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Abstract: This work addresses the sensor fault detection problem in accelerometers placed
in building structures. Given the harsh conditions to which these measurement instruments
are subjected to and the importance of having non-faulty sensors, this study investigates
the use of observers for estimating accelerometer faults modeled as unknown inputs. The
proposed approach employs an observer that simultaneously estimates both the internal states
of the dynamic system and the unknown inputs. The observer design is based on optimization
techniques within the H∞ framework, that provides robustness against external disturbances,
parametric uncertainties, and measurement noise. Furthermore, the observer is capable to
detect and isolate these sensors failures without affecting the estimation of the structural state.
Simulation results show the effectiveness of the proposed scheme and validate the theoretical
framework.
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1. INTRODUCCIÓN

El continuo desarrollo de nuevos materiales y el avance
de la tecnoloǵıa ha acelerado el desarrollo de la in-
fraestructura civil en los últimos años. Durante su vida
útil, ésta suele estar sujeta a diversas cargas externas
causadas por factores múltiples, entre ellos terremotos y
vientos fuertes, que pueden producir un deterioro progre-
sivo de los elementos estructurales, mismo que, en casos
extremos, implicaŕıa riesgos de seguridad significativos
para su funcionamiento, y que pudiera llegar a pérdidas
humanas y económicas. En este sentido, las tecnoloǵıas de
monitoreo de la salud estructural (SHM) permiten evaluar
la seguridad de las estructuras considerando diversos en-
foques, como análisis modal basado en las frecuencias de
vibración (Yang andWang, 2010) y formas modales (Zhao
et al., 2016), entre otros (Pandey et al., 1991).

La mayoŕıa de los edificios hoy en d́ıa se instrumentan
con acelerómetros. Debido a las severas condiciones a
las que se encuentran sometidos estos instrumentos de
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medición, en ocasiones es dif́ıcil conocer su estado. Esto
implica que, al ocurrir un evento śısmico, pudieran no fun-
cionar correctamente y entorpecer una evaluación opor-
tuna de las condiciones del inmueble durante y después
del evento. Dada la importancia de contar con sensores
en buen estado, en este trabajo se explora la posibili-
dad de estimar fallas en acelerómetros, modeladas como
entradas desconocidas, empleando para ello observadores
que estiman simultáneamente tanto los estados internos
del sistema dinámico como dichas entradas (SISE, Si-
multaneous Input and State Estimation). Este tipo de
algoritmos ha sido aplicado en diversas áreas, incluyendo
la detección de fallas en actuadores (Guzman et al., 2021),
la robótica (Ferguson et al., 2024) y el control de sistemas
mecánicos (Valikhani and Younesian, 2019). Asimismo,
continúa extendiéndose hacia diversas clases de sistemas
dinámicos, lo que evidencia su versatilidad y relevancia
en la investigación actual.

En particular, el diseño del observador que se emplea en
este trabajo está basado en la formulación H∞, conocida
por su robustez ante incertidumbres, perturbaciones ex-
ternas y ruido de medición. Para lograr la estimación de
fallas, estas se consideran como estados adicionales en el
modelo, generando aśı un sistema extendido. La ganancia
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del observador es calculada de manera óptima empleando
desigualdades matriciales lineales y resueltas a través de
la paqueteŕıa YALMIP en Matlab. Finalmente, la eficacia
del algoritmo propuesto se valida mediante simulaciones
numéricas, demostrando su capacidad para estimar tanto
los estados del sistema como las posibles fallas en los
sensores.

El resto del art́ıculo está organizado como sigue: la
sección 2 describe el modelo matemático empleado para
representar la respuesta de edificios. En la sección 3 se
presenta el desarrollo del observador H∞. La validación
numérica se lleva a cabo en la sección 4 y finalmente, las
conclusiones y observaciones finales se proporcionan en la
sección 5.

2. MODELADO DE UNA ESTRUCTURA DE TIPO
EDIFICIO

El modelo comúnmente utilizado para representar estruc-
turas de edificios es el modelo a cortante con n grados de
libertad, uno por piso, en el que cada uno de ellos se
considera con masa concentrada en el centro y conectada
a las demás mediante elementos disipativos y de rigidez.
En este esquema, el comportamiento dinámico del sistema
se representa mediante un conjunto de ecuaciones de
movimiento, las cuales se expresan como sigue:

Msẍ(t) + Csẋ(t) +Ksx(t) = −Mslẍg(t)

x(t) = [x1(t), x2(t), . . . , xn(t)]
T ∈ Rn×1,

ẋ(t) = [ẋ1(t), ẋ2(t), . . . , ẋn(t)]
T ∈ Rn×1,

ẍ(t) = [ẍ1(t), ẍ2(t), . . . , ẍn(t)]
T ∈ Rn×1.

l = [1, 1, . . . , 1]
T ∈ Rn×1

(1)

donde, Ms, Cs y Ks ∈ Rn×n son las matrices de las
constantes de masa mi, amortiguamiento ci y rigidez ki,
con i = 1, 2, ..., n, respectivamente y definidas como:

Ms = diag [m1, m2, · · · , mn] > 0, (2)

Ks =


k1+k2 −k2 ··· 0 0

−k2 k2+k3 ···
...

...
...

...
. . .

...
...

...
... ··· kn−1+kn −kn

0 0 ··· −kn kn

 > 0, (3)

donde, Cs mantiene la misma forma que la matriz Ks.
Po otro lado, realizando el cambio de variables z1 = x y
z2 = ẋ, tal que, ż1 = ẋ = z2, ż2 = ẍ = ż2 y z = [z1, z2]

T ,
el modelo (1) puede ser reescrito en forma de espacio de
estados como sigue:

ż(t) =

[
0n×n In×n

−M−1
s Ks −M−1

s Cs

] [
z1(t)
z2(t)

]
−
[
0n×1

l

]
ẍg(t)

y(t) =
[
−M−1

s Ks −M−1
s Cs

] [z1(t)
z2(t)

]
= Cx(t)

(4)
con

ż(t) =

[
ż1(t)
ż2(t)

]
∈ R2n×1

y(t) = [y1(t), y2(t), . . . , yn(t)]
T ∈ Rn×1

(5)

donde z(t) es el vector de estados, y sus componentes z1(t)
y z2(t) son las posiciones xi(t) y velocidades ẋi(t) de cada

piso, respectivamente; yi(t) corresponde a la medición de
la aceleración de cada piso, mientras que l es el vector
con componentes unitarios que permite distribuir la señal
śısmica ẍg(t) ∈ R+ en todos los pisos. De esta manera,
el sistema (4) también puede ser reescrito como sigue:

ż(t) = Az(t) +Bu(t)
y(t) = Cz(t)

(6)

con

A =

[
0n In

−M−1
s Ks −M−1

s Cs

]
∈ R2n×2n,

B = −
[
0n×1

l

]
∈ R2n×1

(7)

y(t) se supone medible y u(t) = ẍg corresponde a la
excitación śısmica.

2.1 Inclusión de falla en sensores

Para tareas de monitoreo de salud estructural es vital
contar con la instrumentación en buenas condiciones, por
lo que es necesario detectar cuando esta falla. Para ello,
el modelo (6) es replanteado como sigue:

ż(t) = Az(t) +Bẍg(t) + Γfa(t)

y(t) = Cz(t)
(8)

donde fa denota una falla considerada, mientras que
Γ ∈ Rn corresponde al vector que indica su presencia y
localización. El resto de las variables y matrices han sido
definidas previamente. Por ejemplo, para señalar una falla
en el sensor del tercer piso el vector Γ quedaŕıa:

Γ = [0n×n, 0, 0, 1, 0, . . . , 0]
T
, con fa ̸= 0 (9)

Es importante señalar que tanto el vector de estado z(t)
como el vector Γfa que indica el estado de daño son
desconocidos y por tanto deben estimarse.
Por otro lado, suponiendo la presencia de ruido en las
mediciones, el modelo anterior (8) puede ser complemen-
tado como se indica a continuación:

ż(t) = Az(t) +Bẍg(t) + Γfa(t) +Rd(t)

y(t) = Cz(t) + Ed(t)
(10)

dondeR = [1n×1, 0n×1]
T ∈ R2n×1, E = [1, 1, . . . , 1]T ∈

Rn×1, y la pertubación d(t) es de enerǵıa limitada.

Nota 1. Debido a que las matrices Ms, Cs y Ks son
simétricas y definidas positivas o semidefinidas, entonces
el par (A,C) es observable (Poznyak, 2010).

Nota 2. En este estudio, se asume que las mediciones de
aceleraciones para cada piso ẍi y al nivel del suelo ẍg

están disponibles.

Nota 3. Antes de la acción śısmica, la estructura de tipo
edificio está en reposo; por lo tanto, los desplazamientos,
velocidades y aceleraciones inciales son nulos, es decir,
xi(t) = 0, ẋi(t) = 0, ẗi(0) = 0, ∀t ≤ 0,∀i = 1, 2, . . . , n.

Nota 4. La falla de sensores se modela en las dinámicas
de z porque muchas fallas presentan evolución temporal
(sesgos, derivas, intermitencias), y al tratarlas como un
estado aumentado se garantiza su observabilidad y esti-
mación robusta mediante observadores y filtros, tal como
recomiendan Chen and Patton (2012) e Isermann (2005).
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3. DETECCIÓN DE FALLAS EN SENSORES
BASADA EN OBSERVADORES DE ESTADOS

Dado que se desconocen, el vector de estado z(t) y el
vector de fallas Γfa, en este trabajo se introduce un
observador tipo Luenberger para estimar tanto los estados
del sistema como el vector de pisos dañados.

Suposición 1. ḟa(t) ≈ 0, es decir la falla no cambia con el
tiempo.

Para conveniencia anaĺıtica, el modelo (8) se reformula
como un sistema extendido, de tal manera que las fallas
se incorporan en los estados a ser estimados, como se
presenta continuación:[

ż(t)

ḟa(t)

]
︸ ︷︷ ︸

że

=

[
A Γ
0 0

]
︸ ︷︷ ︸

Ae

[
z(t)
fa(t)

]
︸ ︷︷ ︸

ze

+

[
B
0

]
︸︷︷︸
Be

ẍg(t)︸ ︷︷ ︸
u

+

[
R
0

]
︸︷︷︸
Re

d(t)︸︷︷︸
d

y(t) = [C 0]︸ ︷︷ ︸
Ce

[
z(t)
fa(t)

]
︸ ︷︷ ︸

ze

+Ed(t)

(11)

Por lo tanto, con el fin de estimar de manera simultánea
tanto los estados del sistema como las fallas asociadas a
los sensores, se plantea el siguiente observador:

˙̂ze(t) =Aeẑe(t) +Beẍg(t) + L[y(t) − ŷ(t)]

ŷ =Ceẑe(t)
(12)

donde ẑ(t) y ŷ(t) = Ceẑ(t) son los vectores de estado
y salida estimados, respectivamente, y L ∈ Rn+nf es la
matriz de ganancia del observador.
De manera que el error de estimación entre el sistema (11)
y el observador (12) queda definido por:

ε(t) = ze(t)− ẑe(t) (13)

cuya dinámica se puede expresar como:

ε̇(t) = że(t)− ˙̂ze(t) (14)

tal que, sustituyendo (11) y (12) en (14), la dinámica
del error satisface
ε̇(t) =Aeze(t) +Beẍg(t) +Red(t)− [Aeẑe(t) +Beẍg(t)]

− L[Ceze(t) + Ed(t)− Ceẑe(t)]

= Ae[ze(t)− ẑe(t)] + [Re − LE]d(t)− LCe[ze(t)− ẑe(t)]
(15)

sustituyendo (13) dentro de (15), se obtiene:

ε̇(t) =Aeε(t) + [Re − LE]d(t)− LCeε(t)

=(Ae − LCe)ε(t) + (Re − LE)d(t)
(16)

Respecto al residuo r = y − ŷ, se obtiene:

r(t) = Ceze(t) + Ed(t)− Cẑe = Ceε(t) + Ed(t) (17)

La convergencia de la solución del observador descrito en
la ecuación (12) hacia la del sistema (11) se garantiza
si el error definido en la ecuación (16), es un punto de
equilibrio asintótica o exponencialmente estable, es decir,
limt→∞e = 0. Esta condición se logra mediante el diseño
adecuado de la ganancia L, que se realiza empleando un
criterio de minimización.

Proposición 1. Considere el siguiente criterio de mini-
mización, inpirado de Guzman et al. (2021).

J = v̇(ε) + rT (t)r(t) ≤ γ2d(t)dT (t) (18)

con γ > 0; y sea la candidata a función de Lyapunov

v(ε) = εT (t)Pε(t) (19)

Por ello,

v̇(ε) =εT (t)P ε̇(t) + ε̇T (t)Pε(t)

=εT (t)P [(Ae − LCe)ε(t) + (Re − LE)d(t)]

+εT (t)(AT
e − CT

e L
T
e )Pε(t) + dT (t)(Re − LE)Pε(t)

(20)

aplicando la propiedad del Hermitiano de una matriz,
He(M) = M +MT , entonces, (20) se puede reescribir:

v̇(ε) =εT (t)[He(PAe − PLCe)]ε(t) + εT (t)PRed(t)

−εTPLE(d) + dT (t)RT
e Pε(t)− dT (t)ETLTPε(t)

(21)

Por otro lado, calculando rT (t)r(t) se obtiene:

rT (t)r(t) =(εT (t)CT
e + dT (t)ET )(Ceε(t) + Ed(t))

=εT (t)CT
e Ceε(t) + εT (t)CT

e Ed(t)

+dT (t)ETCeε(t) + dT (t)ETEd(t)

(22)

De manera que, a partir de (21) y (22) el criterio de
optimización J queda de la forma siguiente:

J =εT (t)[He(PAe − PLCe)]ε(t) + εT (t)PRed(t)

−εTPLE(d) + dT (t)RT
e Pε(t)− dT (t)ETLTPε(t)

+ εT (t)CT
e Ceε(t) + εT (t)CT

e Ed(t) + dT (t)ETCeε(t)

+ dT (t)ETEd(t)− γ2dT (t)d(t) ≤ 0
(23)

Por facilidad, la expresión (23) es reescrita en forma
matricial:

J =
[
εT (t) dT (t)

] [He(PAe − PLCe) PRe − PLE
PRe − PLE −γ2I

] [
ε(t)
d(t)

]
+
[
εT (t) dT (t)

] [[CT
e

ET

]
(I)

[
Ce

E(t)

]]T [
ε(t)
d(t)

]
≤ 0

=
[
εT (t) dT (t)

]
[Z11 + ZT

12Z
−1
22 Z12]

[
εT (t)
dT (t)

]
≤ 0

(24)
con

Z11 =

[
He(PAe − PLCe) PRe − PLE

PRe − PLE −γ2I

]
ZT
12 =

[
CT

e

ET

]
(I), ZT

22 = I, Z12 =

[
Ce

E

]
Observe que la expresión (24) recupera la forma requerida
para aplicar el complemento de Schur, que asegura que la
matriz:

Z11 + ZT
12Z

−1
22 Z12 < 0, =⇒

[
Z11 Z12

Z21 Z22

]
< 0 (25)

tal que, para garantizar la convergencia asintótica del
observador es necesario resolver la siguiente desigualdad
matricial:He(PAe −QCe) PRe −QE CT

e

RT
e P − ETQ −γ2I ET

Ce E −I

 ≤ 0, con Q = PL

(26)
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Fig. 1. Sismo de septiembre de 1985, escala reducida.

Finalmente, esta desigualdad matricial permite encontrar
la ganancia del observador L que asegura la convergencia
asintótica, de acuerdo con el siguiente teorema.

Lema 1. Bounded real lema (Doyle et al., 2009): El error
de estimación definido en (16) cumple el criterio H∞
expresado en (18), con un ı́ndice de atenuación mı́nimo
γ > 0, si existen las matrices P = PT > 0 y L, tales
que, se satisface AT

e P + PAe < 0, y además, el siguiente
problema de optimización tiene solución:

min
P, L

γ, γ > 0,
||r(t)||2
||d(t)||2

< 0 (27)

Lo cual puede ser resuelto de manera numérica mediante
las libreŕıas de matlab LIMLAB o YALMIP.

4. RESULTADOS DE SIMULACIÓN

Con el objetivo de validar el desarrollo teórico presentado,
a continuación se presentan una serie de simulaciones
numéricas a partir de los datos de un prototipo de ed-
ificio de ensayos conformado por dos niveles, presentando
en Rodŕıguez-Torres et al. (2024), cuyos parámetros de
masa, amortiguamiento y rigidez, son presentados en la
Tabla (1).

Tabla 1. Parámetros de un prototipo de edifi-
cio de 2 niveles

Parámetros mi [Kg] ki [N/m] ci [Ns/m]

Piso 1 3.17 463.65 9.04
Piso 2 4.609 344.68 6.53

La fuente de excitación śısmica empleada en este trabajo
corresponde al sismo de septiembre de 1985 registrado
por la Secretaŕıa de Comunicaciones y Transporte. Esta
señal ha sido escalada en amplitud para adaptarse a la
estructura en simulación, como se aprecia en la Fig. 1

Aplicando el observador H∞ se recuperan las señales de
desplazamiento y velocidad en cada piso, como se presenta
en las Figs. 2 y 3, respectivamente. Es importante señalar
que el error entre estas señales es de 4% en el peor de los
casos. La ganancia empleada, es la siguiente:

L =


−0.1941 −0.2723
−0.1928 −0.6735
−1.7260 −3.5860
−2.6799 −8.6546
−36.9052 −45.2738
−52.2599 −194.5394


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Fig. 2. Comparación de los desplazamientos reales y
estimados.
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Fig. 3. Comparación de las velocidades reales y estimadas.

4.1 Estimación de falla en sensores en el primer piso

En esta sección, se estudia el problema de localización de
fallas en el edificio de dos plantas descrito anteriormente.
Los experimentos se llevan a cabo condierando que:

Suposición 2. Cada nivel de la estructura sólo cuenta con
un acelerómetro

Suposición 3. La falla se introduce mediante una señal de
tipo escalón f(t), definida

fa(t) =

{
0 t < 3s
1 t ≥ 3s

(28)
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Fig. 4. Comparación de los desplazamientos reales y
estimados en presencia de daño en el primer piso.
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Fig. 5. Comparación de las velocidades reales y estimadas
en presencia de daño en el primer piso.

Suposición 4. La perturbación d(t), se introduce agre-
gando ruido blanco, con nivel de potencia-noise power 1e-
3, y tiempo de muestreo-sample time 0.001. Por otro lado,
las simulaciones no incluyen incertidumbres paramétricas.

De manera que, aplicando el observador (12), se recuperan
las señales de desplazamiento y velocidad de cada piso,
como se iluestra respectivamente en las Figs. 4 y 5.
Como se puede observar, las estimaciones convergen con
las mediciones reales. Por otro lado, la Fig. 6 presenta
la estimación de la falla en el sensor ubicado en el
primer piso. Lo que confirma el buen funcionamiento del
observador.

0 5 10 15 20 25

Tiempo (s)

0

0.5

1

F
a
ll
a

Piso 1

Real

Estimada

Fig. 6. Detección de falla en el primer piso.
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Fig. 7. Comparación de los desplazamientos reales y esti-
mados en presencia de daño en el primer y segundo
piso.

4.2 Estimación de fallas secuenciales en sensores del
primer y segundo piso

Al igual que en la subsección anterior, aqúı se introduce
falla en los sensores que corresponden al primer y segundo
piso. Solo que de manera desfasada y con amplitudes
diferentes.

Suposición 5.

fa1(t) =

{
0 t < 3s
1 t > 3s

, fa2(t) =

{
0 t < 7s
0.5 t > 7s

(29)

Las Figs. 7 y 8, ilustran la convergencia de las esti-
maciones de los desplazamientos y velocidades de los
pisos. Por otro lado, la Fig. 9 presenta los resultados de
implementar el observador H∞. Es claro que las fallas
estimadas coinciden con las indicadas en (5).

5. CONCLUSIÓN

En este trabajo se ha presentado la implementación de
un observador H∞ para la estimación simultanea de las
mediciones de desplazamiento y velocidad en estructuras
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Fig. 8. Comparación de las velocidades reales y estimadas
en presencia de daño en el primer y segundo piso.
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Fig. 9. Detección de fallas en el primer y segundo piso.

de tipo edificio, aśı como estimación de fallas en sensores
que se ubican en cada uno de los pisos. Este esquema
permite reconstruir el estado completo del sistema, in-
cluso en presencia de mediciones ruidosas, lo que resulta
fundamental en aplicaciones de monitoreo de salud estruc-
tural en tiempo real. El diseño del observador, basado
en técnicas de optimización bajo el enfoque H infinito,
lo convierte en una herramienta robusta frente a pertur-
baciones externas, incertidumbres paramétricas y ruido
de medición. Además, al considerar expĺıcitamente las
fallas en sensores como una entrada desconocida, el obser-
vador es capaz de detectar y aislar estas fallas sin afectar
la estimación de la respuesta estructural. Finalmente,
este trabajo sienta las bases para futuras extensiones

del esquema del observador, considerando incertidumbres
paramétricas, la inclusión de modelos no lineales o el
tratamiento de múltiples tipos de fallas simultáneas, aśı
como la implementación experimental.
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