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Resumen.- Small- and medium-scale photovoltaic (PV) plants commonly rely on monitoring
systems limited to electrical parameters, such as generated power. Incorporating sensors to
measure plane-of-array irradiance and module operating temperature is often not cost-effective
in these installations, which restricts the use of traditional strategies for anomaly detection
and performance evaluation. This paper proposes an advanced monitoring scheme based on
unsupervised learning, specifically using hierarchical clustering, to identify atypical behaviors
and assess the relative performance of neighboring PV inverters. The methodology is grounded
in fault diagnosis principles, such as physical redundancy and parity relations, leveraging the
expected similarity among power generation profiles. The proposed approach is validated using
real data from a 240 kW PV plant consisting of 16 inverters rated at 15 kW, 304 modules of
450 Wp, and 238 modules of 545 Wp.

Keywords: Anomaly detection, Performance evaluation, Photovoltaic plants, Unsupervised

learning, Fault diagnosis.

1. INTRODUCCION

El desarrollo de estrategias automaéticas para la eva-
luaciéon del desempenio y la deteccion de anomalias en
plantas fotovoltaicas (FV) de pequena y mediana escala

* Los autores expresan su agradecimiento a la empresa Benebién
de PHYTOSAN S.A. de C.V. y a Fronius México S.A. de C.V.
por facilitar el acceso a sus plataformas de monitoreo, lo cual fue
fundamental para el desarrollo de este trabajo. Asimismo, se agra-
dece a la Asociacién Universitaria Iberoamericana de Postgrado
(AUIP) por la concesién de una beca que permitié la realizacién de
una estancia académica en la Universidad Nacional de Rio Cuarto
(Argentina), llevada a cabo del 7 de diciembre de 2023 al 2 de enero
de 2024.

ha cobrado relevancia en los dltimos anos (Taghezouit et
al. 2024), (IEA PVPS 2022). Esta linea de trabajo se ha
vuelto particularmente relevante, debido a que las métri-
cas de evaluacion propuestas en la iltima década requie-
ren sensores de irradiancia y temperatura, los cuales rara
vez se encuentran en instalaciones de pequena y mediana
escala debido a su costo relativamente elevado en com-
paracién con la propia tecnologia FV. Ademas, es impor-
tante destacar que las mediciones requeridas por dichas
métricas corresponden a la irradiancia en el plano del
arreglo F'V y a la temperatura de operacién de los médu-
los. Estas variables no pueden obtenerse directamente
mediante estaciones meteoroldgicas convencionales, que
usualmente miden irradiancia global y difusa en plano

74

https://doi.org/10.58571/CNCA.AMCA.2025.013



XX Congreso Latinoamericano de Control Automatico (CLCA 2025)
13-17 de Octubre, 2025. Cancun, Quintana Roo, México

horizontal, y temperatura ambiente. Obtener los valores
adecuados implica ya sea adaptar los pirandémetros a la
inclinacion del arreglo FV, o estimar la irradiancia en el
plano del arreglo a partir de modelos de transposicion
(Widén and Munkhammar 2019). Asimismo, la medicién
de la temperatura de operaciéon de los moédulos requiere
sensores especificos en la superficie posterior del médulo,
lo cual representa un gasto adicional que dificilmente
se justifica en proyectos de pequenia y mediana escala.
En este contexto, resulta crucial desarrollar estrategias
que no dependan de sensores adicionales para detectar
condiciones anémalas en la operacién de las plantas,
haciendo uso de los registros de generacién de potencia
disponibles mediante los sistemas de monitoreo actuales.

Las fallas maés relevantes en plantas FV incluyen som-
breados parciales, acumulacion de suciedad, degradacion
del desempeno, puntos calientes, recortes de potencia y
fallas en los strings (IEA PVPS 2021). En este trabajo
nos enfocamos tinicamente en la deteccién de anomalias,
sin abordar ain la clasificacién detallada del tipo de
falla ni su cuantificacién, lo cual se vislumbra como
parte de trabajos futuros que probablemente requieran
el uso de sensores adicionales. El inversor, pieza central
de la planta FV, concentra funciones criticas como la
conversion CD-CA, el MPPT, la proteccion contra fallas
y la comunicacién con la red (Doyle et al. 2019), lo que
lo convierte también en uno de los componentes maés
vulnerables (Gunda and Homan 2020). Sin embargo,
su naturaleza de caja negra, derivada de la diversidad
de topologias y el cardcter cerrado de su arquitectura,
dificulta el desarrollo de enfoques de diagndstico basados
en modelos deterministicos.

Dado que las plantas FV carecen de componentes ro-
tativos, las técnicas clasicas de diagnéstico basadas en
analisis de senales han tenido un papel limitado, restrin-
giéndose en gran medida a la deteccion de fallas por arcos
eléctricos (Zhu et al. 2016). En cambio, los enfoques que
han cobrado mayor relevancia en la literatura son los
basados en métodos estadisticos y, mas recientemente,
en aprendizaje automdatico (IEA PVPS 2021), apoyados
en la creciente disponibilidad de datos registrados por los
sistemas de monitoreo de los inversores.

De esta manera, nuestro estudio se fundamenta en el
uso de los datos disponibles a partir de los sistemas de
monitoreo actuales para detectar anomalias y evaluar el
desempeno de las plantas FV. La idea central de nuestra
propuesta se fundamenta en principios de la teoria del
diagnostico de fallas, a partir de los cuales se plantean
alternativas viables para la evaluacién del desempeno y la
deteccion automatica de anomalias, sin necesidad de sen-
sores adicionales. Un punto clave en esta direccién es que
la mayoria de las plantas F'V cuentan con redundancia
fisica en los inversores, los cuales se conectan en paralelo
para incrementar la capacidad total del sistema. Asi,
proponemos evaluar la similitud entre los perfiles de ge-
neracién de inversores vecinos que forman parte de dicha
redundancia, utilizando una métrica de disimilitud como
base para su agrupamiento. Si todos los inversores operan
de manera similar, los perfiles serdn consistentes entre
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s{ y formaran un tnico grupo. En cambio, si las curvas
de generacion presentan diferencias significativas en su
forma o comportamiento a lo largo del tiempo, el agrupa-
miento jerarquico las agrupara en distintos ciumulos. Esto
permite identificar inversores cuyo perfil de generacién
se desvia del resto, ya sea por menor produccién, mayor
variabilidad, o una forma de curva atipica. Consideramos
que esta propuesta representa una aportacién valiosa,
ya que permite detectar bajo desempeno relativo entre
los inversores que forman el sistema FV completo, sin
requerir sensores de irradiancia y temperatura que nor-
malmente serian necesarios para establecer una referencia
externa de generacién solar.

El articulo se organiza de la siguiente manera: la Sec-
cién 2 describe la metodologia basada en un algoritmo de
agrupamiento jerarquico; la Seccién 3 presenta el caso de
estudio y los resultados obtenidos; y la Seccién 4 expone
las conclusiones y posibles lineas de investigacién futura.

2. METODOLOGIA DEL CLUSTERING
JERARQUICO

El clustering jerdrquico aglomerativo (HAC, por
sus siglas en inglés) es un método no supervisado de
agrupamiento que construye una jerarquia de cimulos a
partir de una matriz de disimilitudes (Hastie et al. 2009).
Es ampliamente utilizado para explorar similitudes entre
variables o series temporales, y visualizarlas mediante un
dendrograma.

2.1 Datos y Representacion

Supongamos que tenemos p variables (en nuestro caso,
potencias generadas por 16 inversores fotovoltaicos), cada
una representada por un vector:

n
X1,X2,...,%Xp €ER

donde x; = (xj17mj2,...7mjn)—r es la serie temporal
de observaciones correspondientes a la variable j, con
j € {L,2,...,p}. Cada x; representa una secuencia de
n observaciones (por ejemplo, mediciones de potencia
registradas cada 5 minutos durante un dfa) asociadas a
la j-ésima variable del conjunto de datos.

2.2 Cdlculo de la Distancia entre Vectores

Para comparar la similitud entre las series de potencia de
distintos inversores, se emplea una métrica de distancia
que combina dos componentes: la forma del perfil (cap-
turada por la correlacién de Pearson) y la magnitud
(medida mediante la distancia euclidiana).

De esta manera, la distancia entre dos vectores (dos series
temporales) x; y X; se define como:

di,j = d(Xi,X]’) = )\'dC(XZ‘,X]‘) + (1 —)\) 'dm(XZ‘,X]‘), (1)
donde:

n do(x4,%5) = 1—p(xi,x;) es la disimilitud basada en
la correlacién de Pearson.

llxi —x;l2
n . — .
dm(X“XJ) MaxXy; nefl,...,p} Xt —Xn 2

minador corresponde a la mayor distancia euclidiana

, donde el deno-
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encontrada entre cualquier par de series del conjun-
to. Esta métrica representa la distancia euclidiana
normalizada entre series.

= )\ € [0,1] es un pardmetro que pondera la importan-
cia relativa de la forma frente a la magnitud.

El coeficiente de correlacién entre x; y x; se define como:
n — —
p(xi,%;) = Dot (@it — @) (@ — Ty)
19 j - T — 2 T — 2 )
Vi (@i — )22 (e — 75)
donde Z; y Z; representan las medias de las respectivas
series.

La distancia combinada d(-,-) permite identificar tanto
diferencias en el perfil temporal (por ejemplo, forma de
la curva) como en el nivel de produccion (magnitud).
Una distancia cercana a cero indica que dos inversores
presentan un comportamiento muy similar, tanto en
forma como en magnitud, mientras que valores elevados
reflejan diferencias sustanciales. Ademds, observar que
por la definicién de d(-, ), la métrica estd acotada

Ogd(xi,xj) < 1 VZ,]
2.8 Calculo de la Matriz de Distancias

La disimilitud entre cada par de vectores (x;,x;) se
representa mediante d; ;, que combina diferencias de
forma y magnitud conforme a (1). Observar que la
distancia euclidiana se normaliza, la cual se realiza una
tnica vez, antes del agrupamiento, y permite que ambas
componentes (forma y magnitud) sean comparables en
escala. A partir de esta métrica, se construye una matriz
de distancias simétrica D € RP*P con ceros en la
diagonal:
0 dig - dip

p [ 0

dp1 dps -+ 0
Esta matriz es la base del algoritmo de agrupamiento
jerarquico, ya que determina qué pares de series son
mas similares y deben fusionarse en cada iteracién del
proceso.

2.4 Inicializacion

Al comienzo, cada variable x; forma su propio cimulo:

Ci={xi}, ief{l,...ph.

En consecuencia, hay un total de p ciimulos en esta etapa
inicial.

2.5 Mairiz de Distancias entre Cumulos

La distancia entre dos cimulos C; y C; se define a través
de una funcién de enlace (linkage), la cual determina
cémo calcular la disimilitud entre ellos d(C;, C;). Existen
distintas funciones de enlace que permiten definir esta
medida de distancia entre cimulos. Una vez calculada la
matriz de distancias entre cada par de vectores, utilizan-
do la métrica combinada de forma y magnitud previa-
mente definida, es posible aplicar diferentes criterios de
enlace para guiar el proceso de fusién.
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2.6 Funciones de Enlace Comunes

A continuacién, se describen tres de las funciones de
enlace mas utilizadas en el andlisis de agrupamiento
jerarquico:

= Single linkage (minima distancia): define la
distancia entre dos clisters C; y C; como la menor
distancia entre cualquier par de elementos x € C; y
y € Cji
min
x€Cy, yEC;

d(czv Cj) = d(X7 y)

= Complete linkage (maxima distancia): define la
distancia entre dos clisters C; y C; como la mayor
distancia entre cualquier par de elementos x € C; y
NS le
; d .

B, AY)

= Average linkage (distancia promedio): define
la distancia entre dos clisters C; y C; como el
promedio de todas las distancias entre pares de
elementos x € C; y y € C;:

1
d(Ci, Cj) = [T > dxy).

x€C; yeCj

d(Ci,Cj) =

donde | - | representa la cardinalidad del cimulo.
Este criterio busca un equilibrio entre los enfoques
de minima y maéaxima distancia, y tiende a formar
clisters de forma y tamafo mas homogéneos.

Cabe senalar que en estas funciones de enlace, cada
clister puede contener multiples vectores, especialmente
en etapas posteriores del algoritmo jerarquico.

2.7 Algoritmo Jerdrquico Aglomerativo

El procedimiento de agrupamiento jerarquico aglome-
rativo parte de los vectores individuales como ctimulos
iniciales y, en cada iteracién, combina los dos cimulos
mé&s cercanos hasta formar un tnico grupo. El proceso
puede describirse de la siguiente manera:

1. Inicializacién: cada vector x; se considera como un
cimulo individual, es decir, C; = {x;}.

2. Calculo inicial de distancias: se construye la
matriz de distancias D entre todos los cumulos.
Dado que al inicio cada ctimulo contiene un solo
vector, la distancia entre ciimulos en esta fase inicial
coincide con la distancia base entre vectores definida
en (1).

3. Seleccion de cimulos a fusionar: se identifica
el par de cimulos més préoximos de acuerdo con la
funcién de enlace elegida:

(CasCo) = arg min d(Ci, Cj).
£

Aqui, d(C;,C;) representa la distancia entre cimulos,
calculada a partir de las distancias entre los vecto-
res de ambos cimulos mediante la regla de enlace
(single, complete, average, etc.).

4. Fusidén: se combinan los dos cimulos seleccionados
en uno nuevo:

Cab = Ca U Cb,
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donde la operacién corresponde a la unién de con-
juntos, es decir, C,p contiene todos los vectores de
C, y de Cp. No se trata de una concatenacion, sino
de una fusién en un tnico cumulo.

5. Actualizacion de la matriz de distancias: se
recalculan las distancias entre el nuevo cimulo Cgy
y todos los cimulos restantes, aplicando nuevamente
la funcién de enlace.

6. Iteracidn: se repite el proceso desde el paso 3 hasta
que todos los vectores estén agrupados en un tnico
cumulo. Este procedimiento genera una estructura
jerdrquica que puede representarse graficamente me-
diante un dendrograma.

2.8 Dendrograma

El resultado final se representa en un dendrograma,
un arbol binario que muestra visualmente cémo se fu-
sionaron los cimulos. La altura de cada fusion refleja la
disimilitud entre los cimulos.

Este gréfico permite identificar:

» Cumulos con comportamientos similares (por ejem-
plo, inversores con perfiles de potencia parecidos).

= Agrupaciones naturales dentro de los datos.

= Niveles de corte adecuados para particionar los
datos en un nimero deseado de ctiimulos.

3. RESULTADOS EXPERIMENTALES

La planta fotovoltaica (FV) considerada en este estudio
esta conectada a la red de distribucién de media tension
(34.5 kV) mediante una subestacién con capacidad de
300 kVA. Estd compuesta por 16 generadores fotovol-
taicos (GFV) trifdsicos, cada uno con una capacidad
nominal de 15 kW, como se muestra en la Fig. 1. Los
inversores estdn conectados en paralelo en el lado de
carga del sistema, operando a un nivel de tensién de
220 V.

En la Fig. 2 se presentan los detalles de configuracién de
cada uno de los GFV. Aunque existen distintos arreglos
fotovoltaicos entre inversores, la potencia maxima de sa-
lida de todos ellos esta limitada a 15 kW. La distribucién
de los arreglos F'V es la siguiente:

Grupol (18 kWp): cuatro GFVs (9, 11, 13, 15) estdn
compuestos por cuatro cadenas en paralelo cada una
con 10 médulos de 450 Wp;

Grupo2 (16.2 kWp): cuatro GFVs (10, 12, 14, 16)
tienen cuatro cadenas en paralelo cada una con 9
modulos de 450 Wp;

Grupo3 (16.35 kWp): siete GFVs (2-8) estdn forma-
dos por dos cadenas en paralelo con 15 mdédulos de
545 Wp cada una;

Grupo4 (15.26 kWp): un GFVs (1) estd formado por
dos cadenas en paralelo cada una con 14 mddulos de
545 Wp.

A través del sistema de monitoreo, se tiene acceso a
parametros eléctricos tanto en el lado de CD como
en CA de cada inversor. Especificamente, se dispone
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Red de Distribucion
34.5kV

y 1y, 300 kVA

N S0
220 V127 V

220V

Cargas

15 kW 15 kw 15 kW

Figura 1. Diagrama unifilar simplificado de la planta
fotovoltaica de 240 kW (Generacién Neta).

Generador Fotovoltaico

Arreglo FV |
| 4 series de 10 moédulos FV de 450 Wp o Inversor EV !
| Fus Potencia de Salida Max. |
I ---- W }
1 cusibe ‘ Pl

MPPT1 =

Pdc = 18 kWp

: E ’— MPPT2 ny
Fusm\e

oo
lMedio de

Desconexién

TITT

Figura 2. Diagrama esquemaético de un generador foto-
voltaico (GFV) que contiene 4 cadenas en paralelo
de 10 médulos FV cada una.

de registros de voltaje, corriente en ambos lados del
inversor, y potencia del lado de CA. En este estudio
solo estamos analizando las potencias de los arreglos FV
denominadas Pj.1, Py, .. ., Pjc16, las cuales se calculan
a partir de los voltajes y corrientes de CD. Proponemos
realizar la evaluacion del desempeno diariamente. En
consecuencia, se obtienen 16 series de tiempo por dia,
es decir, Py.; con j = {1,2,...,16}, cada una con 288
observaciones, correspondientes a registros en intervalos
de 5 minutos. Estas series temporales constituyen la base
para evaluar la similitud en el comportamiento de los
inversores vecinos, con el objetivo de identificar posibles
desviaciones o patrones anémalos en su desempeno. En la
Fig. 3 se presentan las curvas de generaciéon de potencia
en corriente directa (CD) correspondientes al 19 de
mayo de 2025 para cada uno de los inversores que
conforman el sistema fotovoltaico (FV). A partir de
estas curvas, resulta dificil identificar patrones evidentes,
lo que sugiere que una inspeccién visual por parte de
un operador podria llevar a la conclusién errénea de
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que el comportamiento de los inversores es uniforme o
aparentemente normal.

15000

~%@}m Inversor

o mi Pdc1
1 /A Pde10
~+ Pdct1
Pdc12

)

1)
o
o
o

Pdc13
Pdc14
Pdc15
Pdc16

Potencia (W

Pdc2

5000 Z
PR rp—

may. 19 00:00 may. 19 06:00 may. 19 12:00 may. 19 18:0 Pde7() 00
Tiempo Pdc8

Pdc3
Pdc4
Pdcs

8o bk md dx

Pdcé

Figura 3. Curvas de generacién del 19 de mayo de 2025.

La Fig. 4 presenta el resultado del analisis de agrupa-
miento jerarquico, representado mediante un dendrogra-
ma construido a partir de los datos correspondientes al 19
de mayo de 2025. El analisis de agrupamiento jerarquico
se implementé en RStudio (Posit Team 2025), utilizando
las librerfas dplyr para la preparacion de los datos,
stats para el calculo de distancias y agrupamiento, y
dendextend para la visualizacién del dendrograma. Se
empleé una métrica combinada basada en una ponde-
racion entre disimilitud por correlacién inversa y dis-
tancia euclidiana normalizada, controlada mediante un
parametro de mezcla A = 0.2. En el gréafico se identifican
claramente cuatro grupos principales.

» Grupo A1l: (Pyeg, Paci1, Pac13, Pac1s)
- Grupo B1: (Pdclv Pdc27 Pdc37 Pdc4)
» Grupo C1: (P10, Pici2, Picia, Picis)
" Grupo D1: (Pdc5>Pd66; Pdc’?a Pch)

Q _
o
©
® < |
£ o
g
g <« A1 B1 C1 D1
mo
3 —
= |
8 o |
£ s |
a
o | ‘ y—‘zﬁ
© ~ M O Wl M N FO N I O © WO M~
— v~ O «~—|O O O Ol «~ «— «~|[|O O O ©O
O O T O T T Tl O O O]l T T T
T T A Dl oo oA o) © T Tl oo o
23 s S35z

Potencia CD de cada inversor

Figura 4. Dendrograma del 19 de mayo de 2025.

Dentro del grupo D1, se observa en Fig. 4 que el inversor
P,;.s presenta un comportamiento distinto, separandose
ligeramente de los demds de su grupo. Esta diferencia
puede deberse a uno o varios de los siguientes factores:

= Valores de generacién significativamente mas bajos,
= Valores anémalamente altos,
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= Mayor variabilidad en el perfil de generacion,
= Forma de la curva de produccién distinta al resto.

La Fig. 5 muestra las curvas de generacién de los cuatro
inversores del grupo D1. En esta comparacion descriptiva
se observa que Py.g presenta una produccion consistente-
mente inferior respecto a los demés, lo cual constituye un
indicio de posible suciedad o sombreado parcial, aunque
no se ha aplicado en esta etapa un contraste estadistico
formal.

Inversor
12000 pdcs
/A Pdcé
~+ Pdc7

Pdc8
8000

Potencia (W)

4000

#
0 e st e ey’

s

may. 19 00:00 may. 19 06:00 may. 19 12:00 may. 19 18:00 may. 20 00
Tiempo

Figura 5. Curvas Pyc5, Pyces, Pacr v Pacs del 19 de mayo
de 2025.

De manera similar, dentro del grupo B1, el inversor
P;.1 también presenta un comportamiento atipico, se-
pardndose sutilmente del resto de los inversores en su
grupo. La Fig. 6 muestra las curvas de generacién de los
cuatro inversores de dicho grupo, donde se constata que
Pj.1 presenta una produccién inferior al promedio de sus
companeros de grupo.

Inversor

Pdc1

>

Pdc2
—+ Pdc3
Pdc4

10000

5000

Potencia (W)

&

2 =
-
0 e ™ s o -

may. 19 00:00 may. 19 06:00 may. 19 12:00 may. 19 18:00 may. 20 00
Tiempo

Figura 6. Curvas Pyc1, Pye2, Paes v Pyea del 19 de mayo
de 2025.

A continuacién se presentan los resultados correspondien-
tes al 21 de mayo de 2025, con el objetivo de fortalecer
la validacion de las ideas propuestas en este trabajo. En
la Fig. 7 se muestra el dendrograma obtenido a partir
de los datos de generacion del sistema FV en dicho dia.
En el grafico se identifican nuevamente cuatro grupos
principales.
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» Grupo A2: (P, Pac11, Pic13, Pacis)
" Grupo B2: (Pdcfn Pd067 Pdc?a Pdc8)
" Grupo C2: (Pdc147 Pdclﬁ)

» Grupo D2: (Pyc1, Pyc2, Pacs, Paca, Pacio, Paci2)

A través de este andlisis, se observa que los grupos A2 y
B2 se mantienen sin cambios respecto al 19 de mayo.
Nuevamene P,;.g se destaca en el cimulo B2 por su
comportamiento diferente, como en el dia anterior, lo
que ratifica el analisis previo. Por otro lado, los grupos
C2 y D2 han sufrido modificaciones. En particular, se
identifica un nuevo subgrupo conformado inicamente por
los inversores Pjc14 ¥ Pae1g, los cuales se agrupan de
forma aislada respecto al resto.
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Figura 7. Dendrograma del 21 de mayo de 2025.

La Fig. 8 permite visualizar con mayor claridad la dis-
torsion en la forma de las curvas de generacién de los
inversores Pyc14 ¥ Pic16, en comparacién con los demés
integrantes del grupo original. Esta alteracién en la forma
de las curvas podria deberse a la presencia de una sombra
temporal que afecté parcialmente la producciéon de ambos
inversores.
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Figura 8. Curvas Pyc10, Pac12, Pacia ¥ Pac1g del 21 de
mayo de 2025.

4. COMENTARIOS FINALES

El analisis de agrupamiento jerarquico aplicado a las
curvas de generacion de los inversores F'V permite trans-
formar un conjunto complejo de datos en una estructura

Copyright® AMCA, ISSN: 2594-2492

mas interpretable, facilitando la identificacion de patro-
nes, similitudes y posibles desviaciones relevantes. Si una
serie no aparece en el dendrograma, puede deberse a la
falta de variabilidad en sus datos, como valores todos
nulos (NA), lo que podria indicar un sensor fuera de ser-
vicio. Este enfoque ofrece varias ventajas: permite reducir
el numero de curvas a revisar enfocandose solo en casos
andmalos; entrega una base objetiva y reproducible para
el andlisis; y posibilita la automatizacién del monitoreo,
generando alertas solo cuando un inversor cambia de
grupo o se comporta de forma aislada. Ademds, puede
utilizarse para evaluar la estabilidad de los agrupamien-
tos a lo largo del tiempo, lo cual es util como herramienta
complementaria para la supervisiéon operativa de sistemas

FV.
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