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Abstract: This paper presents a stabilization methodology for time-delayed systems by means
of a continuous model-based predictive control (CMPC). The stabilization strategy is based on
the design of an observer-predictor scheme with a single gain, which allows estimating internal
signals not directly measurable in the plant, these signals are used for the design of the CMPC
predictive controller. The main contribution consists in the development of a CMPC predictive
control algorithm by using Laguerre functions. Experimental results illustrate the effectiveness
of the approach, showing advantages over other conventional control schemes.
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1. INTRODUCCIÓN

El control predictivo basado en modelo (MPC, por sus
siglas en inglés) es una estrategia avanzada que opti-
miza la trayectoria futura de la variable manipulada
u(t) mediante la minimización de una función de costo
sobre un horizonte finito. A diferencia de los métodos
convencionales que solo consideran el estado actual del
sistema, el control MPC utiliza predicciones del modelo
del sistema para tomar decisiones proactivas, mejorando
el desempeño de sistemas con retardo de tiempo, restric-
ciones o dinámicas complejas. Desarrollado en el año de
1970, el MPC ha sido ampliamente aplicado en indus-
trias de procesos (alimentaria, qúımica), accionamientos
eléctricos y sistemas aeronáuticos, entre otros Wang et al.
(2008); Santos and Normey-Rico (2022); Linder and Ken-
nel (2005); Kale and Chipperfield (2005).

Aunque la mayoŕıa de los algoritmos de Control Pre-
dictivo basado en Modelo (MPC) se han diseñado para
sistemas discretos, limitando su aplicabilidad en ciertos
escenarios, recientes avances han impulsado el desarrollo
de métodos en tiempo continuo. Estos conservan los
principios del MPC tradicional pero difieren en la rep-
resentación de la señal de control, utilizando funciones
ortonormales. Algunos trabajos relacionados con el con-

trol predictivo basado en modelo continuo (CMPC, por
sus siglas en inglés) se pueden ver en Demircloglu (1999)
donde se propone un algoritmo predictivo generalizado
(GPC) continuo con restricciones y en Drapala and Byrski
(2021) se aplica un control CMPC para la estabilización
térmica en procesos industriales bajo perturbaciones.

Por otro lado, los sistemas con retardo de tiempo son
una clase particular de los sistemas dinámicos que se
encuentran presentes en aplicaciones de ingenieŕıa de
control Bequette (2003); Liou and Yu-Shu (1991). Uno
de los problemas en el control de sistemas con retardo
de tiempo surge de la relación entre la magnitud del
retardo y la dinámica del proceso, al diseñar un control
a lazo cerrado. Si el retardo es insignificante frente a la
constante de tiempo del sistema, su efecto puede omitirse
durante el diseño del controlador sin comprometer la
estabilidad. Sin embargo, cuando el retardo tiene una
magnitud superior a la constante de tiempo del sistema,
el análisis de estabilidad se complica para el diseño de
un controlador. La problemática asociada a este tipo
de sistemas ha desarrollado numerosas investigaciones,
generando diversas estrategias para solucionar su impacto
en la estabilidad del sistema (Lee et al., 2010; Seer and
Nandong, 2017; Hernández-Pérez et al., 2015). Entre los
enfoques más destacados se encuentra el Predictor de
Smith (SP, por sus siglas en inglés) Smith (1957), que
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emplea un esquema para compensar el retardo mediante
la estimación de los valores futuros de la señal de salida.
No obstante, esta técnica presenta limitaciones al abordar
sistemas inestables, lo que ha impulsado el desarrollo de
modificaciones estructurales al SP (Márquez-Rubio et al.,

2023; Matausek and Ribic, 2012; İçmez and Can, 2023;
Vazquez-Guerra et al., 2025). En el presente trabajo se
propone una estrategia de control para sistemas lineales
inestables con retardo de tiempo, espećıficamente un polo
inestable y un par de polos complejos conjugados estables.
El presente trabajo también emplea el enfoque usado
en Hernández-Pérez et al. (2015) el cual establece una
condición sobre la magnitud del retardo para garantizar la
existencia de una ganancia capaz de estabilizar el sistema
con retardo de tiempo. Esta ganancia nos permite ase-
gurar la convergencia del esquema observador–predictor
para garantizar una adecuada estimación de las señales
intermediarias del sistema. La metodoloǵıa propuesta se
fundamenta en:

• Proponer un esquema observador-predictor para la
estimación de señales intermedias que se utilizan
para el diseño de un control CMPC.

• Diseñar un control predictivo CMPC basado en
funciones ortonormales espećıficamente en funciones
de Laguerre.

• Aproximar la derivada de la señal de control u(t)
dentro de un horizonte de predicción finito, opti-
mizando aśı el desempeño dinámico del sistema.

Este trabajo está organizado de la siguiente manera, la
Sección 2 presenta el planteamiento del problema y la
clase de sistema considerado; en la Sección 3 describe
los resultados preliminares, incluyendo el desarrollo del
control predictivo basado en modelo continuo (CMPC)
descrito en Wang (2009); la Sección 4 presenta los resulta-
dos obtenidos en donde se muestra el esquema propuesto.
En la Sección 5 se desarrolla un ejemplo numérico con la
simulación correspondiente y para concluir el trabajo en
la Sección 6 se dan las observaciones finales.

2. PLANTEAMIENTO DEL PROBLEMA.

Considere el siguiente sistema dinámico lineal de una sola
entrada y una sola salida (SISO, por sus siglas en inglés)
con retardo de tiempo,

Y (s)

U(s)
= G(s)e−τs =

b

(s− a)(s2 + 2ζωns+ ω2
n)
e−τs. (1)

donde Y (s) y U(s) son las señales de salida y entrada
respectivamente, τ > 0 corresponde al retardo de tiempo
conocido, a > 0 es la posición del polo inestable. Cuando
0 < ζ < 1, el sistema presenta un par de polos com-
plejos conjugados estables, donde ζ es el factor de amor-
tiguamiento y ωn la frecuencia natural no amortiguada.
Obsérvese que al implementar un esquema de control
convencional basado en la estructura U(s) = [R(s) −
Y (s)]C(s) para el sistema (1), se obtiene la siguiente
expresión para la función de transferencia en lazo cerrado,

Y (s)

R(s)
=

C(s)G(s)e−τs

1 + C(s)G(s)e−τs
. (2)

se puede observar que el término e−τs en la ecuación car-
acteŕıstica del sistema (2) complica cualquier análisis para
diseñar un controlador que estabilice al sistema debido a
que tiene un número infinito de polos. Esta problemática
dificulta el análisis y requiere estrategias especializadas
para garantizar la estabilidad del sistema. La solución
que se presenta en este trabajo a la problemática de
controlar sistemas inestables con retardo de tiempo, esta
basada en esquemas observadores–predictores. El objetivo
de control es utilizar las señales estimadas del sistema
libre de retardo y manipularlas para el diseño de un
control predictivo para la estabilización del sistema.

3. RESULTADOS PRELIMINARES.

3.1 Estructura del control predictivo continuo basado en
modelo (CMPC)

Para el diseño del control CMPC se considera la dinámica
del sistema (1) sin retardo de tiempo, es decir, τ = 0 en
una representación de espacio de estados, definido como,

ẋm(t) = Amxm(t) +Bmu(t),

y(t) = Cmxm(t).
(3)

donde xm(t) ∈ Rn1 , Am ∈ Rn1×n1 , Bm ∈ Rn1×m,
Cm ∈ Rq×n1 ; con m y q definidas como entradas y salidas
del sistema respectivamente. Para realizar el análisis de
la estructura del control CMPC, se definen las siguientes
variables auxiliares,

z(t) = ẋm(t),

y(t) = Cmxm(t).
(4)

Por lo tanto, el nuevo vector de estados se define como,

x(t) =

[
z(t)
y(t)

]
. (5)

A partir de la ecuación (3) y las variables auxiliares (4)
y (5), se define un nuevo modelo de espacio de estados
aumentado,

ẋ(t) = Ax(t) +Bu̇(t),

y(t) = Cx(t).
(6)

con ẋ(t) = [ż(t) ẏ(t)]
T
, B = [Bm Oqxm]

T
, C = [Om Iqxq]

and A =

[
Am 0
Cm Oqxq

]
. Iqxq, Oqxq y Oqxm son la matriz

identidad y las matrices cero respectivamente. Obsérvese
que la representación en espacio de estados aumentado
(6) toma como entrada la primera derivada de la señal
de control u̇(t) y su salida sigue siendo la misma. Esta
derivada se aproxima utilizando un conjunto de funciones
de Laguerre, que se explicará más adelante.
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3.2 Funciones de Laguerre

Antes de abordar la descripción de la trayectoria de
control, se presenta una breve descripción de las fun-
ciones Laguerre. Dichas funciones resultan apropiadas
para la representación matemática de señales con compor-
tamiento de tiempo decreciente, las funciones de Laguerre
están denotadas como Ln(t), donde n indica el orden
del polinomio, estas funciones se definen a partir de los
polinomios de Laguerre, que son soluciones de la ecuación
diferencial,

t
d2Ln(t)

dt2
+ (1− t)

dLn(t)

dt
+ nLn(t) = 0. (7)

Los polinomios de Laguerre Ln(t) se pueden expresar por,

ln(t) =
√
2p

e−pt

(n− 1)!

dn−1

dtn−1

[
tn−1e−2pt

]
, (8)

donde cada componente de (8) corresponde a una función
de Laguerre normalizada de orden n. Los parámetros p >
0 y

√
2p regulan el decaimiento exponencial y garantiza

la ortonormalidad del sistema. Con respecto a la aproxi-
mación de señales, se utilizan versiones normalizadas de
estos polinomios, cuya representación puede obtenerse
mediante la transformada de Laplace de (8),

Ln(s) =

∫ ∞

0

ln(t)e
−stdt =

√
2p(s− p)n−1

(s+ p)n
. (9)

Además de representar las funciones de Laguerre medi-
ante polinomios y ecuaciones diferenciales, las funciones
de Laguerre también se pueden formular mediante una
representación en espacio de estados definida como,

Ln(t) = eAptLn(0), (10)

con,

Ap =


−p 0 · · · 0
−2p −p · · · 0
...

. . .
. . .

...
−2p · · · −2p −p

 ;Ln(0) =
√
2p


1
1
...
1

 (11)

donde Ln(0) corresponde a las condiciones iniciales, la
matriz Ap define la dinámica del sistema y eApt describe
la evolución en el tiempo de Ln(t). Esta formulación
interpreta las funciones de Laguerre como la respuesta de
un sistema lineal, que es útil en el control CMPC, donde
la derivada de la señal de control u̇(t) puede aproximarse
como,

u̇(t) ≈ Ln(t)
T η. (12)

siendo η el vector de coeficientes en el que intervienen la
trayectoria de la señal de control u(t) a lo largo del hori-
zonte de predicción Tp. Esta aproximación se fundamenta
en el comportamiento de los sistemas lineales estables,
donde la señal de control u(t) converge exponencialmente
a un valor constante después del estado transitorio. En el
diseño del controlador CMPC, esto implica que la señal
de control futura se vuelve lineal e invariante dentro de
la ventana de predicción Tp, haciendo que su movimiento
de control u̇(t) tienda asintóticamente a cero.

3.3 Horizonte de predicción finito

En el análisis de control predictivo, se asume que en el
tiempo actual ti se conoce el valor de la variable de estado
x(ti). El estado futuro x(ti + k) para k > 0 se expresa
como,

x(ti + k) = eAkx(ti) + ϕ(k)T η, (13)

donde eAkx(ti) representa el estado inicial del sistema, y
ϕ(k)T η depende exclusivamente de los movimientos de la
señal de control u̇(k) y la matriz de entrada B, con,

ϕ(k)T =

∫ k

0

eA(k−γ)
[
B1L1(γ)

T · · · BmLm(γ)T
]
dγ.

(14)

Finalmente, la salida futura y(ti+k) se obtiene mediante,

y(ti + k) = CeAkx(ti) + Cϕ(k)T η. (15)

3.4 Estrategia de control óptimo

El objetivo del control predictivo es buscar una ley de
control que minimice el error entre la salida futura de la
planta y(ti + k) y la trayectoria deseada r(ti). La función
de costo en tiempo continuo, se define como:

J =

∫ Tp

0

[r(ti)− y(ti + k)]
T
Q [r(ti)− y(ti + k)] dk

+

∫ Tp

0

u̇(k)TRu̇(k)dk,

(16)

donde Q > 0 y R ≥ 0 son matrices de ponderación
simétricas. Si el horizonte de predicción Tp se elige tal
que u̇(k) ≈ 0 para k ≥ Tp, la función de costo se reduce
a:

J =

∫ Tp

0

x(ti + k)TQx(ti + k)dk + ηTRLη, (17)

con RL = diag{Ri} (matrices unitarias riINi×Ni
), donde

RL es una simplificación de R. Sustituyendo la predicción
del estado (13) en (17) se tiene una forma cuadrática de
J ,

J = ηTΩη + 2ηTψx(ti), (18)

donde,

Ω =

∫ Tp

0

ϕ(k)Qϕ(k)T dk +RL,

ψ =

∫ Tp

0

ϕ(k)QeAkdk.

(19)

El vector óptimo de parámetros η se determina re-
solviendo dJ

dη = 0, donde se tiene como resultado la

minimización de la función de costo (18),

η = −Ω−1ψx(ti). (20)

3.5 Ley anaĺıtica de control

Una vez encontrada la solución de los coeficientes del
vector óptimo (20), los movimientos de la señal de control
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u̇(ti) pueden construirse utilizando (12). Para cualquier
instante t, los movimientos de la señal de control u̇(t) se
expresan como,

u̇(t) = −


L1(0)

T O2 · · · Om

O1 L2(0)
T · · · Om

...
...

. . .
...

O1 O2 · · · Lm(0)T

Ω−1ψx(t),

= −Kmpcx(t).

(21)

donde Kmpc se le conoce como la matriz de ganancia
de retroalimentación y depende de los términos Ω−1ψ
definidos en (19).

La ecuación (21) muestra que los movimientos de la señal
de control por retroalimentación de estados depende del
estado actual del sistema x(t), donde la variable de estado
x(t) se divide en dos elementos. El primer elemento es la
dinámica del estado xm(t) y el segundo elemento es la
señal de error resultante de la diferencia entre la señal de
salida y(t) y la señal de referencia r(t). Por lo tanto, la
matriz Kmpc se puede dividir en dos ganancias, Kx para
los estados del modelo y Ky para el error de seguimiento.
Aśı, la ley de retroalimentación se puede reescribir como,

u̇(t) = − [Kx Ky]

[
ẋm(t)

y(t)− r(t)

]
. (22)

Finalmente, solo es necesario integrar u̇(t) para revelar la
ley de control,

u(t) =

∫ ti+Tp

ti

u̇(t)dt. (23)

Note que esta integración ya esta considerada en el
sistema aumentado.

4. RESULTADOS PRINCIPALES.

La propuesta de este trabajo consiste en el diseño de una
estrategia CMPC para el sistema inestable con retardo
dado por (1), extendiendo las ideas del SP. Para el caso
del sistema inestable (1), se propone primero diseñar un
esquema observador–predictor para estimar los estados
del sistema (1) sin retardo, es decir (1) con τ = 0;
posteriormente, usar esas señales estimadas en el diseño
del CMPC para la planta libre de retardo. Cabe destacar
que el CMPC no predice directamente las señales del
sistema (1), sino que se aplica al sistema libre de retardo,
utilizando el esquema basado en un observador–predictor
cuya función consiste en estimar dichas variables de
estado no accesibles directamente de la planta.

4.1 Estrategia de estimación de estados

Considere el sistema lineal inestable definido en (3) in-
cluyendo un retardo de tiempo en la salida, es decir τ ̸= 0,

ẋm(t) = Amxm(t) +Bmu(t),

y(t) = Cmxm(t− τ),
(24)

donde,

Fig. 1. Esquema de retroalimentación estática de la salida
propuesto.

ẋm(t) =

[
ẋm1(t)

ẋm2(t)

ẋm3(t)

]
;Am =

[
a 0 0

1 −2ζωn −ω
2
n

0 1 0

]
;Bm =

[
b

0

0

]
;Cm =

[
0

0

c

]T

Teorema 1. Hernández-Pérez et al. (2015). Considere el
esquema observador–predictor dado en la Figura 2. Existe
una ganancia Kobs tal que el limt→∞[xm(t)− x̂m(t)] = 0

si y solo si τ < 1
a − 2 ζ

ωn
.

Demostración. La dinámica del sistema completo dado
en la Figura 2 puede expresarse como,


ẋm1(t)
ẋm2(t)
ẋm3(t)
˙̂xm1(t)
˙̂xm2(t)
˙̂xm3(t)

 =


a 0 0 0 0 0
1 −2ζωn −ω2

n 0 0 0
0 1 0 0 0 0
0 0 0 a 0 0
0 0 0 1 −2ζωn −ω2

n
0 0 0 0 1 0




xm1(t)
xm2(t)
xm3(t)
x̂m1(t)
x̂m2(t)
x̂m3(t)

+

· · ·+


b
0
0
b
0
0

u(t) +
[

0 0
−bKobs bKobs

] [
y(t)
ŷ(t)

]
,

[
y(t)
ŷ(t)

]
=

[
c 0
0 c

] [
xm3(t− τ)
x̂m3(t− τ)

]
.

(25)
Se definen los errores de estimación exmi(t) = xmi(t) −
x̂mi(t), donde i = 1, 2, 3. Aśı mismo, se establecen los
errores dinámicos,

ėxm1
(t) = ẋm1(t)− ˙̂xm1(t),

ėxm2
(t) = ẋm2(t)− ˙̂xm2(t),

ėxm3(t) = ẋm3(t)− ˙̂xm3(t).

(26)

Sustituyendo (25) en (26) da como resultado,

ėxm1
(t) = aexm1

(t)− cbKobs [exm3
(t− τ)] ,

ėxm2
(t) = exm1

(t)− 2ζωnexm2
(t)− ω2

nexm3
(t),

ėxm3(t) = exm2(t).

(27)

Una forma de representar los errores dinámicos descritos
en (26) es mediante una forma matricial. Las ecuaciones
de error obtenidas en (27) están definidas por,

ėxm
(t) = Φexm

(t) + Υexm
(t− τ), (28)

donde,
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Fig. 2. Estrategia de control propuesta.

Φ =

[
a 0 0
1 −2ζωn −ωn

0 1 0

]
; Υ =

[
0 0 −cbKobs

0 0 0
0 0 0

]
.

Se puede demostrar que el vector de error exm(t) en
(28) converge a cero si y solo si el sistema (28) es es-
table. Dado que la dinámica de este error es equiva-
lente a la del esquema de retroalimentación mostrado
en la Figura 1, y considerando que dicho esquema es
estable si y solo si τ < 1

a − 2 ζ
ωn

Hernández-Pérez et al.

(2015), se concluye que el sistema (28) es estable bajo
la misma condición. En consecuencia, se garantiza que
limt→∞ exm

(t) = limt→∞ xm(t)− x̂m(t) = 0.

Corolario 1. Hernández-Pérez et al. (2015). Una vez
garantizada la existencia de la ganancia Kobs que satis-
face el Teorema 1, la convergencia del esquema observador-
predictor se asegura seleccionando una ganancia Kobs

dentro de los ĺımites definidos como,

Kobs(ωci) < Kobs < Kobs(ωci), (29)
donde,

Kobs(ωci) =
1

b

√(
ω2
ci

+ a2
) (

ω4
ci

+ 2ωnω2
ci

(2ζ2 − 1) + ω4
n

)
. (30)

con i = 1, 2; para este caso en particular ωc1 = 0 y ωc2
es la primera frecuencia positivas de cruce, donde la fase
cruza por −π.
La Figura 2 ilustra la estrategia propuesta para imple-
mentar el control predictivo CMPC en un esquema basado
en un observador-predictor. Es importante mencionar
que el diseño del control CMPC debe tener en cuenta
la dinámica de la señal intermedia estimada x̂m(t), la
cual se obtiene mediante el esquema observador–predictor
presentado en esta sección y la señal de salida del sistema
y(t).

5. RESULTADOS EN SIMULACIÓN.

Ejemplo: Considere el siguiente ejemplo, un sistema de
lazo abierto inestable de tercer orden con retardo de
tiempo,

Y (s)

U(s)
=

1

(s− 0.5)(s2 + 4s+ 5)
e−0.8s. (31)

donde los parámetros del sistema son: b = 1, a = 0.5,
ζ = 0.8944 y ωn = 2.2361. El modelo de espacio de
estados del sistema (31) sin considerar el retardo de
tiempo (es decir, τ = 0) esta dado por,

ẋm(t) =

[
0.5 0 0
1 −4 −5
0 1 0

]
xm(t) +

[
1
0
0

]
u(t),

y(t) = [0 0 1]xm(t).

(32)

Para llevar a cabo la implementación del controlador
CMPC el modelo de espacio de estados aumentado del
sistema (32) se define como,

ẋ(t) =

0.5 0 0 0
1 −4 −5 0
0 1 0 0
0 0 1 0

x(t) +
100
0

 u̇(t),
y(t) = [0 0 0 1]x(t).

(33)

Dado que se cumple la condición del Teorema 1, con un
retardo máximo τ < 1.2 para la existencia de la ganancia
Kobs, el sistema (31) puede estabilizarse mediante el
esquema observador-predictor propuesto en este trabajo.
Haciendo uso del Corolario 1, el rango de Kobs es 2.5 <
Kobs < 3.52; se selecciona Kobs = 3, garantizando la
adecuada estimación de las señales intermedias necesarias
para el diseño del controlador CMPC. Para el diseño del
controlador CMPC, se empleó un modelo de predicción
con un horizonte Tp = 15, un orden igual N = 30 para
los términos de Laguerre y valores en los parámetros
de ponderación p = 0.1 y r = 15 respectivamente.
Teniendo las ganancias Kx = [1.0626 0.0357 0.1435 ] y
Ky = [0.1799] . Para la simulación, se aplica una entrada
escalón unitario R(s) con condiciones iniciales de 0.2 en
todos los estados. A fin de comparar el desempeño del
controlador CMPC propuesto, se realiza una simulación
considerando un controlador PID con ganancias kp = 8,
ki = 1.5, kd = 5 para el sistema libre de retardo. La

Fig. 3. Respuesta de salida del sistema y(t).

Figura 3 muestra que la estrategia de control propuesta
en este trabajo mantiene estable la salida del sistema
incluso bajo condiciones iniciales distintas de cero. Aśı
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Fig. 4. Convergencia de la señal de error exm(t).

Fig. 5. Respuesta de la señal de control u(t).

mismo, se observa una mejora en el tiempo para alcanzar
el estado estacionario en comparación con el esquema
de control PID. Cabe mencionar que los sobreimpulsos
presentes en la respuesta transitoria pueden ser atenuados
mediante el ajuste de los parámetros de ponderación
p y r del controlador CMPC. La Figura 4 muestra el
comportamiento del error de estimación de cada uno de
los estados, y se observa que los errores exm

(t) convergen
a cero en el estado estacionario. Finalmente, en la Figura
5 se ilustra el desempeño de los controladores PID y
CMPC. Además de mostrar los movimientos de la señal
de control u̇(t), donde se puede apreciar que cuando el
sistema alcanza su estado estacionario, la trayectoria de
control converge a cero. Esto se debe a que, en dicho
estado, ya no se requieren acciones adicionales por parte
del controlador u(t).

6. CONCLUSIONES

Se presenta un esquema de control predictivo basado
en modelo continuo (CMPC) que combina un esquema
basado en un observador-predictor para sistemas inesta-
bles con retardo. Este enfoque supera las limitaciones del
retardo al estimar señales internas y permite una imple-
mentación del control CMPC, destacando sus ventajas
frente a controladores clásicos gracias al uso de funciones
de Laguerre para calcular la trayectoria de control. Si
bien el control CMPC implica mayor complejidad com-
putacional en comparación de otros controladores que
se pueden encontrar en la literatura, las simulaciones

demuestran su eficacia para controlar sistemas que pre-
sentan retardos de tiempo, cumpliendo con los requisitos
del proceso.
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