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Abstract: This work presents a hybrid fault diagnosis framework for Continuous Stirred Tank
Reactor (CSTR) bioreactors by integrating Adaptive Neuro-Fuzzy Inference Systems (ANFIS)
and Zonotopic Kalman Filters (ZKF). The proposed method consists of two main stages: (1)
modeling the nominal behavior of the CSTR using ANFIS trained on fault-free data to extract
a compact set of fuzzy rules, and (2) implementing a ZKF to estimate system states and detect
deviations associated with faults. The neuro-fuzzy model captures the system’s dynamics, while
the zonotopic filter accounts for bounded uncertainty and measurement noise. Fault detection
is achieved by evaluating residuals and comparing them to adaptive thresholds derived from
the zonotopic bounds. Simulation results for different actuator and sensor fault scenarios
demonstrate the effectiveness of the proposed approach in identifying deviations from normal
operation, highlighting its potential for improving monitoring capabilities in bioprocesses.
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1. INTRODUCCIÓN

Los biorreactores son equipos esenciales en biotecnoloǵıa,
utilizados para llevar a cabo procesos biológicos bajo con-
diciones controladas. Su principal función es proporcionar
un entorno óptimo para cultivar células o microorganis-
mos con el objetivo de producir una amplia gama de pro-
ductos, que incluyen fármacos, bioenergéticos y compues-
tos qúımicos de alto valor. No obstante, los biorreactores
están expuestos a una variedad de fallas operativas. Estas
fallas pueden originarse por desviaciones en el proceso,
fallos de sensores o actuadores, contaminación biológica
o comportamientos celulares inesperados. En industrias
de alto riesgo como la farmacéutica, estas fallas pueden
representar pérdidas económicas significativas y retrasos
cŕıticos en la producción Mitra and Murthy (2022). Di-
versas estrategias han sido aplicadas para el diagnóstico
de fallas en reactores de tanque agitado continuo (CSTR,
por sus siglas en inglés). Algunas de las más relevantes
incluyen el uso de redes neuronales artificiales Sawat-

tanakit and Jaovisidha (1998), observadores de estados
Venkateswaran et al. (2021), observadores robustos con
modos deslizantes Pan et al. (2023), y observadores con
incertidumbre acotada Azarbani et al. (2023). Además,
enfoques h́ıbridos han sido explorados, como la combi-
nación de redes neuro-difusas con filtros extendidos de
Kalman para mejorar la sensibilidad ante fallas Gholiza-
deh et al. (2017). En este contexto, los modelos ANFIS
se han posicionado como una técnica prometedora pa-
ra representar el comportamiento dinámico de sistemas
complejos como los CSTR. ANFIS integran la flexibilidad
de los sistemas difusos con la capacidad de aprendizaje
de las redes neuronales, permitiendo modelar procesos a
partir de datos históricos de operación sin necesidad de
un modelo f́ısico detallado Jagtap et al. (2015).

Este trabajo propone un enfoque h́ıbrido para el diagnósti-
co de fallas incipientes en un biorreactor tipo CSTR,
combinando técnicas ANFIS para la identificación del
sistema con filtros de Kalman zonotópicos (ZKF) para
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la estimación de estados bajo incertidumbre. El modelo
ANFIS se entrena exclusivamente con datos libres de
fallas, mientras que la detección se basa en la generación
de residuales por parte del observador ZKF, los cuales
se analizan mediante umbrales adaptativos considerando
la incertidumbre del sistema y ruido en las mediciones.
El esquema propuesto se valida mediante simulaciones
que consideran distintos escenarios de fallas en sensores y
actuadores.

2. MODELO DEL SISTEMA BIORREACTOR CSTR

A continuación, se presenta un modelo genérico basado
en principios fundamentales para un biorreactor CSTR
que opera continuamente en una reacción exotérmica
de segundo orden, validado en Pilario and Cao (2018),
donde un producto A se convierte en un producto B. Las
ecuaciones (1–3) representan los balances de materia y
enerǵıa de un proceso qúımico.

dC

dt
=
Q

V
(Ci − C)− akC + ν1 (1)

dT

dt
=
Q

V
(Ti − T )− a

(∆Hr)kC

ρCp
− b

UA

ρCpV
(T − Tc) + ν2 (2)

dTc

dt
=
Qc

Vc
(Tci − Tc) + b

UA

ρcCpcVc
(T − Tc) + ν3 (3)

Las variables del biorreactor incluyen concentraciones Ci

y C, temperaturas T y Tc, y el caudal de refrigerante
Qc. Las entradas del sistema son u = [Ci, Ti, Tci]

T y las
salidas y = [C, T, Tc, Qc]

T . El parámetro cinético k sigue
una ley tipo Arrhenius. El esquema del CSTR en la Figura
1 muestra la configuración y puntos de medición. Se consi-
deran fallas incipientes en sensores y procesos, incluyendo
degradación cataĺıtica y ensuciamiento térmico, como se
resume en la Tabla 1.

Figura 1. Esquema del CSTR en lazo cerrado.

Tabla 1. Resumen de escenarios de falla en el
sistema

Falla Descripción Tipo

1 Sesgo del 10% en sensor C Aditiva
2 Sesgo del 10% en sensor T Aditiva
3 Sesgo del 10% en sensor Tci Aditiva
4 Sesgo del 10% en sensor Qc Aditiva
5 Decaimiento cataĺıtico Multiplicativa
6 Ensuciamiento térmico Multiplicativa

2.1 Preparación de datos para el entrenamiento de ANFIS

La preparación de datos del sistema CSTR se basa en
simulaciones de 1200 minutos con 4 muestras por minuto,

bajo condiciones sin fallas y con ruido en las mediciones.
Dado que el enfoque es basado en datos, se recolectan
muestras de sensores de entrada y salida. Para capturar la
no linealidad del sistema, las variables se estiman de forma
regresiva considerando dos instantes anteriores, como se
muestra en la Tabla 2.

Tabla 2. Variables de salida estimadas en
forma regresiva

Salida yi Forma regresiva

Ĉ(k) (C(k), C(k − 1), C(k − 2), Ci(k), Ti(k), Tci(k))

T̂ (k) (T (k), T (k − 1), T (k − 2), Ci(k), Ti(k), Tci(k))

T̂c(k) (Tc(k), Tc(k − 1), Tc(k − 2), Ci(k), Ti(k), Tci(k))

Q̂c(k) (Qc(k), Qc(k − 1), Qc(k − 2), Ci(k), Ti(k), Tci(k))

Estas expresiones regresivas se utilizarán como entradas
para las redes ANFIS y, mediante el aprendizaje, permi-
tirán identificar las variables estimadas y obtener modelos
tipo Takagi-Sugeno que serán empleados en el diseño de
observadores intervalares.

3. ESQUEMA HÍBRIDO DE DIAGNÓSTICO DE
FALLAS PARA EL SISTEMA CSTR

Esta sección presenta un método h́ıbrido para el diagnósti-
co de fallas en biorreactores tipo CSTR, basado en datos
operativos (Figura 2). Se emplean modelos ANFIS para
identificar la dinámica no lineal del sistema en condi-
ciones normales. A partir de estos, se generan modelos
Takagi-Sugeno que permiten representar su comporta-
miento adaptativo. Además, se diseñan observadores ZKF
con umbrales adaptativos para detectar fallas. El aisla-
miento de fallas se realiza mediante el análisis de la matriz
de incidencia, permitiendo identificar cada falla dentro del
proceso.
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Figura 2. Esquema del diagnóstico de fallas.

3.1 Obtención de sistemas Takagi-Sugeno a partir del
aprendizaje ANFIS

El proceso de identificación del sistema utiliza las estruc-
turas regresivas de las variables presentadas en la Tabla
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Figura 3. ANFIS para la identificación del sistema CSTR.

2; las entradas al ANFIS se estructuran para identificar
el sistema CSTR, como se ilustra en la Figura 3. Es
importante mencionar que el proceso de entrenamiento
se realiza con datos libres de fallas para asegurar la
precisión y confiabilidad del modelo. La Figura 3 muestra
las variables de entrada T (k), T (k − 1), T (k − 2), Ci(k),
Ti(k) y Tci(k), utilizadas como entradas del sistema de
inferencia difusa. El ANFIS emplea estas entradas para
identificar el comportamiento del sistema y estimar la va-
riable de salida T̂ (k). El ANFIS se utiliza para aproximar
el comportamiento no lineal de cada variable de salida
del sistema CSTR. Los datos de entrada para el ANFIS
se estructuran de la siguiente manera:

ξ = [ T (k) T (k − 1) T (k − 2) Ci(k) Ti(k) Tci(k) ]
T
.
(4)

Capa 1 : Conocida como capa de antecedentes, la cual
emplea funciones de membreśıa (MF) tipo campana ge-
neralizada para realizar la fusificación. Cada función de
tipo campana, denotada como η(·), se caracteriza por
tres parámetros neuro-difusos (amo, bmo, cmo). La función
se define como: ηmo(ξo) = 1

1+( ξo−cmo
amo

)
2bmo

, donde ξ re-

presenta el vector de variables de entrada del ANFIS
(también conocidas como parámetros de programación),
NMF representa el número de funciones de membreśıa por
parámetro de programación.

Capa 2 : Esta capa genera las reglas utilizando las funcio-
nes tipo campana definidas previamente. Cada uno de los

Nv = (NMF )
Nξ = 64 nodos que multiplican las señales

entrantes y env́ıa el producto. El cálculo se expresa como:

µi(ξ) =
∏Nξ

o=1 ηmo(ξo), donde cada parámetro de pro-
gramación ξo es estimado y vaŕıa dentro de un intervalo
definido, ξo ∈

[
ξo, ξo

]
⊂ R.

Capa 3 : Esta capa de normalización calcula los valo-
res ponderados asociados a cada regla como, µ̄i(ξ) =

µi(ξ)∑Nv

i=1
µi(ξ)

.

Capa 4 : Conocida como defusificación o capa consecuente,
esta capa emplea las reglas difusas tipo ”si-entonces”de
Takagi y Sugeno (Takagi and Sugeno, 1985). Las reglas se
expresan como: Ri : SI ξ1 es ηm1 Y, . . . ,Y ξNξ

es
ηmNξ

ENTONCES µ̄iξi = µ̄i(ξipi+hi), ∀i = 1, . . . , Nv.

Salida: Esta capa determina la salida general del sistema
sumando todas las señales entrantes provenientes de la

capa de defusificación, es decir:
∑Nv

i=1 µ̄iξi. Una vez fina-
lizado el entrenamiento del ANFIS y calculados los pesos
normalizados junto con los parámetros consecuentes, el
siguiente paso consiste en la construcción de la repre-
sentación politópica de Takagi-Sugeno. Como ejemplo, la
variable T̂ se expresa como:

T̂ (k) =

N∑
i=1

µ̄i(ξ(k))
(
α1iT (k) + α2iT (k − 1)+

α3iT (k − 2) + α4iQin(k) + α5iQout(k) + γi

)
. (5)

Los términos en (5) pueden reorganizarse como:

T̂ (k) =

N∑
i=1

µ̄i(ξ(k))

([
α1
1i α

1
2i α

1
3i

α2
1i α

2
2i α

2
3i

α3
1i α

3
2i α

3
3i

]
x+

[
α1
4i α

1
5i

α2
4i α

2
5i

α3
4i α

3
5i

]
u+

[
γ1i
γ2i
γ3i

])
,

(6)

donde x = [ T (k) T (k − 1) T (k − 2) ]
T

representa los

estados, y u = [Qin Qout ]
T

corresponde a las entradas.
El supeŕındice 1, 2, 3 indica el número de salida del
ANFIS. La forma politópica se reformula como un modelo
en espacio de estados en tiempo discreto:

x(k + 1) =

N∑
i=1

µ̄i(ξ(k)) (Aix(k) +Biu(k) + γi) ,

y(k) = Cx(k), (7)

donde N = (NMF)
Nξ , µ̄i(ξ(k)) representa las funciones

premisa, y Ai, Bi, γi y C son las matrices del sistema
de dimensiones apropiadas. El vector de salida se denota
por y(k). Se debe notar que el sistema CSTR está sujeto
a incertidumbres derivadas de discrepancias en el modelo,
dinámicas de reacción y cambios ambientales. Las matri-
ces Ψi y Ωi representan las incertidumbres, mientras que
Fσ representa el ruido:

x(k + 1) =

N∑
i=1

µ̄i(ξ(k))((Ai + Ψi)x(k) + (Bi +Ωi)u(k) + γi),

y(k) =Cx(k) + Fσσ(k), (8)

Los valores de las matrices con incertidumbre se calculan
a partir de la matriz de covarianza de error de todos
los parámetros consecuentes del modelo ANFIS, gene-
rados durante el aprendizaje. Las matrices Ψi y Ωi se
forman utilizando las desviaciones estándar derivadas de
las varianzas en dicha matriz de covarianza. La matriz de
ruido Fσ tiene dimensiones fijas, mientras que σ(k) ∈ Rny

representa el ruido de los sensores del sistema CSTR.
Los parámetros inciertos pueden aproximarse en un solo
término según Chen and Patton (2012). Aśı, la ecuación
(8) se reformula de la siguiente manera:

x(k + 1) =

Nv∑
i=1

µ̄i(ζ(k)) (Aix(k) +Biu(k) + γi + Eiδ(k)) ,

y(k) = Cx(k) + Fσσ(k), (9)

con

Eiδ(k) = Ψix(k) +Ωiu(k), (10)
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donde Ei es la matriz de distribución de incertidumbre
con dimensiones adecuadas, y δ(k) ∈ Rnx es un vector que
captura el efecto de la incertidumbre. La siguiente subsec-
ción describe el procedimiento para diseñar el observador
ZKF basado en conjuntos.

3.2 Diseño de un observador ZKF

El observador ZKF se diseña mediante aprendizaje AN-
FIS sobre un modelo Takagi-Sugeno y se basa en el filtro
de Kalman zonotópico. A diferencia del KF tradicional, el
ZKF emplea incertidumbres acotadas en lugar de distri-
buciones probabiĺısticas, lo que mejora su robustez frente
a perturbaciones deterministas. Proporciona estimaciones
en forma de zonotopos que encierran todos los estados
posibles, sin requerir supuestos sobre la distribución del
ruido. Esta combinación de lógica difusa y observación
zonotópica permite una estimación precisa y confiable
en sistemas dinámicos no lineales. Para simplificar la
notación, el sistema TS en (8) se reformula como:

x(k + 1) = Aωx(k) +Bωu(k) + γω + Eωδ(k),

y(k) = Cx(k) + Fσσ(k), (11)

donde Aω =
∑Nv

i=1 µ̄i(ζ(k))Ai, Bω =
∑Nv

i=1 µ̄i(ζ(k))Bi,

γω =
∑Nv

i=1 µ̄i(ζ(k))γi y Eω =
∑Nv

i=1 µ̄i(ζ(k))Ei. Las
incertidumbres y el ruido se consideran como una repre-
sentación zonotópica de la forma:

δ ∈ ⟨cδ, Rδ⟩, (12)

σ ∈ ⟨cσ, Rσ⟩,
donde cδ y cσ representan los centros de los zonotopos
que acotan la incertidumbre y el ruido, respectivamente,
con sus matrices generadoras asociadas Rδ ∈ Rnx×nx y
Rσ ∈ Rny×ny .

Suposición 3.1. Se asume que las incertidumbres y el
ruido en (12) están acotados por un zonotopo hipercubo
unitario centrado en el origen. Espećıficamente, para todo
k ≥ 0, se tiene que δ ∈ [−1, 1]nδ = ⟨0, Inδ⟩ y σ ∈
[−1, 1]nσ = ⟨0, Inσ

⟩, donde Inδ ∈ Rnδ×nδ e Inσ
∈ Rnσ×nσ

son matrices identidad.

Considerando la hipótesis anterior y que el estado inicial
x0 pertenece al conjunto X zo

0 = ⟨czok,0, Rzo
k,0⟩, donde czok,0 ∈

Rnx representa el centro y Rzo
k,0 ∈ R

nx×nRzo
k,0 es una matriz

generadora no vaćıa, se estructura el siguiente observador
ZKF neuro-difuso:

x̂(k + 1) = Aωx̂(k) +Bωu(k) + γω(k) + Eωδ(k)

+ Lω(y − Cx(k)− Fσσ(k)), (13)

donde el vector x̂(k + 1) ∈ Rnx representa los estados
estimados y Lω ∈ Rnx×ny representa las ganancias del
observador, que deben determinarse. La siguiente propo-
sición es esencial para el cálculo de dichas ganancias.

Proposición 1. Dado el sistema (11) y la estructura del

observador (13), el zonotopo X̂ zo
k = ⟨czok+1, R

zo
k+1⟩ se

predice recursivamente hacia adelante como:

czok+1 = (Aω − LωC)czok +Bωuk + γk + Lωyk (14)

Rzo
k+1 = [(Aω − LωC)R̄zo

k , Eω,−LωFσ]

R̄zo
k =↓q (Rzo

k ).

donde el operador de reducción ↓q satisface R̄k =↓q (R),
y x̂(k) ∈ ⟨ck, Rk⟩ ⊂ ⟨ck, R̄k⟩.
Proof 1. Asumiendo que X̂ zo = ⟨czok+1, R

zo
k+1⟩ en el instan-

te k (válido en k = 0) y que ↓q,W preserva la inclusión, se

tiene X̂ zo = ⟨ck, R̄k⟩. Dado que δ = ⟨0, Inδ⟩ y σ ∈ ⟨0, Inσ
⟩

según (11), y considerando (13), se obtiene:

x̂(k + 1) = ((Aω − LωC)⊙ ⟨ck, Rk⟩)⊕ (Bω ⊙ ⟨uk, 0⟩)⊕ (⟨γω , 0⟩)
(15)

⊕(Eω ⊙ ⟨0, Inδ ⟩)⊕ (Lω ⊙ ⟨yk, 0⟩)⊕ (−LωFσ ⊙ ⟨0, Inσ ⟩).

Luego, al aplicar la Propiedad de Zonotopos , se obtiene
(14). Por lo tanto, la demostración queda concluida. ■

Como se destaca en la Proposición 1, el observador zo-
notópico de acotamiento de estados (14) se caracteriza por
la ganancia del observador zonotópico Lz en cada instante
de tiempo k. De acuerdo con Alamo et al. (2005), Com-
bastel (2015), el tamaño del zonotopo de acotamiento de

estados X̂ zo = ⟨czok+1, R
zo
k+1⟩ puede minimizarse utilizando

su F -radio. El siguiente teorema ofrece un método para
calcular Lz con este propósito.

Teorema 3.1. Considérese el sistema difuso no lineal tipo
Takagi-Sugeno (11) y su observador zonotópico asociado
(13). El tamaño del zonotopo definido en (14) puede op-
timizarse utilizando la siguiente ganancia del observador:

Lω = ΓωΦ
−1
k , (16)

donde

Γω = AωPkC
T , Pk = Rxk

RT
xk
, Φk = CPkC

T +FσF
T
σ .

Proof 2. La demostración se basa en la relación entre
el filtro de Kalman zonotópico y el filtro de Kalman
establecida en (Combastel, 2015). ■

Cabe señalar que el término hz no modifica la matriz
generadora del zonotopo que acota el estado Rzo

k+1 en
(14). Por lo tanto, no se considera en el desarrollo de
las LMIs. Luego, aplicando las operaciones adecuadas
sobre las LMIs, se obtiene una solución de optimización
politópica según Ostertag (2011).

3.3 Esquema de detección de fallas Zonotópico

El proceso de detección y aislamiento de fallas mediante
el ZKF neuro-difuso implica la estimación de las variables
del sistema con ANFIS y la propagación de perturbacio-
nes y ruido a través de un observador zonotópico. Este
proceso identifica fallas verificando la intersección entre el
zonotopo estimado y la franja medida en cada instante de
tiempo. Si la intersección es vaćıa, se indica una falla. Los
resultados se almacenan en una Matriz de Firma de Fallas
(MFF), que ayuda en el diagnóstico de las fallas. Los pasos
detallados de este esquema de detección se presentan en
el Algoritmo 1.
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Algorithm 1 Detección de Fallas Zonotópico

1: Entrada: Variables del sistema estimadas mediante
ANFIS, como en la Tabla 2

2: Salida: Matriz de Firma de Fallas (MFF)
3: Inicialización:
4: Número de variables estimadas del sistema s
5: Parámetros del observador zonotópico y cotas de

perturbación
6: for cada instante de tiempo k do
7: Estimar las variables del sistema usando ANFIS
8: Propagar incertidumbre y ruido mediante el ob-

servador zonotópico
9: Calcular la franja X yk

k para cada variable medida:

X yk
k

= {x(k) ∈ Rnx : |Cx(k)− ys(k)| ≤ Fσ} (17)

10: Verificar la existencia de una falla comprobando:

X̂ zo
k ∩ X yk

k = ∅ (18)

11: if X̂ zo
k ∩ X yk

k = ∅ then
12: Se indica una falla
13: Generar residuos rs(k)
14: Actualizar la Matriz de Firma de Fallas

(MFF) de la siguiente forma:

ψs,j(k) =

{
0 si rs(k) es consistente (Sin falla)

1 si rs(k) no es consistente (Falla)
(19)

15: else
16: No se indica falla
17: end if
18: end for
19: Retornar: Matriz de Firma de Fallas (MFF)

4. RESULTADOS

Esta sección presenta los resultados del método h́ıbrido
propuesto para el diagnóstico de fallas con ANFIS y
observadores ZKF, evaluado mediante un simulador del
modelo CSTR. Se realizaron 30 simulaciones libres de
fallas durante 1200min con 4 muestras por minuto. El
entorno de Simulink incorpora perturbaciones aleatorias
en las entradas [Ci Ti Tci ], además de ruido de proceso
y de sensores, lo que genera variaciones no gaussianas y
mediciones correlacionadas debido a la no linealidad del
sistema, como se muestra en la Figura 4. El conjunto de
datos se dividió en 80% para entrenamiento y 20% para
validación de los modelos FSM. Durante el entrenamiento,
se ajustaron los pesos y parámetros neuro-difusos. Las sa-
lidas [C T Tc Qc ] fueron identificadas mediante ANFIS
(ver Subsección 3.1), utilizando 150 épocas. Se obtuvieron
estimaciones precisas con un RMSE entre 3.8971 × 10−4

y 6.9623× 10−4.

RMSE =

√√√√ 1

Nι

Nι∑
ι=1

(yι − ŷι)2 (20)

donde yι representa los valores reales, ŷι los valores esti-
mados, y Nι el número de observaciones. Posteriormente,
se implementaron los observadores ZKF como se describe
en la Subsección 3.2. Debido a limitaciones de espacio
en el art́ıculo, los resultados se presenta gráficamente en
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Figura 4. Conjunto de datos de entrada obtenido de la
simulación del CSTR
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Figura 5. Caudal de refrigerante Qc en condiciones libres
de falla.
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Figura 6. Falla 1 en el sensor C en el tiempo t = 200 s.

la Figura 5 muestra la refrigerante Qc en condiciones
libres de falla, donde el observador ZKF (ĺıneas roja y
verde) envuelve la señal medida, representada por la ĺınea
azul. Para evaluar la efectividad del método propuesto, se
realizaron diversas pruebas induciendo intencionalmente
fallas en sensores y fallas incipientes en el proceso del
reactor contenidas en la tabla 1. Las fallas pueden visua-
lizarse gráficamente en las siguientes figuras; se presentan
dos gráficas correspondientes a falla en sensor y falla
en el proceso. En la Figura 6, se activa una falla en el
sensor C en el tiempo t = 200min, superando el umbral
superior del observador. La Figura 7 ilustra una falla
incipiente inducida en el tiempo t = 400 s; esta falla
supera el umbral superior y se incrementa con el tiempo.
Utilizando el Algoritmo 1, los resultados de detección de
fallas se detallan en la Tabla 3, la cual muestra la MFF.
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Figura 7. Falla 6 en el proceso del reactor en el tiempo
t = 400 s.

La MFF compila los resultados de detección para cada
escenario de falla. Cada fila corresponde a un residual rs
generado por el algoritmo, y cada columna se asocia a
una falla espećıfica. Un valor de 1 indica que la falla fue
detectada en el escenario correspondiente, mientras que
una celda vaćıa indica que no se detectó ninguna falla. La
matriz permite identificar claramente qué residuales están
vinculados a cada falla. En el caso de la falla incipiente
5, se activan los residuales 1, 2 y 3; mientras que para
la falla incipiente 6, se activan los residuales 3 y 4. En
consecuencia, cada falla genera una firma distintiva, lo
que permite un diagnóstico preciso de fallas.

Residual Falla 1 Falla 2 Falla 3 Falla 4 Falla 5 Falla 6

r1 1 1
r2 1 1
r3 1 1 1
r4 1 1

Tabla 3. Activación de residuales para cada
escenario de falla.

El método h́ıbrido basado en observadores ZKF demostró
ser eficaz en la generación de umbrales adaptativos ro-
bustos frente a incertidumbre y ruido. La MFF evidencia
la activación espećıfica de residuales ante fallas, lo que
permite una identificación precisa mediante firmas únicas,
incluso en condiciones no ideales.

5. CONCLUSIONES

Este trabajo presentó un enfoque h́ıbrido para el diagnósti-
co de fallas en sistemas dinámicos no lineales, integrando
modelos ANFIS con observadores ZKF. La metodoloǵıa
permite identificar con precisión la dinámica del siste-
ma en condiciones normales mediante aprendizaje neuro-
difuso, y detectar fallas de forma robusta usando umbrales
adaptativos generados por observadores zonotópicos. La
aplicación al sistema CSTR validó la eficacia del enfoque
propuesto, logrando detectar tanto fallas abruptas en
sensores como fallas incipientes en el proceso, incluso en
presencia de incertidumbre y ruido. La MFF permitió una
clara asociación entre residuales y fallas, facilitando la
identificación y aislamiento preciso. Como trabajo futu-
ro, se propone extender este enfoque hacia la predicción
de fallas, lo cual permitiŕıa anticipar la degradación del
sistema y habilitar esquemas de mantenimiento predictivo
más eficientes.
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