplica el
criterio de estabilidad de Nyquist, el cual exige un rodeo
en sentido antihorario al punto (−1, 0j) en el diagrama
de Nyquist de la función de transferencia (10). De esta
manera, la respuesta en frecuencia del sistema auxiliar,
que es la base de este análisis, se expresa como,

Yaux(jω)

Uaux(jω)
=

α1(1 + α2jω)

jω − a
e−τjω (11)

Donde su magnitud y su fase son,

M(ω) =
bα1

a

√
1 + (α2ω)2√
1 + (ω

a
)2

(12)

ϕ(ω) = −π + atan(
ω

a
) + atan(α2ω)− ωτ (13)

En la fase del sistema (11) dada por (13), se requiere
que sea creciente para valores cercanos a ω = 0 para
lograr que el diagrama de Nyquist de (10) tenga un rodeo
antihorario, por lo que se requiere que,

dϕ(ω)

dω
|ω=0 > 0 (14)

De esta forma, al evaluar (14) obtenemos una primera
cota para el parámetro α2,

α2 > τ −
1

a
(15)

Para obtener el rodeo antihorario en el diagrama de
Nyquist de (11), se debe obligar a que la magnitud dada
por (12) sea decreciente, esto se logra si se cumple la
siguiente condición,

dM(ω)2

dω
< 0 (16)

Al evaluar (16), se obtiene la segunda cota sobre el
parametro α2, el cuál es,

α2 <
1

a
(17)

Entonces, para que el parámetro α2 tenga un rango
estabilizante, se debe cumplir que,

τ −
1

a
<

1

a
(18)

Por lo tanto, la condición sobre el retardo que asegura la
estabilidad de lazo cerrado de (9) o de manera equivalente
de un sistema de primer orden inestable con retardo con
una inyección de salida como la que se muestra en la Fig.
1. es τ < 2

a .

Para realizar el cálculo del parámetro α1, se fija un valor
del intervalo de α2,

τ −
1

a
< α2 <

1

a
(19)

Se obtiene el parámetro α1 por medio de,

a

b
< α1 <

a

b

√
1 + (ωc

a
)2√

1 + (α2ωc)2
(20)

Donde ωc es la primera frecuencia positiva que satisface,

atan(
ωc

a
) + atan(α2ωc)− ωcτ = 0 (21)

Se emplea el sistema auxiliar (10) para obtener las
ganancias g1 y g2 del esquema de inyección de la Fig.
1. La solución del sistema de dos ecuaciones resultante
nos proporciona los valores de estas ganancias, las cuales
se expresan mediante las siguientes ecuaciones,

g1 = α1α2 (22)

g2 =
α1(1 + aα2)

b
(23)

4. RESULTADOS PRINCIPALES

4.1 Esquema Multi-predictor

En esta sección se muestra el multi-predictor propuesto
con una inyección de la salida usada en cada etapa y la
acción de control como se muestra en la Fig.2.

Fig. 2. Esquema propuesto del multi-predictor

Considere una representación en espacio de estados para
el sistema de primer orden inestable con retardo dado por
la ecuación (1),

ẋ(t) = ax(t) + bu(t− τ)

y(t) = cx(t)
(24)

Donde τ es el tamaño total del retardo del sistema.
Aśı mismo, considere una partición del retardo τ , como
τ = nτ̄ (donde n es un entero) de la representación (24).
De esta manera podemos reescribir (24) como,

ẋ1(t) = ax1(t) + bu(t− (n− 1)τ̄)

y(t) = cx1(t− τ̄)
(25)

Siendo τ̄ el valor de la partición del retardo y n el número
de particiones en las que se divide el retardo.

A continuación, se definen las ecuaciones de los sub–
predictores que forman el multi–predictor de la Fig. 2
agregando la etapa de estabilización propuesta con una
inyección de la salida a cada sub–predictor,
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ˆ̇x1(t) = ax̂1(t) + bu(t− (n− 1)τ̄)− bg2ey1 (t)

ˆ̇x2(t) = ax̂2(t) + bu(t− (n− 2)τ̄)− bg2ey2 (t)

...

ˆ̇xn−1(t) = ax̂n−1(t) + bu(t− τ̄)− bg2eyn−1 (t)

ˆ̇xn(t) = ax̂n(t) + bu(t)− bg2eyn (t)

(26)

Aśı como,

ŷ1(t+ τ̄) = cx̂1(t)− g1ey1 (t)

ŷ2(t+ τ̄) = cx̂2(t)− g1ey2 (t)

...

ŷn−1(t+ τ̄) = cx̂n−1(t)− g1eyn−1 (t)

ŷn(t+ τ̄) = cx̂n(t)− g1eyn (t)

(27)

A continuación se presenta el resultado principal de este
trabajo que es la obtención mı́nima de sub-predictores
que logren estabilizar al multi–predictor.

Teorema 1. Considere una representación en variables
de estado del sistema (1) dada por (24), la partición del
retardo según la ecuación (25) y el observador-predictor
como el descrito por las ecuaciones (26)-(27). Entonces,
la señal del predictor-observador ŷn(t + τ̄) va a con-
verger asintóticamente a y(t+ τ) con un número de sub-
predictores n∗, siendo éste el entero superior inmediato
de n, el cual esta dado por n = aτ

2α donde a es el valor
absoluto del polo inestable del sistema, τ es el retardo y
α es un parámetro de diseño que satisface 0 < α < 1.

Demostración. A continuación, se establecen los errores
de estimación en los estados,

e1(t) = x̂1(t)− x1(t)

e2(t) = x̂2(t− τ̄)− x̂1(t)

...

en(t) = x̂n(t− τ̄)− x̂n−1(t)

(28)

Por lo que los errores dinámicos se definen como,

ė1(t) = ˆ̇x1(t)− ẋ1(t)

ė2(t) = ˆ̇x2(t− τ̄)− ˙̂x1(t)

...

ėn(t) = ˆ̇xn(t− τ̄)− ˆ̇xn−1(t)

(29)

Se establecen los errores en las salidas,

ey1 (t) = ŷ1(t)− y(t)

ey2 (t) = ŷ2(t)− ŷ1(t+ τ̄)

...

eyn−1 (t) = ŷn−1(t)− ŷn−2(t+ τ̄)

eyn (t) = ŷn(t)− ŷn−1(t+ τ̄)

(30)

Aśı como, los errores en las salidas adelantadas,

ey1 (t+ τ̄) = ŷ1(t+ τ̄)− y(t+ τ̄)

ey2 (t+ τ̄) = ŷ2(t+ τ̄)− ŷ1(t+ 2τ̄)

...

eyn−1 (t+ τ̄) = ŷn−1(t+ τ̄)− ŷn−2(t+ 2τ̄)

eyn (t+ τ̄) = ŷn(t+ τ̄)− ŷn−1(t+ 2τ̄)

(31)

Al sustituir las ecuaciones (24),(25),(26) y (28) en (29)
se obtienen los errores dinámicos del esquema propuesto,

ė1(t) = ae1(t)− bg2ey1 (t)

ė2(t) = ae2(t) + bg2ey1 (t)− bg2ey2 (t− τ̄)

...

ėn−1(t) = aen−1(t) + bg2eyn−2 (t)− bg2eyn−1 (t− τ̄)

ėn(t) = aen(t) + bg2eyn−1 (t)− bg2eyn (t− τ̄)

(32)

Al sustituir las ecuaciones (24), (27), (28) y (30) en (31)
podemos reescribir los errores de salida adelantados como,

ey1 (t+ τ̄) = ce1(t)− g1ey1 (t)

ey2 (t) = ce2(t)− g1ey2 (t− τ̄) + g1ey1 (t)

...

eyn−1 (t) = cen−1(t)− g1eyn−1 (t− τ̄) + g1eyn−2 (t)

eyn (t) = cen(t)− g1eyn (t− τ̄) + g1eyn−1 (t)

(33)

A continuación se presentan los errores obtenidos en (33)
y (32) de forma matricial,

ė1(t)
ey1 (t+ τ̄)
. . . . . . . . .
ė2(t)
ey2 (t)

. . . . . . . . .
ėn−1(t)
eyn−1 (t)

. . . . . . . . .
...

. . . . . . . . .
ėn(t)
eyn (t)


=


A 0 0 · · · 0
0 A 0 · · · 0
0 0 A · · · 0
...

. . .
. . .

. . .
...

0 0 0 0 A





e1(t)
ey1 (t)

. . . . . . . . . . . .
e2(t)

ey2 (t− τ̄)
. . . . . . . . . . . .
en−1(t)

eyn−1 (t− τ̄)

. . . . . . . . . . . .
...

. . . . . . . . . . . .
en(t)

eyn (t− τ̄)


+ · · ·

· · ·+


0 0 0 · · · 0
0 B 0 · · · 0
0 0 B · · · 0
...
. . .

. . .
. . .

...
0 0 0 0 B





0
0

. . . . . . . .
ey1 (t)

0
. . . . . . . .
ey2 (t)

0
. . . . . . . .

...
. . . . . . . .
eyn−1 (t)

0


(34)

Donde las matrices A y B son de tamaño n x n

A =

[
a −bg2
c −g1

]
B =

[
bg2 0
g1 0

]
La dinámica del primer error e1(t) se define a partir de
las primeras dos ecuaciones de la representación matricial
(34), lo que resulta en la siguiente expresión,[

ė1(t)
ey1 (t+ τ̄)

]
=

[
a −bg2
c −g1

] [
e1(t)
ey1 (t)

]
(35)

Como se observa, esta estructura es idéntica a la dinámica
en lazo cerrado del esquema de inyección (4), lo que

https://doi.org/10.58571/CNCA.AMCA.2025.054

XX Congreso Latinoamericano de Control Automático (CLCA 2025)
13-17 de Octubre, 2025. Cancún, Quintana Roo, México

Copyright© AMCA, ISSN: 2594-2492
316



permite asegurar la convergencia del primer sub–predictor
si y solo si τ̄ < 2

a . Considerando las siguientes dos
ecuaciones de la matriz (34), se obtiene la dinámica del
segundo error e2(t),[

ė2(t)
ey2 (t)

]
=

[
a −bg2
c −g1

] [
e2(t)

ey2 (t− τ̄)

]
+

[
bg2
g1

]
ey1 (t) (36)

Al aplicar un adelanto de tiempo a la segunda ecuación,
se obtiene una representación alternativa de dicho error,[

ė2(t)
ey2 (t+ τ̄)

]
=

[
a −bg2
c −g1

] [
e2(t)
ey2 (t)

]
+

[
bg2
g1

]
ey1 (t+ τ̄) (37)

Se puede notar que la dinámica del segundo error e2(t),
dado por (37), incluye un término de entrada ey1

(t + τ̄),
que depende del primer error. Sin embargo, como ya se ha
asegurado la convergencia del error e1(t), este término se
anula asintóticamente. En consecuencia, la dinámica del
segundo error e2(t) también se reduce a la del esquema de
inyección de (4), lo que permite asegurar la convergencia
del segundo sub–predictor si y solo si τ̄ < 2

a .

Este análisis se puede extender a los errores siguientes
e3(t), e4(t) ... en(t). De esta manera, la convergencia de
cada sub-predictor se logra si y solo si τ̄ < 2

a . Esto implica

que la condición de estabilidad τ̄ < 2
a es la misma para

cada partición del retardo, garantizando la convergencia
de todos los errores involucrados en el sistema.

Al comprobar que los errores de los estados e1(t), e2(t)
... en(t) convergen se puede garantizar que las señales de
salida también lo harán debido a que dichas señales son
funciones de los estados.

Nuestro interés es conocer el valor de n, por lo que, uti-
lizando la condición de estabilidad en cada sub-predictor
y la expresión τ = nτ̄ se obtiene la relación,

n =
τ

τ̄
=

τ

( 2a )α
=

aτ

2α
(38)

Donde α es un factor dado entre 0 < α < 1. Siendo
que para valores de α ≈ 1 el número de particiones
n → nmin, es decir, se aproxima al valor mı́nimo necesario
para garantizar la adecuada estimación de los estados del
sistema, esto se debe a que, con α ≈ 1, la condición τ̄ < 2

a
se cumple casi en el limite. Por otro lado, para valores
α ≈ 0, el número de particiones n → ∞ y en este caso la
condición se cumple muy por debajo del ĺımite.

En conclusión, a medida que aumenta n, la condición
τ̄ < 2

a se cumple con mayor facilidad. Sin embargo, un
mayor número de predictores incrementa el orden del
multi-predictor. Esto demuestra que, para cualquier valor
de 0 < α < 1, la señal estimada ŷn(t+ τ̄) converge hacia
y(t+ τ).

Corolario 1. Considere una representación en variables
de estado del sistema (1) dada por (24), la partición
del retardo definida en (25) y el observador propuesto
descrito por las ecuaciones (26)-(27), entonces, el estado
del predictor-observador xn(t) converge con el valor futuro

x(t+ τ) con un número mı́nimo de sub-predictores, deno-
tado por nmin, el cuál, es el entero superior inmediato de
n, con n = aτ

2α , donde 0 < α < 1 y α → 1.

Demostración. La demostración de este colorario queda
incluida en la demostración del Teorema 1

Para determinar un número adecuado de sub-predictores
en una aplicación práctica no es recomendable trabajar
con el nmin ya que la condición τ̄ < 2

a estaŕıa muy
próxima al ĺımite, lo que nos daŕıa un sistema marginal-
mente estable y el valor de las ganancias g1 y g2 que
estabilizan a cada uno de los sub-predictores tendŕıan
un intervalo muy reducido, por lo que en este trabajo
se recomienda utilizar n∗ con un α ≈ 0.7.

5. RESULTADOS EN SIMULACIÓN

Considere el siguiente sistema de primer orden inestable
en lazo abierto con retardo de tiempo,

G(s) =
1

s− 4
e−1.2s (39)

El sistema nos entrega los siguientes valores: a = 4 y
τ = 1.2. Para asegurar la existencia de las ganancias g1 y
g2, el retardo máximo permitido es según (5) es τ < 0.5.
Dado que nuestro valor de τ excede este ĺımite, se re-
quiere implementar un multi-predictor. Para determinar
el número mı́nimo de sub-predictores necesarios para es-
tabilizar el observador, utilizamos el factor recomendado
de α = 0.7. Al utilizar (38) el resultado indica que nece-
sitamos al menos n = 3.42 sub-predictores. Por lo tanto,
redondeamos al siguiente número entero, resultando en
n∗ = 4. Este valor representa el número de particiones
que tendrá nuestro multi-predictor.

Fig. 3. Diagrama de Nyquist.

Para asegurar que la señal deseada converja adecuada-
mente, es esencial que cada sub-predictor realice estima-
ciones precisas. Esto se logra mediante la inyección de la
salida. Cada partición del sub-predictor debe cumplir con
la condición τ̄ < 0.5. Al aplicar la ecuación τ = nτ̄ , se
encuentra que cada partición tiene un valor de τ̄ = 0.3,
lo que garantiza la existencia de las ganancias g1 y g2.

Una vez confirmado esto, se procede a calcular los rangos
de estabilidad para los parámetros deseados, utilizando
las ecuaciones (19)-(23). Con la ayuda del Diagrama de
Nyquist presentado en la Fig. 3, se determina que la
frecuencia de corte es ωc = 5.30 rad/s.
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Los cálculos establecen que el rango de α2 debe estar entre
0.05 < α2 < 0.25. Para el diseño, se selecciona α2 = 0.15.
De manera similar, el rango de α1 se encuentra entre
4 < α1 < 5.19, y se elige α1 = 4.5. Estos valores resultan
en ganancias de g1 = 0.675 y g2 = 7.2.

En la Fig. 4, se muestra que los errores de estimación
convergen a cero. Esto indica que cada sub-predictor
está funcionando correctamente y, por lo tanto, la señal
completa se estima con precisión, teniendo en cuenta el
tamaño total de retardo.

Fig. 4. Errores de estimación

Para resolver el problema de estabilidad se diseñó un
controlador PID con dos grados de libertad dado por,
C2DOF = kp(γ + ki

s + βkds), con kd = 2.8, ki = 4.2,
kp = 14.03, γ = 0.1 y β = 0.1. Además, para la simulación
se utiliza una entrada de tipo escalón de amplitud 1.
La Fig. 5 ilustra la señal de control, mostrando cómo
el controlador estabiliza el sistema. La Fig. 6 muestra
la respuesta de salida estable del sistema, considerando
condiciones iniciales de 0.1.

Fig. 5. Señal de control.

Fig. 6. Respuesta de salida considerando condiciones
iniciales distintas de cero.

6. CONCLUSIONES

El presente trabajo abordó una mejora significativa en
la etapa de estabilización en cada sub-predictor de la
estrategia desarrollada por Vilchis et al. (2024).

Mediante la implementación de una inyección de la salida,
se logró reducir a la mitad el número mı́nimo de sub-
predictores requeridos para la etapa de estimación donde
se sugiere un valor de α = 0.7 para implementaciones
prácticas, a fin de evitar la proximidad al limite de la
estabilidad. Este avance permite superar las limitaciones
del predictor de Smith, ya que no tiene restricciones en
el tamaño del retardo y es funcional para sistemas que
presentan un polo inestable. Además, la flexibilidad de
diseño en el controlador que da el esquema multi-predictor
facilitó el desarrollo de un controlador tipo PID con dos
grados de libertad. Esta configuración aportó beneficios
al sistema, como un seguimiento de referencias, un rec-
hazo de perturbaciones y una reducción significativa del
sobreimpulso lo que ampĺıa las capacidades de aplicación
a escenarios de sistemas más complejos y desafiantes.
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