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Abstract: This work presents a hybrid fault diagnosis framework for Continuous Stirred Tank
Reactor (CSTR) bioreactors by integrating Adaptive Neuro-Fuzzy Inference Systems (ANFIS)
and Zonotopic Kalman Filters (ZKF). The proposed method consists of two main stages: (1)
modeling the nominal behavior of the CSTR using ANFIS trained on fault-free data to extract
a compact set of fuzzy rules, and (2) implementing a ZKF to estimate system states and detect
deviations associated with faults. The neuro-fuzzy model captures the system’s dynamics, while
the zonotopic filter accounts for bounded uncertainty and measurement noise. Fault detection
is achieved by evaluating residuals and comparing them to adaptive thresholds derived from
the zonotopic bounds. Simulation results for different actuator and sensor fault scenarios
demonstrate the effectiveness of the proposed approach in identifying deviations from normal
operation, highlighting its potential for improving monitoring capabilities in bioprocesses.
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1. INTRODUCCION

Los biorreactores son equipos esenciales en biotecnologia,
utilizados para llevar a cabo procesos biolégicos bajo con-
diciones controladas. Su principal funcién es proporcionar
un entorno éptimo para cultivar células o microorganis-
mos con el objetivo de producir una amplia gama de pro-
ductos, que incluyen farmacos, bioenergéticos y compues-
tos quimicos de alto valor. No obstante, los biorreactores
estan expuestos a una variedad de fallas operativas. Estas
fallas pueden originarse por desviaciones en el proceso,
fallos de sensores o actuadores, contaminacién bioldgica
o comportamientos celulares inesperados. En industrias
de alto riesgo como la farmacéutica, estas fallas pueden
representar pérdidas econdémicas significativas y retrasos
criticos en la producciéon Mitra and Murthy (2022). Di-
versas estrategias han sido aplicadas para el diagnéstico
de fallas en reactores de tanque agitado continuo (CSTR,
por sus siglas en inglés). Algunas de las més relevantes
incluyen el uso de redes neuronales artificiales Sawat-

tanakit and Jaovisidha (1998), observadores de estados
Venkateswaran et al. (2021), observadores robustos con
modos deslizantes Pan et al. (2023), y observadores con
incertidumbre acotada Azarbani et al. (2023). Ademds,
enfoques hibridos han sido explorados, como la combi-
nacién de redes neuro-difusas con filtros extendidos de
Kalman para mejorar la sensibilidad ante fallas Gholiza-
deh et al. (2017). En este contexto, los modelos ANFIS
se han posicionado como una técnica prometedora pa-
ra representar el comportamiento dindmico de sistemas
complejos como los CSTR. ANFIS integran la flexibilidad
de los sistemas difusos con la capacidad de aprendizaje
de las redes neuronales, permitiendo modelar procesos a
partir de datos histéricos de operacion sin necesidad de
un modelo fisico detallado Jagtap et al. (2015).

Este trabajo propone un enfoque hibrido para el diagnésti-
co de fallas incipientes en un biorreactor tipo CSTR,
combinando técnicas ANFIS para la identificacion del
sistema con filtros de Kalman zonotépicos (ZKF) para
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la estimacién de estados bajo incertidumbre. El modelo
ANFIS se entrena exclusivamente con datos libres de
fallas, mientras que la deteccion se basa en la generacién
de residuales por parte del observador ZKF, los cuales
se analizan mediante umbrales adaptativos considerando
la incertidumbre del sistema y ruido en las mediciones.
El esquema propuesto se valida mediante simulaciones
que consideran distintos escenarios de fallas en sensores y
actuadores.

2. MODELO DEL SISTEMA BIORREACTOR CSTR

A continuacion, se presenta un modelo genérico basado
en principios fundamentales para un biorreactor CSTR
que opera continuamente en una reaccidon exotérmica
de segundo orden, validado en Pilario and Cao (2018),
donde un producto A se convierte en un producto B. Las
ecuaciones (1-3) representan los balances de materia y
energia de un proceso quimico.

ac  Q
= =2 (- C) - akC 1
= v ( )—a + 11 (1)
EZQ(Ti—T)—a(AHT)kC—b UA T-T)+m ()
dt VvV pCp pCpV
4T, Q. UA

= —_— Tci —Tc b—— T_TC 3 3
i ( )+ pccpcvc( )+ s (3)

Las variables del biorreactor incluyen concentraciones Cj;

y C, temperaturas Ty T., y el caudal de refrigerante
Q.. Las entradas del sistema son u = [C;, T;, To;]7 vy las
salidas y = [C, T, T., Q.]T. El pardmetro cinético k sigue
una ley tipo Arrhenius. El esquema del CSTR en la Figura
1 muestra la configuracién y puntos de medicién. Se consi-
deran fallas incipientes en sensores y procesos, incluyendo
degradacion catalitica y ensuciamiento térmico, como se
resume en la Tabla 1.

Cimai/L]
Tifk]

Qe[L{min]}
Clmal /L]

TIK
TalK] IX]

Figura 1. Esquema del CSTR en lazo cerrado.

Tabla 1. Resumen de escenarios de falla en el

sistema

Falla  Descripcién Tipo

1 Sesgo del 10 % en sensor C' Aditiva

2 Sesgo del 10 % en sensor T Aditiva

3 Sesgo del 10 % en sensor T; Aditiva

4 Sesgo del 10 % en sensor Q. Aditiva

5 Decaimiento catalitico Multiplicativa
6 Ensuciamiento térmico Multiplicativa

2.1 Preparacion de datos para el entrenamiento de ANFIS

La preparacién de datos del sistema CSTR se basa en
simulaciones de 1200 minutos con 4 muestras por minuto,
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bajo condiciones sin fallas y con ruido en las mediciones.
Dado que el enfoque es basado en datos, se recolectan
muestras de sensores de entrada y salida. Para capturar la
no linealidad del sistema, las variables se estiman de forma
regresiva considerando dos instantes anteriores, como se
muestra en la Tabla 2.

Tabla 2. Variables de salida estimadas en
forma regresiva

Salida y; Forma regresiva
C(k) (C(k), C(k —1),C(k — 2),Cs(k), Ty (k), Tei(k))
Tc(k) (Tc(k)aTC(k - 1)7Tc(k - 2)7 Cz(k)sz(k)v Tz,z(k))
Qelk)  (Qelk), Qelk — 1), Qelk — 2), Ci(k), Ty(k), Tei (k)

Estas expresiones regresivas se utilizaran como entradas
para las redes ANFIS y, mediante el aprendizaje, permi-
tiran identificar las variables estimadas y obtener modelos
tipo Takagi-Sugeno que seran empleados en el diseno de
observadores intervalares.

3. ESQUEMA HIiBRIDO DE DIAGNOSTICO DE
FALLAS PARA EL SISTEMA CSTR

Esta seccién presenta un método hibrido para el diagnésti-
co de fallas en biorreactores tipo CSTR, basado en datos
operativos (Figura 2). Se emplean modelos ANFIS para
identificar la dindmica no lineal del sistema en condi-
ciones normales. A partir de estos, se generan modelos
Takagi-Sugeno que permiten representar su comporta-
miento adaptativo. Ademads, se disenian observadores ZKF
con umbrales adaptativos para detectar fallas. El aisla-
miento de fallas se realiza mediante el andlisis de la matriz
de incidencia, permitiendo identificar cada falla dentro del
proceso.

yi(k)

Biorreactor

Umbrales
adaptables

GG

ANFIS- Observador | (k)
] ZKF
T(k) N Tk
ANFIS- Observador | 7¢6)
TS ZKF

[t 7]

Deteccion de fallas

@i(k)

Matriz de firmas
de falla

Fallas
diagnosticadas

Figura 2. Esquema del diagnéstico de fallas.

3.1 Obtencion de sistemas Takagi-Sugeno a partir del
aprendizaje ANFIS

El proceso de identificacién del sistema utiliza las estruc-
turas regresivas de las variables presentadas en la Tabla
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Entradas Capal  Capa2 Capa4 salida

Capa3

Figura 3. ANFIS para la identificacién del sistema CSTR.

2; las entradas al ANFIS se estructuran para identificar
el sistema CSTR, como se ilustra en la Figura 3. Es
importante mencionar que el proceso de entrenamiento
se realiza con datos libres de fallas para asegurar la
precision y confiabilidad del modelo. La Figura 3 muestra
las variables de entrada T'(k), T'(k — 1), T(k — 2), C;(k),
T;(k) y Tei(k), utilizadas como entradas del sistema de
inferencia difusa. E1 ANFIS emplea estas entradas para
identificar el comportamiento del sistema y estimar la va-
riable de salida 7'(k). El ANFIS se utiliza para aproximar
el comportamiento no lineal de cada variable de salida
del sistema CSTR. Los datos de entrada para el ANFIS
se estructuran de la siguiente manera:
é—wTw)T%—lﬂﬂk—%CMMZXMIQ%HTk)
4
Capa 1: Conocida como capa de antecedentes, la cual
emplea funciones de membresia (MF) tipo campana ge-
neralizada para realizar la fusificacién. Cada funcién de
tipo campana, denotada como 77(~)7 se caracteriza por
tres pardmetros neuro-difusos (amo,lbmo, Cmo)- La funcién

se define como: 1,,,(&,) = W, donde ¢ re-

amo
presenta el vector de variables de entrada del ANFIS
(también conocidas como pardmetros de programacion),
Ny r representa el nimero de funciones de membresia por

parametro de programacion.

Capa 2: Esta capa genera las reglas utilizando las funcio-
nes tipo campana definidas previamente. Cada uno de los
N, = (N Mp)Nf = 64 nodos que multiplican las senales
entrantes y envia el producto. El cdlculo se expresa como:

wi(€) = Hivél Nmo(&s), donde cada pardmetro de pro-
gramacion &, es estimado y varia dentro de un intervalo

definido, &, € @,a C R.

Capa 3: Esta capa de normalizacién calcula los valo-

res ponderados asociados a cada regla como, f;(§) =
wi(§)

Z?:l i (8)

Capa 4: Conocida como defusificacion o capa consecuente,
esta capa emplea las reglas difusas tipo ”si-entonces”de
Takagi y Sugeno (Takagi and Sugeno, 1985). Las reglas se
expresan como: R; : SI &1es nm1 Y,..., Y ENe ©s

MmN, ENTONCES ;6 = fii(&ipit+h),
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Vi=1,...,N,.

Salida: Esta capa determina la salida general del sistema
sumando todas las senales entrantes provenientes de la

capa de defusificacién, es decir: Efvz”l ;& Una vez fina-
lizado el entrenamiento del ANFIS y calculados los pesos
normalizados junto con los parametros consecuentes, el
siguiente paso consiste en la construccién de la repre-
sentacion politopica de Takagi-Sugeno. Como ejemplo, la
variable 7" se expresa como:

N
Tm=2mmm@ﬂw+mﬂmm+

a3 T(k —2) + ag;Qin(k) + a5 Qour (k) + ’Yi)- (5)

Los términos en (5) pueden reorganizarse como:

1 1.1 1
e L L DR s L 1 O
a%i agi agi T+ o‘%i agi u+ 'yis s
ay; Qg Oz, Qg O i

(6)

N
T(k) =Y [i(&(k)) (

i=1

donde z = [T(k) T(k—1) T(k — 2)]T representa los

estados, y u = [Qin Qout ]T corresponde a las entradas.
El superindice 1,2,3 indica el ntimero de salida del
ANFIS. La forma politopica se reformula como un modelo
en espacio de estados en tiempo discreto:

N
ok +1) =Y m(E(k) (Aiz(k) + Biu(k) + %) ,
i=1

y(k) = C(k), (7)
donde N = (Nyr)™¢, fi:(£(k)) representa las funciones
premisa, y A;, B;, 7; v C son las matrices del sistema
de dimensiones apropiadas. El vector de salida se denota
por y(k). Se debe notar que el sistema CSTR estd sujeto
a incertidumbres derivadas de discrepancias en el modelo,
dindmicas de reacciéon y cambios ambientales. Las matri-
ces ¥; y §2; representan las incertidumbres, mientras que
F,, representa el ruido:

N
wk+1) =Y E(ER) (A + w)a(k) + (Bi + 2:)ulk) + %),
=1

y(k) =Cz(k) + Foo(k), (8)
Los valores de las matrices con incertidumbre se calculan
a partir de la matriz de covarianza de error de todos
los pardmetros consecuentes del modelo ANFIS, gene-
rados durante el aprendizaje. Las matrices ¥; y §2; se
forman utilizando las desviaciones estandar derivadas de
las varianzas en dicha matriz de covarianza. La matriz de
ruido F,, tiene dimensiones fijas, mientras que o(k) € R™v
representa el ruido de los sensores del sistema CSTR.
Los pardmetros inciertos pueden aproximarse en un solo
término segun Chen and Patton (2012). Asi, la ecuacién
(8) se reformula de la siguiente manera:
Ny
ak+1) = ma(C(k)) (Aiw(k) + Biu(k) + 7 + E:b(k),
i=1
y(k) = Ca(k) + Foo(k),
con
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donde F; es la matriz de distribucién de incertidumbre
con dimensiones adecuadas, y 6(k) € R™ es un vector que
captura el efecto de la incertidumbre. La siguiente subsec-
cién describe el procedimiento para disenar el observador
ZKF basado en conjuntos.

3.2 Diseno de un observador ZKF

El observador ZKF se disena mediante aprendizaje AN-
FIS sobre un modelo Takagi-Sugeno y se basa en el filtro
de Kalman zonotépico. A diferencia del KF tradicional, el
ZKF emplea incertidumbres acotadas en lugar de distri-
buciones probabilisticas, lo que mejora su robustez frente
a perturbaciones deterministas. Proporciona estimaciones
en forma de zonotopos que encierran todos los estados
posibles, sin requerir supuestos sobre la distribucién del
ruido. Esta combinacién de légica difusa y observacion
zonotopica permite una estimacién precisa y confiable
en sistemas dindamicos no lineales. Para simplificar la
notacidn, el sistema TS en (8) se reformula como:

2(k+1) = Ay (k) + Bou(k) + 7o + Euo(k),
y(k) = Cax(k) + Foo(k), (11)

donde Ay = 525 u(C(R)Aiy By = 335 (C(R) By
Yo = D Hi(C(R)vi vy Eo = >37 mi(C(k))E;. Las
incertidumbres y el ruido se consideran como una repre-
sentacion zonotopica de la forma:

o€ <C§,R§>7
o € (o, Ry),

donde c¢s y ¢, representan los centros de los zonotopos
que acotan la incertidumbre y el ruido, respectivamente,
con sus matrices generadoras asociadas Rs € R"=*"= y
R, € R™wXx"y,

Suposicion 3.1. Se asume que las incertidumbres y el
ruido en (12) estdn acotados por un zonotopo hipercubo
unitario centrado en el origen. Especificamente, para todo
kE > 0, se tiene que § € [-1,1]" = (0,15) v 0 €
[-1,1]" = (0, 1I,,), donde I,5 € R™*™ ¢ [, € R"e*ne
son matrices identidad.

(12)

Considerando la hipétesis anterior y que el estado inicial
xo pertenece al conjunto X§° = (c;%, R;%), donde ¢}, €

n z0 Ny XnRzo .
R"™= representa el centroy R7% € R k.0 es una matriz

generadora no vacia, se estructura el siguiente observador
ZKF neuro-difuso:

+Lw(y_0x(k) _Foa(k))v (13)
donde el vector Z(k + 1) € R™ representa los estados
estimados y L, € R"*™ representa las ganancias del
observador, que deben determinarse. La siguiente propo-
sicién es esencial para el calculo de dichas ganancias.
Proposicidn 1. Dado el sistema (11) y la estructura del

$ zZ0 — Z0 zZ0o
observador (1.3), el zonotopo A’ = (ci%1, RiGq) se
predice recursivamente hacia adelante como:
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CZ?H = (Aw — LuO)ei® + Boug + vk + Loy
z_(—)&-l = [(Aw - LwC)RIZfO> E., _LwFa]
R =lq (RE?).
donde el operador de reduccién J, satisface Ry =|, (R),
y (k) € (e, Ri) C (ck, Ri)-
Proof 1. Asumiendo que X*° = (ci%1, RES 1) en el instan-
te k (vélido en k = 0) y que |4 w preserva la inclusién, se

tiene X% = (¢, Ri). Dado que 6 = (0, I,,5) y o € (0,1, )
segin (11), y considerando (13), se obtiene:

&k +1) = ((Aw — Lo C) © {ck, Ri)) ® (Bw © (uk, 0)) & ((7w,0))
(15)

®(EW © (07 Iﬂ5>) 5] (LW © <yk70>) @ (_LUJFU © <07 Iﬂa>)’
Luego, al aplicar la Propiedad de Zonotopos , se obtiene
(14). Por lo tanto, la demostracién queda concluida. W

(14)

Como se destaca en la Proposicién 1, el observador zo-
notdépico de acotamiento de estados (14) se caracteriza por
la ganancia del observador zonotépico L, en cada instante
de tiempo k. De acuerdo con Alamo et al. (2005), Com-
bastel (2015), el tamafio del zonotopo de acotamiento de
estados X0 = (ci%1» Ri%.,) puede minimizarse utilizando
su F-radio. El siguiente teorema ofrece un método para
calcular L, con este propdsito.

Teorema 3.1. Considérese el sistema difuso no lineal tipo
Takagi-Sugeno (11) y su observador zonotdpico asociado
(13). El tamano del zonotopo definido en (14) puede op-
timizarse utilizando la siguiente ganancia del observador:

L,=T,0.", (16)
donde
I, =A,P.C", P.=R, R, ®,=CPC"+F,F).

Proof 2. La demostracién se basa en la relacién entre
el filtro de Kalman zonotépico y el filtro de Kalman
establecida en (Combastel, 2015). |

Cabe senalar que el término h, no modifica la matriz
generadora del zonotopo que acota el estado RS, en
(14). Por lo tanto, no se considera en el desarrollo de
las LMIs. Luego, aplicando las operaciones adecuadas
sobre las LMIs, se obtiene una soluciéon de optimizacién

politépica segin Ostertag (2011).

3.3 Esquema de deteccion de fallas Zonotopico

El proceso de deteccion y aislamiento de fallas mediante
el ZKF neuro-difuso implica la estimacion de las variables
del sistema con ANFIS y la propagacién de perturbacio-
nes y ruido a través de un observador zonotépico. Este
proceso identifica fallas verificando la interseccién entre el
zonotopo estimado y la franja medida en cada instante de
tiempo. Si la interseccién es vacia, se indica una falla. Los
resultados se almacenan en una Matriz de Firma de Fallas
(MFF), que ayuda en el diagndstico de las fallas. Los pasos
detallados de este esquema de deteccion se presentan en
el Algoritmo 1.
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Algorithm 1 Deteccion de Fallas Zonotépico

1: Entrada: Variables del sistema estimadas mediante
ANFIS, como en la Tabla 2

2: Salida: Matriz de Firma de Fallas (MFF)
3: Inicializacién:
4: Numero de variables estimadas del sistema s
5: Parametros del observador zonotépico y cotas de
perturbacién
6: for cada instante de tiempo k do
7 Estimar las variables del sistema usando ANFIS
8: Propagar incertidumbre y ruido mediante el ob-
servador zonotépico
9: Calcular la franja X* para cada variable medida:
X = {z(k) € R"™ : |Ca(k) — ys(k)| < Fo} (17)
10: Verificar la existencia de una falla comprobando:
Xenxt =0 (18)
1 if X2 NAY =0 then
12: Se indica una falla
13: Generar residuos r4(k)
14: Actualizar la Matriz de Firma de Fallas
(MFF) de la siguiente forma:
e (k) = {(1) s? rs(k) es consiste.nte (Sin falla) (19)
si rs(k) no es consistente (Falla)
15: else
16: No se indica falla
17: end if
18: end for

19: Retornar: Matriz de Firma de Fallas (MFF)

4. RESULTADOS

Esta seccién presenta los resultados del método hibrido
propuesto para el diagnodstico de fallas con ANFIS y
observadores ZKF, evaluado mediante un simulador del
modelo CSTR. Se realizaron 30 simulaciones libres de
fallas durante 1200 min con 4 muestras por minuto. El
entorno de Simulink incorpora perturbaciones aleatorias
en las entradas [ C; T; T¢; ], ademds de ruido de proceso
y de sensores, lo que genera variaciones no gaussianas y
mediciones correlacionadas debido a la no linealidad del
sistema, como se muestra en la Figura 4. El conjunto de
datos se dividié en 80 % para entrenamiento y 20 % para
validacién de los modelos FSM. Durante el entrenamiento,
se ajustaron los pesos y parametros neuro-difusos. Las sa-
lidas [C T T, Q] fueron identificadas mediante ANFIS
(ver Subseccién 3.1), utilizando 150 épocas. Se obtuvieron
estimaciones precisas con un RMSE entre 3.8971 x 10~*
y 6.9623 x 1074,

(20)

donde y, representa los valores reales, g, los valores esti-
mados, y N, el nimero de observaciones. Posteriormente,
se implementaron los observadores ZKF como se describe
en la Subseccién 3.2. Debido a limitaciones de espacio
en el articulo, los resultados se presenta gréaficamente en
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Figura 4. Conjunto de datos de entrada obtenido de la
simulaciéon del CSTR
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Figura 5. Caudal de refrigerante ). en condiciones libres
de falla.
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Figura 6. Falla 1 en el sensor C' en el tiempo t = 200s.

la Figura 5 muestra la refrigerante (). en condiciones
libres de falla, donde el observador ZKF (lineas roja y
verde) envuelve la sefial medida, representada por la linea
azul. Para evaluar la efectividad del método propuesto, se
realizaron diversas pruebas induciendo intencionalmente
fallas en sensores y fallas incipientes en el proceso del
reactor contenidas en la tabla 1. Las fallas pueden visua-
lizarse graficamente en las siguientes figuras; se presentan
dos graficas correspondientes a falla en sensor y falla
en el proceso. En la Figura 6, se activa una falla en el
sensor C' en el tiempo ¢ = 200 min, superando el umbral
superior del observador. La Figura 7 ilustra una falla
incipiente inducida en el tiempo t = 400s; esta falla
supera el umbral superior y se incrementa con el tiempo.
Utilizando el Algoritmo 1, los resultados de deteccién de
fallas se detallan en la Tabla 3, la cual muestra la MFF.

https://doi.org/10.58571/CNCA.AMCA.2025.001



XX Congreso Latinoamericano de Control Automatico (CLCA 2025)
13-17 de Octubre, 2025. Cancun, Quintana Roo, México

300 400 410 420 430 440 450

0 200 400 600 800 1000 1200
Time [min]

Figura 7. Falla 6 en el proceso del reactor en el tiempo
t = 400s.

La MFF compila los resultados de deteccién para cada
escenario de falla. Cada fila corresponde a un residual rg
generado por el algoritmo, y cada columna se asocia a
una falla especifica. Un valor de 1 indica que la falla fue
detectada en el escenario correspondiente, mientras que
una celda vacia indica que no se detecté ninguna falla. La
matriz permite identificar claramente qué residuales estan
vinculados a cada falla. En el caso de la falla incipiente
5, se activan los residuales 1, 2 y 3; mientras que para
la falla incipiente 6, se activan los residuales 3 y 4. En
consecuencia, cada falla genera una firma distintiva, lo
que permite un diagnéstico preciso de fallas.

Residual Fallal Falla2 Falla3 Falla4 Falla5 Falla6
r1 1 1
T2 1 1
T3 1 1 1
T4 1 1

Tabla 3. Activaciéon de residuales para cada
escenario de falla.

El método hibrido basado en observadores ZKF demostré
ser eficaz en la generacién de umbrales adaptativos ro-
bustos frente a incertidumbre y ruido. La MFF evidencia
la activacién especifica de residuales ante fallas, lo que
permite una identificacién precisa mediante firmas tnicas,
incluso en condiciones no ideales.

5. CONCLUSIONES

Este trabajo presenté un enfoque hibrido para el diagnésti-
co de fallas en sistemas dinamicos no lineales, integrando
modelos ANFIS con observadores ZKF. La metodologia
permite identificar con precisiéon la dindmica del siste-
ma en condiciones normales mediante aprendizaje neuro-
difuso, y detectar fallas de forma robusta usando umbrales
adaptativos generados por observadores zonotépicos. La
aplicacién al sistema CSTR validé la eficacia del enfoque
propuesto, logrando detectar tanto fallas abruptas en
sensores como fallas incipientes en el proceso, incluso en
presencia de incertidumbre y ruido. La MFF permitié una
clara asociacién entre residuales y fallas, facilitando la
identificacién y aislamiento preciso. Como trabajo futu-
ro, se propone extender este enfoque hacia la prediccién
de fallas, lo cual permitiria anticipar la degradacién del
sistema y habilitar esquemas de mantenimiento predictivo
maés eficientes.
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