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Resumen This paper presents the design of an Unknown Input Interval Observer for positive
linear systems. The proposed methodology extends conventional unknown input observer
(UIO) frameworks to systems constrained within the positive quadrant of the Euclidean space,
a crucial requirement in various applications where state and output variables must remain
non-negative. The approach is formulated using Linear Matrix Inequalities (LMIs), allowing
the derivation of conditions that ensure the existence of the observer, as well as the positivity
and convergence of state estimates. Additionally, the estimation error dynamics are shown
to be cooperative, thereby ensuring that the true state trajectories are bounded between
robust upper and lower estimates, even in the presence of unmeasured disturbances and model
uncertainty. The effectiveness of the proposed scheme is validated through a numerical case
study, demonstrating its applicability in a wide variety of positive systems.

Keywords: Unknown Input Observer, Interval Observer, Positive systems.

1. INTRODUCCION

En multiples aplicaciones de ingenieria, asi como en sis-
temas fisicos, industriales y tecnoldgicos, la presencia de
perturbaciones no medidas, incertidumbres paramétricas
o senales de entrada inaccesibles afectan la dindmica del
proceso o en su modelado. Bajo tales circunstancias, el uso
de observadores convencionales pierden efectividad para
asegurar una estimacion robusta del estado, debido a que
su diseno asume, en general, la disponibilidad completa
de las senales de entrada. Ante esta problemaética, los
Observadores de Entradas Desconocidas (UIO, por sus
siglas en inglés) han sido propuestos con el objetivo de
estimar el estado del sistema de manera robusta, inclu-
so en presencia de entradas parcialmente conocidas o
completamente desconocidas (Kudva et al., 1980; Tsui,
1996; Chen et al., 1996). Como resultado el desarrollo

de UIO ha sido ampliamente abordado en la literatura,
con investigaciones orientadas en establecer condiciones
par su existencia, estabilidad, desempeno en condiciones
reales y definicién de clase de sistemas de aplicacién (Tsui,
1996; Chen et al., 1996). En particular, los criterios clasi-
cos de disefio requieren condiciones estructurales, tales
como la detectabilidad del par (A, C) y restricciones de
rango entre matrices de observacién y perturbacién (Chen
et al., 1996). Estos observadores se han utilizado para
la estimacién de estados y reconstrucciéon de entradas
desconocidas ver Walcott y Zak (1987), Zak y Walcott
(1990), Hou y Miiller (1992), Darouach et al. (1994),
Corless y Tu (1998), Hui y Zak (2005), Alahakoon et al.
(2013), asi mismo para el diagndstico y aislamiento de
fallas (ver Chen y Patton (1999), Edwards et al. (2000),
Gao et al. (2016)). Ademds, los UIO han sido aplicados
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para la deteccién de ciberataques en sistemas ciberfisicos
y microredes (Gallo et al. (2018), Gallo et al. (2020)).

Recientemente, los observadores de entradas desconocidas
han sido adaptados para su aplicacién en sistemas positi-
vos, los cuales se caracterizan por mantener sus variables
de estado, entrada y salida dentro del primer cuadrante
del espacio euclidiano. Esta extensién ha cobrado espe-
cial relevancia debido a su aplicabilidad en la estimacién
y monitoreo de variables criticas en bioprocesos, siste-
mas hidraulicos, procesos quimicos e incluso en modelos
dindmicos de sistemas econémicos y sociales, donde las
magnitudes involucradas no pueden asumir valores nega-
tivos. En particular, en Shafai et al. (2015) se presenta
el diseno de UIO para sistemas lineales positivos, consi-
derando las restricciones impuestas por la positividad. El
enfoque se basa en técnicas de desigualdades matriciales
lineales (LMIs) y en la existencia de una inversa gene-
ralizada no negativa, con el objetivo de garantizar tanto
la estabilidad como la no negatividad del observador. Se
proponen dos procedimientos de diseno y se valida la
metodologia mediante un ejemplo numérico. En Krokavec
y Filasova (2019) se aborda el disefio de UIO para siste-
mas lineales positivos del tipo Metzler. Dado que estos
sistemas requieren que sus estados y salidas permanezcan
no negativos, las técnicas convencionales de diseno no son
directamente aplicables. Por ello, se propone un enfoque
basado en LMIs que asegura la existencia de observadores
cuyas matrices dindmicas sean estrictamente Metzler y
Hurwitz, proporcionando condiciones suficientes para su
existencia, asi como un algoritmo constructivo validado
numéricamente. Asimismo, Rami et al. (2011) trata el
problema del diseno de observadores positivos y de en-
trada desconocida para sistemas continuos con estructura
Metzler, estableciendo condiciones necesarias y suficientes
mediante programacién lineal y LMIs. El enfoque garan-
tiza estimaciones no negativas aun en presencia de incer-
tidumbre, aunque no aborda la estabilizacién de sistemas
inestables. Finalmente, en Shu et al. (2008) se propone
un esquema unificado para el diseno de observadores y
controladores dindmicos de retroalimentacién de salida
en sistemas lineales positivos con incertidumbre tipo in-
tervalo. Este enfoque establece condiciones necesarias y
suficientes para garantizar la positividad y la estabilidad
asintética del sistema, utilizando LMIs y desarrollando
algoritmos iterativos para optimizar el comportamiento
del error, con validaciéon mediante ejemplos numéricos.

Motivados por los avances recientes en el diseno de Ob-
servadores de Entradas Desconocidas aplicados a siste-
mas positivos, en este trabajo se propone el diseno de
un observador intervalo de entradas desconocidas para
la familia de sistemas lineales positivos. El enfoque ga-
rantiza que tanto las dindmicas del observador como las
estimaciones del estado preserven la propiedad de positi-
vidad, condicién esencial en numerosos sistemas fisicos
y socioeconémicos donde las variables involucradas no
pueden tomar valores negativos. Esta propuesta repre-
senta una extensién de los UIO convencionales al caso
de sistemas positivos con incertidumbre paramétrica tipo
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intervalo, con el objetivo de asegurar el encapsulamiento
de las trayectorias reales del sistema dentro de cotas
superior e inferior, incluso en presencia de perturbaciones
no medidas e incertidumbre estructural en el modelo. El
disenio se realiza mediante una formulacién basada en
desigualdades matriciales lineales (LMIs), lo cual permite
establecer condiciones de convergencias y cooperatividad
en los errores de estimacion, asi como la positividad en las
variables de estimacién del observador y facilitar su sinte-
sis computacional mediante herramientas de optimizacién
convexa.

El resto del trabajo estda organizado de la siguiente ma-
nera. Los conceptos fundamentales se describen como
preliminares en la Seccién 2. En la Seccién 3 se expone
el diseno de observadores intervalo con entradas desco-
nocidas para sistemas positivos utilizando los conceptos
preliminares. La validacion en simulaciéon de un ejemplo
didactico, se presenta en la seccién 4. Finalmente, se
describen las conclusiones en la seccion 5.

2. PRELIMINARES
2.1 Sistemas cooperativos

En el estudio de sistemas cooperativos, las trayectorias de
los estados y salidas conservan el ordenamiento parcial
establecido por el ordenamiento parcial en entradas y
condiciones iniciales, reflejando una estructura monétona
del comportamiento dindmico del sistema.

Definicion 1. Sea el sistema Lineal Invariante en el
Tiempo (LIT) de la forma

#(t) = Az Bu(t),
| { (t) = As(®) + Bu(t) "
y(t) = Cx(t),

donde z(t) € R™ representa el vector de estado, u(t) € R™
la senal de entrada, y y(t) € R? la salida del sistema.

x(0) = o,

El sistema Y1, se considera cooperativo si, dado un or-
den parcial sobre las condiciones iniciales y las entra-
das, es decir, si xo0 = 10 y u2(t) = ui(t) para to-
do t > tg, entonces dicho orden se preserva a lo lar-
go del tiempo en la dindmica del sistema. FEsto im-
plica que las trayectorias del estado y la salida cum-
plen x (t,to, T20,usz (t)) = x(t,to,x10,u1 (t)) , ademas
y(t7t07x20;u2 (t)) = y(t7t07x107u1 (t))

En otras palabras, si se parte de estados iniciales y entra-
das ordenadas, las respuestas del sistema también con-
servaran esta relacién de orden parcial en todo instante
futuro. El signo > indica que cada uno de los elementos
del vector de la izquierda son mayores o iguales a los
elementos del vector de la derecha.

A partir del concepto anterior, es posible caracterizar de
manera algebraica a un sistema lineal cooperativo. Esta
caracterizacién resulta esencial no sélo para el analisis
estructural del sistema, sino también para el diseno de
observadores y estrategias de control que explotan dicha
propiedad. En este sentido, se presenta a continuacién
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una proposicién fundamental que establece condiciones
necesarias y suficientes para la cooperatividad en sistemas
lineales.

Proposicién 1 (Angeli y Sontag (2003)). El sistema
Y1, es cooperativo si, y solo si, se cumplen las siguientes
condiciones estructurales sobre sus matrices:

M

1. La matriz A es Metzler (denotado por A » 0), es
decir, todos sus elementos fuera de la diagonal son
no negativos, a;; > 0 para todo i # j.

2. La matriz de entrada B es no-negativa en todos sus
elementos (denotado por B~ 0), es decir b;; > 0
para todo i, .

3. La matriz de salida C también es mno-negativa
(denotado por C =0), ¢; ; > 0 para todo i, j.

Esta proposicién implica que la dindmica del sistema,
asi como la influencia de las entradas y de las salidas,
deben preservar el orden parcial inducido en el cuadrante
positivo. La estructura Metzler de la matriz A garantiza
que las interacciones entre las variables de estado no
generen términos negativos que puedan comprometer la
preservacion del orden parcial. Por su parte, las matrices
B y C aseguran que tanto las entradas como las salidas
respeten la monotonia respecto al orden parcial en R™.

2.2 Sistemas positivos

Los sistemas dindmicos positivos desempenan un papel
fundamental en el modelado y andlisis de sistemas fisicos,
biolégicos, quimicos y socioeconémicos. Una caracteristi-
ca distintiva de estos sistemas es que sus trayectorias
de estado y salida se mantienen confinadas dentro del
conjunto de valores no negativos a lo largo del tiempo, re-
flejando restricciones inherentes a muchos fenémenos del
mundo real, como concentraciones quimicas, poblaciones
bioldgicas, niveles de recursos, entre otros.

Definicién 2 (Angeli y Sontag (2003)). El sistema Yy,
se denomina sistema lineal positivo si, para cualquier
condicion inicial xg = 0 y cualquier senal de entrada
u(t) = 0, la trayectoria del estado permanece no negativa,
es decir, x(t, to, xo, u) ¥ 0.

A continuacién, se presenta la caracterizacién formal
de los sistemas positivos, la cual estd estrechamente
vinculada con la nocién de cooperatividad en sistemas
lineales.

Proposicién 2 (Angeli y Sontag (2003)). Si el sistema
Y1, es cooperativo, entonces también es positivo. De ma-
nera reciproca, st Y1, es positivo, entonces es cooperativo.

Cabe senalar que la propiedad de cooperatividad pre-
senta una relacién estrecha con la de positividad, par-
ticularmente cuando se consideran condiciones iniciales y
senales de entrada no negativas, es decir, cuando zy = 0
y u(t) = 0. Bajo estas circunstancias, las trayectorias
del sistema permanecen en el cuadrante positivo, lo que
implica que tanto el vector de estado como el de salida
satisfacen z(t) > 0 y y(t) = 0 para todo t > t.

3. DISENO DE OBSERVADOR POR INTERVALOS

Copyright® AMCA, ISSN: 2594-2492

DE ENTRADA DESCONOCIDAS
PARA SISTEMAS POSITIVOS

En esta seccién se desarrolla el diseno de un observador
por intervalos en presencia de entradas desconocidas, para
la familia de sistemas lineales positivos.

Considere el sistema lineal positivo sujeto una entrada
desconocida, descrito por las ecuaciones siguientes

v =Crlt),  wlt) =z,
donde z(t) € R™ representa el vector de estado, y(t) € RY
corresponde al vector de salida, u(t) € R™ denota la
entrada de control, y d(t) € RP se refiere a la entrada
desconocida o perturbacién externa. Ademads, asumimos
que las matriz A es Metzler, y las matrices B, C'y G son
no-negativas.

T : {x(t) = Axz(t) + Bu(t) + Gd(t),

A continuacidn, se establecen las suposiciones necesarias
para el andlisis del sistema Tg.
Suposicién 1. Se asume que se dispone de cotas inferior
y superior, denotadas por To y x,, para el estado inicial
del sistema. Estas cotas cumplen con la desigualdad por
intervalos:

To = To = X
lo cual, puede expresarse de forma equivalente como xg €
@07 EO]'
Suposiciéon 2. Se considera que la senal de entrada
desconocida d(t) estd acotada por funciones superior e

inferior conocidas, d(t) y d(t), respectivamente. Es decir,

d(t) = d(t) = d(t),  Vt>0.
Suposiciéon 3. Se supone que se satisface la siguiente
condicion de rango estructural para todo s € C, la cual es
necesaria para la observabilidad en presencia de entradas

desconocidas:

I,—-A G
R BT (3)

Esta condicion garantiza que el efecto de la perturbacion
d(t) pueda ser distinguible a través de la salida del siste-
ma.

rank [

La expresién Gd(t) en Tg también puede emplearse
para representar incertidumbres estructurales del modelo
que no se conocen con antelacion. De igual manera,
podrian considerarse perturbaciones, errores de reduccién
de modelado y variaciones paramétricas. Su efecto sobre
la dindmica del sistema estd mediado por la matriz G €
RnXp.

3.1 Observadores con entradas desconocidas

Consideremos el siguiente par de sistemas dindmicos,
propuestos como estimadores de cotas superior e inferior
del estado de un sistema con entradas desconocidas:

T, {w) = Fw(t) + TBu(t) + Ky(t),
0T\ T(t) =w(t) + Hy(t), T(to) = To,
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o (B0 = Fut) + TBu@) + Ky,
o {x(t) = w(t) + Hy(t), z(to) = o,

donde Z(t) y x(t) € R™ representan las estimaciones su-
perior e inferior del estado real del sistema, y w(t), w(t) €
R™ son los estados internos de los observadores. El con-
junto (Yo+,Yo-) define un Observador por Intervalos
en presencia de Entradas Desconocidas (OIED) para
el sistema Yg, siempre que existan matrices de disefio
H T F,F, K=K +Ky, K=K,+ K, que garanticen
el desacoplamiento respecto a las entradas desconocidas, y
ademds la propiedad de convergencia de las estimaciones
y su cumplimiento del orden parcial con respecto a la
trayectoria del estado real.

Definiendo los errores de estimacién como €(t) = Z(t) —
z(t) y e(t) = z(t) — z(t), se derivan las siguientes dindmi-
cas para los errores de estimacién superior e inferior,
escritos por las formas:

&(t) = (A— HCA — RK,C)e(t)
+[F—(A— HCA-TF,0)] w(t)
+[Ky — (A— HCA—K,0)] y(t)
+ [T — (I — HC)] Bu(t) + (HC — I)Gd(t),

TE"’ :

e(t) = (A— HCA - K,C)e(t)

+[F—(A—HCA— K,C)|uw(t)

+ K, — (A= HCA- K,O)]y(t)

+ [T —(I—-HC)]Bu(t)+ (HC — I)Gd(t),
El siguiente Teorema establece las condiciones del disenio
del Observador Intervalo de Entradas Desconocidas para
el sistema Tg.
Teorema 1. Supdngase que las Suposiciones 1-3 se
cumplen. Si existen matrices de realimentacion Ki, K,
tales que satisfacen las siguientes condiciones:

(HC — )G =0,
T=1I-HC,

TE— :

Ko, =FH,

KQ_EH7 (7)

_ M —

F~0,H=0,T=0K3>=0 (8)
M

Fr0,K >0 (9)

entonces, los sistemas Yo+ y To- constituyen un Ob-
servador Intervalo para el sistema positivo g, proporcio-
nando cotas superiores e inferiores para las trayectorias
del estado, incluso en presencia de perturbaciones desco-
nocidas.

Demostracion. En primer lugar, bajo las condiciones
establecidas en (6)—(7), se garantiza la convergencia
asintética de los Observadores de Entradas Desconoci-
das To+ v Yo-. La demostracién correspondiente se

Copyright® AMCA, ISSN: 2594-2492

fundamenta en un razonamiento analogo al presentado
en Nazari (2015). Dichas condiciones permiten derivar la
dindmica del error de estimacion, la cual esté descrita por
la siguiente ecuacion:

é(t) = Fe(t), (10)

donde F = F, F son matrices con valores propios con
parte real negativa, lo que implica que los errores e(t) y
e(t) convergen asintéticamente a cero conforme transcurre
el tiempo.

Adicionalmente, las condiciones (8) y (9) garantizan el
ordenamiento parcial entre las estimaciones generadas por
los observadores Yo+ v Y-, ya que son el resultados de
aplicar la Proposicién 1 sobre los sistemas que gobier-
nan la dindmica del error de estimacién. Esta estrategia
asegura que dichos sistemas sean cooperativos, y ademas
positivos en los observadores Yo+ y Y-, independiente-
mente de la presencia de entradas desconocidas d(t) en el
sistema. O
Asimismo, las condiciones necesarias y suficientes de la
existencia de un Observador con Entrada Desconocida
(UIO) para el sistema Y estdn dadas por Chen y Patton
(2012),

1. Rango(CG) = Rango(Q)
2. (C, Ay) es un par detectable, donde:

A =A-Gl(ca)Tea Y (ca)fca

Estableciendo un camino similar a Shafai y Saif (2015),
es factible obtener una cota superior para la estimacién
de la perturbaciéon mediante la expresion

d(t) = (CO)T[i(t) — CAZ(t) — CBuy]
donde (CG)T es la pseudo-inversa de CG. Entonces, las
matrices del observador pueden ser obtenidas mediante
las siguientes expresiones:

H = G[(CG)TCcG] 1 (CG)T
T=I-HC
Ay =TA

La validacion de la condiciéon de detectabilidad del par
(C, A1) constituye un requisito esencial para el diseno
del Observador por Intervalos de Entradas Desconocidas.
Como se observa en la ecuacién (10), el procedimiento
de disefio del Observador es lograr que la matriz F =
A; — K;C sea Hurwitz y no-negativa para alguna matriz
Ky = Ki, K, donde FF = F, F. Note que se puede
demostrar que la propiedad de observabilidad del par
(C, Ay) es equivalente a la del par original (C, A).

4. SIMULACIONES NUMERICAS

En esta seccién se evalua la efectividad del enfoque pro-
puesto basado en observadores por intervalos de entradas
desconocidas, denotados por Yo+ y Y-, aplicado a sis-
temas lineales positivos representados por Tg. El objetivo
es demostrar que, mediante el diseno adecuado de dichos
observadores, es posible acotar de forma robusta las tra-
yectorias del sistema, garantizando la positividad tanto
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en las estimaciones como en la dindamica del observador,
incluso en presencia de perturbaciones no medidas.

Considere el sistema siguiente sistema positivo Tg, cuyas
matrices estan definidas como:

51 1 |
A=|5 -3 0], C:BSﬂ,G:(),B:O
2 1 -6 0

Estas matrices cumplen con las condiciones establecidas
en la Proposicién 2, asegurando que el sistema subyacente
preserve la propiedad de positividad. Especificamente, la
matriz A es del tipo Metzler y las matrices C' y G son no
negativas.

Con base en las condiciones de disefio establecidas en
el Teorema 1, se procede a la implementacion de los
observadores por intervalos Yo+ y To-, garantizando
la propiedad de positividad y la estabilidad asintética
de los sistemas de errores de estimacién. Las matrices
resultantes del disenio son las siguientes:

46614 0 0 4.6614 0
F=| 5 =3 0|, K=| 0 o,
2 1 -1l 0 5
000 10
T=101 0]  H= [0 o, c= {é X ?].
001 00

En este caso particular, se cumple que K; = K; = K,
y FF=F = F, lo que implica que la dindmica de ambos
observadores, superior e inferior, es idéntica. Esta coin-
cidencia refleja el caso especial de que los observadores
pueden ser obtenidos a través de un solo diseno. La matriz
F, obtenida mediante la relaciéon F' = A; — K1C, ha sido
disenada para ser Metzler y Hurwitz, cumpliendo con los
criterios definidos requeridos para asegurar la estabilidad
del sistema de error, conforme a las propiedades de los
sistemas lineales positivos. Las matrices H y T, por su
parte, satisfacen la relacion T' = I — HC, determinando
la positividad del observador intervalo de entradas desco-
nocidas.

El vector de estado inicial correspondiente al sistema
lineal positivo se define como xy = [10, 10, 10]". Por
su parte, las condiciones iniciales consideradas para los
observadores por intervalos son: Tp = [30, 20, 20]" y
2o = [-10, 0, 0] T. Cabe destacar que, intencionalmente,
se ha asignado un valor negativo a la primera componente
del limite inferior con el propdsito de analizar la capacidad
del observador para corregir desviaciones significativas
en las estimaciones iniciales y garantizar la convergencia
hacia el dominio positivo a medida que evoluciona la
dindmica del sistema.

Las Figuras 1 a 3 presentan el comportamiento de las
variables de estado x1(t), z2(t) y x3(t), junto con sus co-
rrespondientes estimaciones superior e inferior generadas
por los observadores Yo+ y Y-, respectivamente. Los
resultados obtenidos permiten observar que, pese a las
discrepancias iniciales, las trayectorias reales del sistema
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permanecen acotadas dentro de los intervalos definidos
por los observadores, validando empiricamente la efectivi-
dad del esquema propuesto para encapsular el comporta-
miento del sistema ante condiciones iniciales adversas, asi
como su robustez frente a la presencia de perturbaciones
no medidas.

Ly == =T €T
20 h 1 L Lt -

=10

tiempo t[s]

Figura 1. Estimacién del estado x1(t) con el observador

intervalo por arriba y por abajo.

30 T T T T

Ty = = =T z,

20

10 | | | |
4 6 8 10

tiempo t[s]

(=}
[38)

Figura 2. Estimacién del estado x2(t) con el observador
intervalo por arriba y por abajo. El estado x2(t) no
se considera disponible a diferencia de los otros dos.

20 T T T T
T3 = = =T3 T3
e
4 6 8 10
tiempo t[s]

Figura 3. Estimacién del estado x3(t) con el observador
intervalo por arriba y por abajo.

En la Figura 4 se presenta el comportamiento de la
entrada desconocida que afecta al sistema Tg, asi como
de su estimacién superior.

5. CONCLUSIONES

En este trabajo se ha presentado un esquema de diseno
para Observadores por Intervalos de Entradas Descono-
cidas aplicables a sistemas lineales positivos. La metodo-
logia propuesta extiende los enfoques convencionales de
UIO al marco de los sistemas positivos, incorporando res-
tricciones estructurales que garantizan la preservacién de
la positividad en las dindmicas del observador, propiedad
fundamental en multiples aplicaciones fisicas, quimicas,
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Figura 4. Estimacion de la perturbacién.

bioldgicas y socioeconémicas. El diseno se formulé en
términos de desigualdades matriciales lineales (LMIs),
lo cual permitié establecer condiciones de diseno para
la existencia del observador, asegurar la cooperatividad
de los sistemas de errores de estimacién, y garantizar
la convergencia de las estimaciones hacia las trayectorias
reales del sistema, incluso en presencia de perturbaciones
no medidas. Los resultados obtenidos respaldan la efecti-
vidad del enfoque propuesto para encapsular el comporta-
miento de sistemas positivos dentro de limites superiores
e inferiores.
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