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Resumen.- Small- and medium-scale photovoltaic (PV) plants commonly rely on monitoring
systems limited to electrical parameters, such as generated power. Incorporating sensors to
measure plane-of-array irradiance and module operating temperature is often not cost-effective
in these installations, which restricts the use of traditional strategies for anomaly detection
and performance evaluation. This paper proposes an advanced monitoring scheme based on
unsupervised learning, specifically using hierarchical clustering, to identify atypical behaviors
and assess the relative performance of neighboring PV inverters. The methodology is grounded
in fault diagnosis principles, such as physical redundancy and parity relations, leveraging the
expected similarity among power generation profiles. The proposed approach is validated using
real data from a 240 kW PV plant consisting of 16 inverters rated at 15 kW, 304 modules of
450 Wp, and 238 modules of 545 Wp.

Keywords: Anomaly detection, Performance evaluation, Photovoltaic plants, Unsupervised
learning, Fault diagnosis.

1. INTRODUCCIÓN

El desarrollo de estrategias automáticas para la eva-
luación del desempeño y la detección de anomaĺıas en
plantas fotovoltaicas (FV) de pequeña y mediana escala

⋆ Los autores expresan su agradecimiento a la empresa Benebión
de PHYTOSAN S.A. de C.V. y a Fronius México S.A. de C.V.
por facilitar el acceso a sus plataformas de monitoreo, lo cual fue
fundamental para el desarrollo de este trabajo. Asimismo, se agra-
dece a la Asociación Universitaria Iberoamericana de Postgrado
(AUIP) por la concesión de una beca que permitió la realización de
una estancia académica en la Universidad Nacional de Ŕıo Cuarto
(Argentina), llevada a cabo del 7 de diciembre de 2023 al 2 de enero
de 2024.

ha cobrado relevancia en los últimos años (Taghezouit et
al. 2024), (IEA PVPS 2022). Esta ĺınea de trabajo se ha
vuelto particularmente relevante, debido a que las métri-
cas de evaluación propuestas en la última década requie-
ren sensores de irradiancia y temperatura, los cuales rara
vez se encuentran en instalaciones de pequeña y mediana
escala debido a su costo relativamente elevado en com-
paración con la propia tecnoloǵıa FV. Además, es impor-
tante destacar que las mediciones requeridas por dichas
métricas corresponden a la irradiancia en el plano del
arreglo FV y a la temperatura de operación de los módu-
los. Estas variables no pueden obtenerse directamente
mediante estaciones meteorológicas convencionales, que
usualmente miden irradiancia global y difusa en plano
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horizontal, y temperatura ambiente. Obtener los valores
adecuados implica ya sea adaptar los piranómetros a la
inclinación del arreglo FV, o estimar la irradiancia en el
plano del arreglo a partir de modelos de transposición
(Widén and Munkhammar 2019). Asimismo, la medición
de la temperatura de operación de los módulos requiere
sensores espećıficos en la superficie posterior del módulo,
lo cual representa un gasto adicional que dif́ıcilmente
se justifica en proyectos de pequeña y mediana escala.
En este contexto, resulta crucial desarrollar estrategias
que no dependan de sensores adicionales para detectar
condiciones anómalas en la operación de las plantas,
haciendo uso de los registros de generación de potencia
disponibles mediante los sistemas de monitoreo actuales.

Las fallas más relevantes en plantas FV incluyen som-
breados parciales, acumulación de suciedad, degradación
del desempeño, puntos calientes, recortes de potencia y
fallas en los strings (IEA PVPS 2021). En este trabajo
nos enfocamos únicamente en la detección de anomaĺıas,
sin abordar aún la clasificación detallada del tipo de
falla ni su cuantificación, lo cual se vislumbra como
parte de trabajos futuros que probablemente requieran
el uso de sensores adicionales. El inversor, pieza central
de la planta FV, concentra funciones cŕıticas como la
conversión CD-CA, el MPPT, la protección contra fallas
y la comunicación con la red (Doyle et al. 2019), lo que
lo convierte también en uno de los componentes más
vulnerables (Gunda and Homan 2020). Sin embargo,
su naturaleza de caja negra, derivada de la diversidad
de topoloǵıas y el carácter cerrado de su arquitectura,
dificulta el desarrollo de enfoques de diagnóstico basados
en modelos determińısticos.

Dado que las plantas FV carecen de componentes ro-
tativos, las técnicas clásicas de diagnóstico basadas en
análisis de señales han tenido un papel limitado, restrin-
giéndose en gran medida a la detección de fallas por arcos
eléctricos (Zhu et al. 2016). En cambio, los enfoques que
han cobrado mayor relevancia en la literatura son los
basados en métodos estad́ısticos y, más recientemente,
en aprendizaje automático (IEA PVPS 2021), apoyados
en la creciente disponibilidad de datos registrados por los
sistemas de monitoreo de los inversores.

De esta manera, nuestro estudio se fundamenta en el
uso de los datos disponibles a partir de los sistemas de
monitoreo actuales para detectar anomaĺıas y evaluar el
desempeño de las plantas FV. La idea central de nuestra
propuesta se fundamenta en principios de la teoŕıa del
diagnóstico de fallas, a partir de los cuales se plantean
alternativas viables para la evaluación del desempeño y la
detección automática de anomaĺıas, sin necesidad de sen-
sores adicionales. Un punto clave en esta dirección es que
la mayoŕıa de las plantas FV cuentan con redundancia
f́ısica en los inversores, los cuales se conectan en paralelo
para incrementar la capacidad total del sistema. Aśı,
proponemos evaluar la similitud entre los perfiles de ge-
neración de inversores vecinos que forman parte de dicha
redundancia, utilizando una métrica de disimilitud como
base para su agrupamiento. Si todos los inversores operan
de manera similar, los perfiles serán consistentes entre

śı y formarán un único grupo. En cambio, si las curvas
de generación presentan diferencias significativas en su
forma o comportamiento a lo largo del tiempo, el agrupa-
miento jerárquico las agrupará en distintos cúmulos. Esto
permite identificar inversores cuyo perfil de generación
se desv́ıa del resto, ya sea por menor producción, mayor
variabilidad, o una forma de curva at́ıpica. Consideramos
que esta propuesta representa una aportación valiosa,
ya que permite detectar bajo desempeño relativo entre
los inversores que forman el sistema FV completo, sin
requerir sensores de irradiancia y temperatura que nor-
malmente seŕıan necesarios para establecer una referencia
externa de generación solar.
El art́ıculo se organiza de la siguiente manera: la Sec-
ción 2 describe la metodoloǵıa basada en un algoritmo de
agrupamiento jerárquico; la Sección 3 presenta el caso de
estudio y los resultados obtenidos; y la Sección 4 expone
las conclusiones y posibles ĺıneas de investigación futura.

2. METODOLOGÍA DEL CLUSTERING
JERÁRQUICO

El clustering jerárquico aglomerativo (HAC, por
sus siglas en inglés) es un método no supervisado de
agrupamiento que construye una jerarqúıa de cúmulos a
partir de una matriz de disimilitudes (Hastie et al. 2009).
Es ampliamente utilizado para explorar similitudes entre
variables o series temporales, y visualizarlas mediante un
dendrograma.

2.1 Datos y Representación

Supongamos que tenemos p variables (en nuestro caso,
potencias generadas por 16 inversores fotovoltaicos), cada
una representada por un vector:

x1,x2, . . . ,xp ∈ Rn

donde xj = (xj1, xj2, . . . , xjn)
⊤ es la serie temporal

de observaciones correspondientes a la variable j, con
j ∈ {1, 2, . . . , p}. Cada xj representa una secuencia de
n observaciones (por ejemplo, mediciones de potencia
registradas cada 5 minutos durante un d́ıa) asociadas a
la j-ésima variable del conjunto de datos.

2.2 Cálculo de la Distancia entre Vectores

Para comparar la similitud entre las series de potencia de
distintos inversores, se emplea una métrica de distancia
que combina dos componentes: la forma del perfil (cap-
turada por la correlación de Pearson) y la magnitud
(medida mediante la distancia euclidiana).

De esta manera, la distancia entre dos vectores (dos series
temporales) xi y xj se define como:

di,j ≡ d(xi,xj) = λ ·dc(xi,xj)+(1−λ) ·dm(xi,xj), (1)

donde:

dc(xi,xj) = 1−ρ(xi,xj) es la disimilitud basada en
la correlación de Pearson.
dm(xi,xj) =

∥xi−xj∥2

máx∀l,n∈{1,...,p} ∥xl−xn∥2
, donde el deno-

minador corresponde a la mayor distancia euclidiana
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encontrada entre cualquier par de series del conjun-
to. Esta métrica representa la distancia euclidiana
normalizada entre series.
λ ∈ [0, 1] es un parámetro que pondera la importan-
cia relativa de la forma frente a la magnitud.

El coeficiente de correlación entre xi y xj se define como:

ρ(xi,xj) =

∑n
t=1(xit − x̄i)(xjt − x̄j)√∑n

t=1(xit − x̄i)2
√∑n

t=1(xjt − x̄j)2
,

donde x̄i y x̄j representan las medias de las respectivas
series.

La distancia combinada d(·, ·) permite identificar tanto
diferencias en el perfil temporal (por ejemplo, forma de
la curva) como en el nivel de producción (magnitud).
Una distancia cercana a cero indica que dos inversores
presentan un comportamiento muy similar, tanto en
forma como en magnitud, mientras que valores elevados
reflejan diferencias sustanciales. Además, observar que
por la definición de d(·, ·), la métrica está acotada

0 ≤ d(xi,xj) ≤ 1 ∀ i, j.

2.3 Cálculo de la Matriz de Distancias

La disimilitud entre cada par de vectores (xi,xj) se
representa mediante di,j , que combina diferencias de
forma y magnitud conforme a (1). Observar que la
distancia euclidiana se normaliza, la cual se realiza una
única vez, antes del agrupamiento, y permite que ambas
componentes (forma y magnitud) sean comparables en
escala. A partir de esta métrica, se construye una matriz
de distancias simétrica D ∈ Rp×p, con ceros en la
diagonal:

D =


0 d1,2 · · · d1,p

d2,1 0 · · · d2,p
...

...
. . .

...
dp,1 dp,2 · · · 0

 .

Esta matriz es la base del algoritmo de agrupamiento
jerárquico, ya que determina qué pares de series son
más similares y deben fusionarse en cada iteración del
proceso.

2.4 Inicialización

Al comienzo, cada variable xi forma su propio cúmulo:

Ci = {xi}, i ∈ {1, . . . , p}.
En consecuencia, hay un total de p cúmulos en esta etapa
inicial.

2.5 Matriz de Distancias entre Cúmulos

La distancia entre dos cúmulos Ci y Cj se define a través
de una función de enlace (linkage), la cual determina
cómo calcular la disimilitud entre ellos d(Ci, Cj). Existen
distintas funciones de enlace que permiten definir esta
medida de distancia entre cúmulos. Una vez calculada la
matriz de distancias entre cada par de vectores, utilizan-
do la métrica combinada de forma y magnitud previa-
mente definida, es posible aplicar diferentes criterios de
enlace para guiar el proceso de fusión.

2.6 Funciones de Enlace Comunes

A continuación, se describen tres de las funciones de
enlace más utilizadas en el análisis de agrupamiento
jerárquico:

Single linkage (mı́nima distancia): define la
distancia entre dos clústers Ci y Cj como la menor
distancia entre cualquier par de elementos x ∈ Ci y
y ∈ Cj :

d(Ci, Cj) = mı́n
x∈Ci, y∈Cj

d(x,y).

Complete linkage (máxima distancia): define la
distancia entre dos clústers Ci y Cj como la mayor
distancia entre cualquier par de elementos x ∈ Ci y
y ∈ Cj :

d(Ci, Cj) = máx
x∈Ci, y∈Cj

d(x,y).

Average linkage (distancia promedio): define
la distancia entre dos clústers Ci y Cj como el
promedio de todas las distancias entre pares de
elementos x ∈ Ci y y ∈ Cj :

d(Ci, Cj) =
1

|Ci||Cj |
∑
x∈Ci

∑
y∈Cj

d(x,y).

donde | · | representa la cardinalidad del cúmulo.
Este criterio busca un equilibrio entre los enfoques
de mı́nima y máxima distancia, y tiende a formar
clústers de forma y tamaño más homogéneos.

Cabe señalar que en estas funciones de enlace, cada
clúster puede contener múltiples vectores, especialmente
en etapas posteriores del algoritmo jerárquico.

2.7 Algoritmo Jerárquico Aglomerativo

El procedimiento de agrupamiento jerárquico aglome-
rativo parte de los vectores individuales como cúmulos
iniciales y, en cada iteración, combina los dos cúmulos
más cercanos hasta formar un único grupo. El proceso
puede describirse de la siguiente manera:

1. Inicialización: cada vector xi se considera como un
cúmulo individual, es decir, Ci = {xi}.

2. Cálculo inicial de distancias: se construye la
matriz de distancias D entre todos los cúmulos.
Dado que al inicio cada cúmulo contiene un solo
vector, la distancia entre cúmulos en esta fase inicial
coincide con la distancia base entre vectores definida
en (1).

3. Selección de cúmulos a fusionar: se identifica
el par de cúmulos más próximos de acuerdo con la
función de enlace elegida:

(Ca, Cb) = argmı́n
i ̸=j

d(Ci, Cj).

Aqúı, d(Ci, Cj) representa la distancia entre cúmulos,
calculada a partir de las distancias entre los vecto-
res de ambos cúmulos mediante la regla de enlace
(single, complete, average, etc.).

4. Fusión: se combinan los dos cúmulos seleccionados
en uno nuevo:

Cab = Ca ∪ Cb,
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donde la operación corresponde a la unión de con-
juntos, es decir, Cab contiene todos los vectores de
Ca y de Cb. No se trata de una concatenación, sino
de una fusión en un único cúmulo.

5. Actualización de la matriz de distancias: se
recalculan las distancias entre el nuevo cúmulo Cab
y todos los cúmulos restantes, aplicando nuevamente
la función de enlace.

6. Iteración: se repite el proceso desde el paso 3 hasta
que todos los vectores estén agrupados en un único
cúmulo. Este procedimiento genera una estructura
jerárquica que puede representarse gráficamente me-
diante un dendrograma.

2.8 Dendrograma

El resultado final se representa en un dendrograma,
un árbol binario que muestra visualmente cómo se fu-
sionaron los cúmulos. La altura de cada fusión refleja la
disimilitud entre los cúmulos.

Este gráfico permite identificar:

Cúmulos con comportamientos similares (por ejem-
plo, inversores con perfiles de potencia parecidos).
Agrupaciones naturales dentro de los datos.
Niveles de corte adecuados para particionar los
datos en un número deseado de cúmulos.

3. RESULTADOS EXPERIMENTALES

La planta fotovoltaica (FV) considerada en este estudio
está conectada a la red de distribución de media tensión
(34.5 kV) mediante una subestación con capacidad de
300 kVA. Está compuesta por 16 generadores fotovol-
taicos (GFV) trifásicos, cada uno con una capacidad
nominal de 15 kW, como se muestra en la Fig. 1. Los
inversores están conectados en paralelo en el lado de
carga del sistema, operando a un nivel de tensión de
220 V.

En la Fig. 2 se presentan los detalles de configuración de
cada uno de los GFV. Aunque existen distintos arreglos
fotovoltaicos entre inversores, la potencia máxima de sa-
lida de todos ellos está limitada a 15 kW. La distribución
de los arreglos FV es la siguiente:

Grupo1 (18 kWp): cuatro GFVs (9, 11, 13, 15) están
compuestos por cuatro cadenas en paralelo cada una
con 10 módulos de 450 Wp;

Grupo2 (16.2 kWp): cuatro GFVs (10, 12, 14, 16)
tienen cuatro cadenas en paralelo cada una con 9
módulos de 450 Wp;

Grupo3 (16.35 kWp): siete GFVs (2-8) están forma-
dos por dos cadenas en paralelo con 15 módulos de
545 Wp cada una;

Grupo4 (15.26 kWp): un GFVs (1) está formado por
dos cadenas en paralelo cada una con 14 módulos de
545 Wp.

A través del sistema de monitoreo, se tiene acceso a
parámetros eléctricos tanto en el lado de CD como
en CA de cada inversor. Espećıficamente, se dispone

Red de Distribución
34.5 kV

300 kVA

GFV1

15 kW

GFV2

15 kW

GFV16

15 kW

Cargas

220 V

3φ
220 V/127 V

Figura 1. Diagrama unifilar simplificado de la planta
fotovoltaica de 240 kW (Generación Neta).

MPPT1

MPPT2

=

Fusible

Fusible

Fusible

Arreglo FV
4 series de 10 módulos FV de 450 Wp Inversor FV

Potencia de Salida Máx. 
15 kW

P.I.

Generador Fotovoltaico

Pdc = 18 kWp
Medio de

Desconexión

Figura 2. Diagrama esquemático de un generador foto-
voltaico (GFV) que contiene 4 cadenas en paralelo
de 10 módulos FV cada una.

de registros de voltaje, corriente en ambos lados del
inversor, y potencia del lado de CA. En este estudio
sólo estamos analizando las potencias de los arreglos FV
denominadas Pdc1, Pdc2, . . . , Pdc16, las cuales se calculan
a partir de los voltajes y corrientes de CD. Proponemos
realizar la evaluación del desempeño diariamente. En
consecuencia, se obtienen 16 series de tiempo por d́ıa,
es decir, Pdcj con j = {1, 2, . . . , 16}, cada una con 288
observaciones, correspondientes a registros en intervalos
de 5 minutos. Estas series temporales constituyen la base
para evaluar la similitud en el comportamiento de los
inversores vecinos, con el objetivo de identificar posibles
desviaciones o patrones anómalos en su desempeño. En la
Fig. 3 se presentan las curvas de generación de potencia
en corriente directa (CD) correspondientes al 19 de
mayo de 2025 para cada uno de los inversores que
conforman el sistema fotovoltaico (FV). A partir de
estas curvas, resulta dif́ıcil identificar patrones evidentes,
lo que sugiere que una inspección visual por parte de
un operador podŕıa llevar a la conclusión errónea de
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que el comportamiento de los inversores es uniforme o
aparentemente normal.
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Figura 3. Curvas de generación del 19 de mayo de 2025.

La Fig. 4 presenta el resultado del análisis de agrupa-
miento jerárquico, representado mediante un dendrogra-
ma construido a partir de los datos correspondientes al 19
de mayo de 2025. El análisis de agrupamiento jerárquico
se implementó en RStudio (Posit Team 2025), utilizando
las libreŕıas dplyr para la preparación de los datos,
stats para el cálculo de distancias y agrupamiento, y
dendextend para la visualización del dendrograma. Se
empleó una métrica combinada basada en una ponde-
ración entre disimilitud por correlación inversa y dis-
tancia euclidiana normalizada, controlada mediante un
parámetro de mezcla λ = 0.2. En el gráfico se identifican
claramente cuatro grupos principales.

Grupo A1: (Pdc9, Pdc11, Pdc13, Pdc15)
Grupo B1: (Pdc1, Pdc2, Pdc3, Pdc4)
Grupo C1: (Pdc10, Pdc12, Pdc14, Pdc16)
Grupo D1: (Pdc5, Pdc6, Pdc7, Pdc8)
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Figura 4. Dendrograma del 19 de mayo de 2025.

Dentro del grupo D1, se observa en Fig. 4 que el inversor
Pdc8 presenta un comportamiento distinto, separándose
ligeramente de los demás de su grupo. Esta diferencia
puede deberse a uno o varios de los siguientes factores:

Valores de generación significativamente más bajos,
Valores anómalamente altos,

Mayor variabilidad en el perfil de generación,
Forma de la curva de producción distinta al resto.

La Fig. 5 muestra las curvas de generación de los cuatro
inversores del grupo D1. En esta comparación descriptiva
se observa que Pdc8 presenta una producción consistente-
mente inferior respecto a los demás, lo cual constituye un
indicio de posible suciedad o sombreado parcial, aunque
no se ha aplicado en esta etapa un contraste estad́ıstico
formal.
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Figura 5. Curvas Pdc5, Pdc6, Pdc7 y Pdc8 del 19 de mayo
de 2025.

De manera similar, dentro del grupo B1, el inversor
Pdc1 también presenta un comportamiento at́ıpico, se-
parándose sutilmente del resto de los inversores en su
grupo. La Fig. 6 muestra las curvas de generación de los
cuatro inversores de dicho grupo, donde se constata que
Pdc1 presenta una producción inferior al promedio de sus
compañeros de grupo.
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Figura 6. Curvas Pdc1, Pdc2, Pdc3 y Pdc4 del 19 de mayo
de 2025.

A continuación se presentan los resultados correspondien-
tes al 21 de mayo de 2025, con el objetivo de fortalecer
la validación de las ideas propuestas en este trabajo. En
la Fig. 7 se muestra el dendrograma obtenido a partir
de los datos de generación del sistema FV en dicho d́ıa.
En el gráfico se identifican nuevamente cuatro grupos
principales.
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Grupo A2: (Pdc9, Pdc11, Pdc13, Pdc15)
Grupo B2: (Pdc5, Pdc6, Pdc7, Pdc8)
Grupo C2: (Pdc14, Pdc16)
Grupo D2: (Pdc1, Pdc2, Pdc3, Pdc4, Pdc10, Pdc12)

A través de este análisis, se observa que los grupos A2 y
B2 se mantienen sin cambios respecto al 19 de mayo.
Nuevamene Pdc8 se destaca en el cúmulo B2 por su
comportamiento diferente, como en el d́ıa anterior, lo
que ratifica el análisis previo. Por otro lado, los grupos
C2 y D2 han sufrido modificaciones. En particular, se
identifica un nuevo subgrupo conformado únicamente por
los inversores Pdc14 y Pdc16, los cuales se agrupan de
forma aislada respecto al resto.
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Figura 7. Dendrograma del 21 de mayo de 2025.

La Fig. 8 permite visualizar con mayor claridad la dis-
torsión en la forma de las curvas de generación de los
inversores Pdc14 y Pdc16, en comparación con los demás
integrantes del grupo original. Esta alteración en la forma
de las curvas podŕıa deberse a la presencia de una sombra
temporal que afectó parcialmente la producción de ambos
inversores.
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Figura 8. Curvas Pdc10, Pdc12, Pdc14 y Pdc16 del 21 de
mayo de 2025.

4. COMENTARIOS FINALES

El análisis de agrupamiento jerárquico aplicado a las
curvas de generación de los inversores FV permite trans-
formar un conjunto complejo de datos en una estructura

más interpretable, facilitando la identificación de patro-
nes, similitudes y posibles desviaciones relevantes. Si una
serie no aparece en el dendrograma, puede deberse a la
falta de variabilidad en sus datos, como valores todos
nulos (NA), lo que podŕıa indicar un sensor fuera de ser-
vicio. Este enfoque ofrece varias ventajas: permite reducir
el número de curvas a revisar enfocándose solo en casos
anómalos; entrega una base objetiva y reproducible para
el análisis; y posibilita la automatización del monitoreo,
generando alertas solo cuando un inversor cambia de
grupo o se comporta de forma aislada. Además, puede
utilizarse para evaluar la estabilidad de los agrupamien-
tos a lo largo del tiempo, lo cual es útil como herramienta
complementaria para la supervisión operativa de sistemas
FV.
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