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Resumen This paper presents the design of an Unknown Input Interval Observer for positive
linear systems. The proposed methodology extends conventional unknown input observer
(UIO) frameworks to systems constrained within the positive quadrant of the Euclidean space,
a crucial requirement in various applications where state and output variables must remain
non-negative. The approach is formulated using Linear Matrix Inequalities (LMIs), allowing
the derivation of conditions that ensure the existence of the observer, as well as the positivity
and convergence of state estimates. Additionally, the estimation error dynamics are shown
to be cooperative, thereby ensuring that the true state trajectories are bounded between
robust upper and lower estimates, even in the presence of unmeasured disturbances and model
uncertainty. The effectiveness of the proposed scheme is validated through a numerical case
study, demonstrating its applicability in a wide variety of positive systems.
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1. INTRODUCCIÓN

En múltiples aplicaciones de ingenieŕıa, aśı como en sis-
temas f́ısicos, industriales y tecnológicos, la presencia de
perturbaciones no medidas, incertidumbres paramétricas
o señales de entrada inaccesibles afectan la dinámica del
proceso o en su modelado. Bajo tales circunstancias, el uso
de observadores convencionales pierden efectividad para
asegurar una estimación robusta del estado, debido a que
su diseño asume, en general, la disponibilidad completa
de las señales de entrada. Ante esta problemática, los
Observadores de Entradas Desconocidas (UIO, por sus
siglas en inglés) han sido propuestos con el objetivo de
estimar el estado del sistema de manera robusta, inclu-
so en presencia de entradas parcialmente conocidas o
completamente desconocidas (Kudva et al., 1980; Tsui,
1996; Chen et al., 1996). Como resultado el desarrollo

de UIO ha sido ampliamente abordado en la literatura,
con investigaciones orientadas en establecer condiciones
par su existencia, estabilidad, desempeño en condiciones
reales y definición de clase de sistemas de aplicación (Tsui,
1996; Chen et al., 1996). En particular, los criterios clási-
cos de diseño requieren condiciones estructurales, tales
como la detectabilidad del par (A,C) y restricciones de
rango entre matrices de observación y perturbación (Chen
et al., 1996). Estos observadores se han utilizado para
la estimación de estados y reconstrucción de entradas
desconocidas ver Walcott y Żak (1987), Żak y Walcott
(1990), Hou y Müller (1992), Darouach et al. (1994),

Corless y Tu (1998), Hui y Żak (2005), Alahakoon et al.
(2013), aśı mismo para el diagnóstico y aislamiento de
fallas (ver Chen y Patton (1999), Edwards et al. (2000),
Gao et al. (2016)). Además, los UIO han sido aplicados
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para la detección de ciberataques en sistemas ciberf́ısicos
y microredes (Gallo et al. (2018), Gallo et al. (2020)).

Recientemente, los observadores de entradas desconocidas
han sido adaptados para su aplicación en sistemas positi-
vos, los cuales se caracterizan por mantener sus variables
de estado, entrada y salida dentro del primer cuadrante
del espacio euclidiano. Esta extensión ha cobrado espe-
cial relevancia debido a su aplicabilidad en la estimación
y monitoreo de variables cŕıticas en bioprocesos, siste-
mas hidráulicos, procesos qúımicos e incluso en modelos
dinámicos de sistemas económicos y sociales, donde las
magnitudes involucradas no pueden asumir valores nega-
tivos. En particular, en Shafai et al. (2015) se presenta
el diseño de UIO para sistemas lineales positivos, consi-
derando las restricciones impuestas por la positividad. El
enfoque se basa en técnicas de desigualdades matriciales
lineales (LMIs) y en la existencia de una inversa gene-
ralizada no negativa, con el objetivo de garantizar tanto
la estabilidad como la no negatividad del observador. Se
proponen dos procedimientos de diseño y se valida la
metodoloǵıa mediante un ejemplo numérico. En Krokavec
y Filasová (2019) se aborda el diseño de UIO para siste-
mas lineales positivos del tipo Metzler. Dado que estos
sistemas requieren que sus estados y salidas permanezcan
no negativos, las técnicas convencionales de diseño no son
directamente aplicables. Por ello, se propone un enfoque
basado en LMIs que asegura la existencia de observadores
cuyas matrices dinámicas sean estrictamente Metzler y
Hurwitz, proporcionando condiciones suficientes para su
existencia, aśı como un algoritmo constructivo validado
numéricamente. Asimismo, Rami et al. (2011) trata el
problema del diseño de observadores positivos y de en-
trada desconocida para sistemas continuos con estructura
Metzler, estableciendo condiciones necesarias y suficientes
mediante programación lineal y LMIs. El enfoque garan-
tiza estimaciones no negativas aun en presencia de incer-
tidumbre, aunque no aborda la estabilización de sistemas
inestables. Finalmente, en Shu et al. (2008) se propone
un esquema unificado para el diseño de observadores y
controladores dinámicos de retroalimentación de salida
en sistemas lineales positivos con incertidumbre tipo in-
tervalo. Este enfoque establece condiciones necesarias y
suficientes para garantizar la positividad y la estabilidad
asintótica del sistema, utilizando LMIs y desarrollando
algoritmos iterativos para optimizar el comportamiento
del error, con validación mediante ejemplos numéricos.

Motivados por los avances recientes en el diseño de Ob-
servadores de Entradas Desconocidas aplicados a siste-
mas positivos, en este trabajo se propone el diseño de
un observador intervalo de entradas desconocidas para
la familia de sistemas lineales positivos. El enfoque ga-
rantiza que tanto las dinámicas del observador como las
estimaciones del estado preserven la propiedad de positi-
vidad, condición esencial en numerosos sistemas f́ısicos
y socioeconómicos donde las variables involucradas no
pueden tomar valores negativos. Esta propuesta repre-
senta una extensión de los UIO convencionales al caso
de sistemas positivos con incertidumbre paramétrica tipo

intervalo, con el objetivo de asegurar el encapsulamiento
de las trayectorias reales del sistema dentro de cotas
superior e inferior, incluso en presencia de perturbaciones
no medidas e incertidumbre estructural en el modelo. El
diseño se realiza mediante una formulación basada en
desigualdades matriciales lineales (LMIs), lo cual permite
establecer condiciones de convergencias y cooperatividad
en los errores de estimación, aśı como la positividad en las
variables de estimación del observador y facilitar su śınte-
sis computacional mediante herramientas de optimización
convexa.

El resto del trabajo está organizado de la siguiente ma-
nera. Los conceptos fundamentales se describen como
preliminares en la Sección 2. En la Sección 3 se expone
el diseño de observadores intervalo con entradas desco-
nocidas para sistemas positivos utilizando los conceptos
preliminares. La validación en simulación de un ejemplo
didáctico, se presenta en la sección 4. Finalmente, se
describen las conclusiones en la sección 5.

2. PRELIMINARES

2.1 Sistemas cooperativos

En el estudio de sistemas cooperativos, las trayectorias de
los estados y salidas conservan el ordenamiento parcial
establecido por el ordenamiento parcial en entradas y
condiciones iniciales, reflejando una estructura monótona
del comportamiento dinámico del sistema.

Definición 1. Sea el sistema Lineal Invariante en el
Tiempo (LIT) de la forma

ΥL :

{
ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t),
(1)

donde x(t) ∈ Rn representa el vector de estado, u(t) ∈ Rm

la señal de entrada, y y(t) ∈ Rq la salida del sistema.

El sistema ΥL se considera cooperativo si, dado un or-
den parcial sobre las condiciones iniciales y las entra-
das, es decir, si x20 ⪰ x10 y u2(t) ⪰ u1(t) para to-
do t ≥ t0, entonces dicho orden se preserva a lo lar-
go del tiempo en la dinámica del sistema. Esto im-
plica que las trayectorias del estado y la salida cum-
plen x (t, t0, x20, u2 (t)) ⪰ x (t, t0, x10, u1 (t)) , ademas
y (t, t0, x20, u2 (t)) ⪰ y (t, t0, x10, u1 (t)).

En otras palabras, si se parte de estados iniciales y entra-
das ordenadas, las respuestas del sistema también con-
servarán esta relación de orden parcial en todo instante
futuro. El signo ⪰ indica que cada uno de los elementos
del vector de la izquierda son mayores o iguales a los
elementos del vector de la derecha.

A partir del concepto anterior, es posible caracterizar de
manera algebraica a un sistema lineal cooperativo. Esta
caracterización resulta esencial no sólo para el análisis
estructural del sistema, sino también para el diseño de
observadores y estrategias de control que explotan dicha
propiedad. En este sentido, se presenta a continuación
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una proposición fundamental que establece condiciones
necesarias y suficientes para la cooperatividad en sistemas
lineales.
Proposición 1 (Angeli y Sontag (2003)). El sistema
ΥL es cooperativo si, y sólo si, se cumplen las siguientes
condiciones estructurales sobre sus matrices:

1. La matriz A es Metzler (denotado por A
M
⪰ 0), es

decir, todos sus elementos fuera de la diagonal son
no negativos, ai,j ≥ 0 para todo i ̸= j.

2. La matriz de entrada B es no-negativa en todos sus
elementos (denotado por B⪰ 0), es decir bi,j ≥ 0
para todo i, j.

3. La matriz de salida C también es no-negativa
(denotado por C ⪰ 0), ci,j ≥ 0 para todo i, j.

Esta proposición implica que la dinámica del sistema,
aśı como la influencia de las entradas y de las salidas,
deben preservar el orden parcial inducido en el cuadrante
positivo. La estructura Metzler de la matriz A garantiza
que las interacciones entre las variables de estado no
generen términos negativos que puedan comprometer la
preservación del orden parcial. Por su parte, las matrices
B y C aseguran que tanto las entradas como las salidas
respeten la monotońıa respecto al orden parcial en Rn.

2.2 Sistemas positivos

Los sistemas dinámicos positivos desempeñan un papel
fundamental en el modelado y análisis de sistemas f́ısicos,
biológicos, qúımicos y socioeconómicos. Una caracteŕısti-
ca distintiva de estos sistemas es que sus trayectorias
de estado y salida se mantienen confinadas dentro del
conjunto de valores no negativos a lo largo del tiempo, re-
flejando restricciones inherentes a muchos fenómenos del
mundo real, como concentraciones qúımicas, poblaciones
biológicas, niveles de recursos, entre otros.
Definición 2 (Angeli y Sontag (2003)). El sistema ΥL

se denomina sistema lineal positivo si, para cualquier
condición inicial x0 ⪰ 0 y cualquier señal de entrada
u(t) ⪰ 0, la trayectoria del estado permanece no negativa,
es decir, x(t, t0, x0, u) ⪰ 0.

A continuación, se presenta la caracterización formal
de los sistemas positivos, la cual está estrechamente
vinculada con la noción de cooperatividad en sistemas
lineales.
Proposición 2 (Angeli y Sontag (2003)). Si el sistema
ΥL es cooperativo, entonces también es positivo. De ma-
nera rećıproca, si ΥL es positivo, entonces es cooperativo.

Cabe señalar que la propiedad de cooperatividad pre-
senta una relación estrecha con la de positividad, par-
ticularmente cuando se consideran condiciones iniciales y
señales de entrada no negativas, es decir, cuando x0 ⪰ 0
y u(t) ⪰ 0. Bajo estas circunstancias, las trayectorias
del sistema permanecen en el cuadrante positivo, lo que
implica que tanto el vector de estado como el de salida
satisfacen x(t) ⪰ 0 y y(t) ⪰ 0 para todo t ≥ t0.

3. DISEÑO DE OBSERVADOR POR INTERVALOS

DE ENTRADA DESCONOCIDAS
PARA SISTEMAS POSITIVOS

En esta sección se desarrolla el diseño de un observador
por intervalos en presencia de entradas desconocidas, para
la familia de sistemas lineales positivos.

Considere el sistema lineal positivo sujeto una entrada
desconocida, descrito por las ecuaciones siguientes

ΥS :

{
ẋ(t) = Ax(t) +Bu(t) +Gd(t),

y(t) = Cx(t), x(t0) = x0 ,
(2)

donde x(t) ∈ Rn representa el vector de estado, y(t) ∈ Rq

corresponde al vector de salida, u(t) ∈ Rm denota la
entrada de control, y d(t) ∈ Rp se refiere a la entrada
desconocida o perturbación externa. Además, asumimos
que las matriz A es Metzler, y las matrices B, C y G son
no-negativas.

A continuación, se establecen las suposiciones necesarias
para el análisis del sistema ΥS.
Suposición 1. Se asume que se dispone de cotas inferior
y superior, denotadas por x0 y x0, para el estado inicial
del sistema. Estas cotas cumplen con la desigualdad por
intervalos:

x0 ⪰ x0 ⪰ x0

lo cual, puede expresarse de forma equivalente como x0 ∈
[x0, x0].
Suposición 2. Se considera que la señal de entrada
desconocida d(t) está acotada por funciones superior e
inferior conocidas, d(t) y d(t), respectivamente. Es decir,

d(t) ⪰ d(t) ⪰ d(t), ∀ t ≥ 0.

Suposición 3. Se supone que se satisface la siguiente
condición de rango estructural para todo s ∈ C, la cual es
necesaria para la observabilidad en presencia de entradas
desconocidas:

rank

[
sIn −A G

C 0

]
= n+ p. (3)

Esta condición garantiza que el efecto de la perturbación
d(t) pueda ser distinguible a través de la salida del siste-
ma.

La expresión Gd(t) en ΥS también puede emplearse
para representar incertidumbres estructurales del modelo
que no se conocen con antelación. De igual manera,
podŕıan considerarse perturbaciones, errores de reducción
de modelado y variaciones paramétricas. Su efecto sobre
la dinámica del sistema está mediado por la matriz G ∈
Rn×p.

3.1 Observadores con entradas desconocidas

Consideremos el siguiente par de sistemas dinámicos,
propuestos como estimadores de cotas superior e inferior
del estado de un sistema con entradas desconocidas:

ΥO+ :

{
ẇ(t) = F w(t) + TBu(t) +Ky(t),

x(t) = w(t) +Hy(t), x(t0) = x0,
(4)
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ΥO− :

{
ẇ(t) = F w(t) + TBu(t) +Ky(t),

x(t) = w(t) +Hy(t), x(t0) = x0,
(5)

donde x(t) y x(t) ∈ Rn representan las estimaciones su-
perior e inferior del estado real del sistema, y w(t), w(t) ∈
Rn son los estados internos de los observadores. El con-
junto (ΥO+ ,ΥO−) define un Observador por Intervalos
en presencia de Entradas Desconocidas (OIED) para
el sistema ΥS, siempre que existan matrices de diseño
H, T, F , F , K = K1+K2, K = K1+K2 que garanticen
el desacoplamiento respecto a las entradas desconocidas, y
además la propiedad de convergencia de las estimaciones
y su cumplimiento del orden parcial con respecto a la
trayectoria del estado real.

Definiendo los errores de estimación como e(t) = x(t) −
x(t) y e(t) = x(t)−x(t), se derivan las siguientes dinámi-
cas para los errores de estimación superior e inferior,
escritos por las formas:

ΥE+ :


ė(t) = (A−HCA−K1C) e(t)

+
[
F − (A−HCA−K1C)

]
w(t)

+
[
K2 − (A−HCA−K1C)

]
y(t)

+ [T − (I −HC)]Bu(t) + (HC − I)Gd(t),

ΥE− :


ė(t) = (A−HCA−K1C) e(t)

+ [F − (A−HCA−K1C)]w(t)

+ [K2 − (A−HCA−K1C)] y(t)

+ [T − (I −HC)]Bu(t) + (HC − I)Gd(t),

El siguiente Teorema establece las condiciones del diseño
del Observador Intervalo de Entradas Desconocidas para
el sistema ΥS.
Teorema 1. Supóngase que las Suposiciones 1–3 se
cumplen. Si existen matrices de realimentación K1,K1
tales que satisfacen las siguientes condiciones:

(HC − I)G = 0, (6)

T = I −HC,

F = A−HCA−K1C,

F = A−HCA−K1C,

K2 = FH,

K2 = FH, (7)

F
M
⪰ 0, H ⪰ 0, T ⪰ 0,K ⪰ 0 (8)

F
M
⪰ 0, K ⪰ 0 (9)

entonces, los sistemas ΥO+ y ΥO− constituyen un Ob-
servador Intervalo para el sistema positivo ΥS, proporcio-
nando cotas superiores e inferiores para las trayectorias
del estado, incluso en presencia de perturbaciones desco-
nocidas.

Demostración. En primer lugar, bajo las condiciones
establecidas en (6)–(7), se garantiza la convergencia
asintótica de los Observadores de Entradas Desconoci-
das ΥO+ y ΥO− . La demostración correspondiente se

fundamenta en un razonamiento análogo al presentado
en Nazari (2015). Dichas condiciones permiten derivar la
dinámica del error de estimación, la cual está descrita por
la siguiente ecuación:

ė(t) = Fe(t), (10)

donde F = F , F son matrices con valores propios con
parte real negativa, lo que implica que los errores e(t) y
e(t) convergen asintóticamente a cero conforme transcurre
el tiempo.

Adicionalmente, las condiciones (8) y (9) garantizan el
ordenamiento parcial entre las estimaciones generadas por
los observadores ΥO+ y ΥO− , ya que son el resultados de
aplicar la Proposición 1 sobre los sistemas que gobier-
nan la dinámica del error de estimación. Esta estrategia
asegura que dichos sistemas sean cooperativos, y además
positivos en los observadores ΥO+ y ΥO− , independiente-
mente de la presencia de entradas desconocidas d(t) en el
sistema.
Asimismo, las condiciones necesarias y suficientes de la
existencia de un Observador con Entrada Desconocida
(UIO) para el sistema ΥS están dadas por Chen y Patton
(2012),

1. Rango(CG) = Rango(G)
2. (C,A1) es un par detectable, donde:

A1 = A−G[(CG)TCG]−1(CG)TCA

Estableciendo un camino similar a Shafai y Saif (2015),
es factible obtener una cota superior para la estimación
de la perturbación mediante la expresión

d̂(t) = (CG)†[ẏ(t)− CAx(t)− CBu]

donde (CG)† es la pseudo-inversa de CG. Entonces, las
matrices del observador pueden ser obtenidas mediante
las siguientes expresiones:

H = G[(CG)TCG]−1(CG)T

T = I −HC

A1 = TA

La validación de la condición de detectabilidad del par
(C,A1) constituye un requisito esencial para el diseño
del Observador por Intervalos de Entradas Desconocidas.
Como se observa en la ecuación (10), el procedimiento
de diseño del Observador es lograr que la matriz F =
A1 −K1C sea Hurwitz y no-negativa para alguna matriz
K1 = K1, K1, donde F = F , F . Note que se puede
demostrar que la propiedad de observabilidad del par
(C,A1) es equivalente a la del par original (C,A).

4. SIMULACIONES NUMÉRICAS

En esta sección se evalúa la efectividad del enfoque pro-
puesto basado en observadores por intervalos de entradas
desconocidas, denotados por ΥO+ y ΥO− , aplicado a sis-
temas lineales positivos representados por ΥS. El objetivo
es demostrar que, mediante el diseño adecuado de dichos
observadores, es posible acotar de forma robusta las tra-
yectorias del sistema, garantizando la positividad tanto
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en las estimaciones como en la dinámica del observador,
incluso en presencia de perturbaciones no medidas.

Considere el sistema siguiente sistema positivo ΥS, cuyas
matrices están definidas como:

A =

[−5 1 1
5 −3 0
2 1 −6

]
, C =

[
1 0 0
0 0 1

]
, G =

[
1
0
0

]
, B = 0.

Estas matrices cumplen con las condiciones establecidas
en la Proposición 2, asegurando que el sistema subyacente
preserve la propiedad de positividad. Espećıficamente, la
matriz A es del tipo Metzler y las matrices C y G son no
negativas.

Con base en las condiciones de diseño establecidas en
el Teorema 1, se procede a la implementación de los
observadores por intervalos ΥO+ y ΥO− , garantizando
la propiedad de positividad y la estabilidad asintótica
de los sistemas de errores de estimación. Las matrices
resultantes del diseño son las siguientes:

F =

[−4.6614 0 0
5 −3 0
2 1 −11

]
, K1 =

[
4.6614 0

0 0
0 5

]
,

T =

[
0 0 0
0 1 0
0 0 1

]
, H =

[
1 0
0 0
0 0

]
, C =

[
1 0 0
0 0 1

]
.

En este caso particular, se cumple que K1 = K1 = K1

y F = F = F , lo que implica que la dinámica de ambos
observadores, superior e inferior, es idéntica. Esta coin-
cidencia refleja el caso especial de que los observadores
pueden ser obtenidos a través de un solo diseño. La matriz
F , obtenida mediante la relación F = A1 −K1C, ha sido
diseñada para ser Metzler y Hurwitz, cumpliendo con los
criterios definidos requeridos para asegurar la estabilidad
del sistema de error, conforme a las propiedades de los
sistemas lineales positivos. Las matrices H y T , por su
parte, satisfacen la relación T = I − HC, determinando
la positividad del observador intervalo de entradas desco-
nocidas.

El vector de estado inicial correspondiente al sistema
lineal positivo se define como x0 = [10, 10, 10]⊤. Por
su parte, las condiciones iniciales consideradas para los
observadores por intervalos son: x0 = [30, 20, 20]⊤ y
x0 = [−10, 0, 0]⊤. Cabe destacar que, intencionalmente,
se ha asignado un valor negativo a la primera componente
del ĺımite inferior con el propósito de analizar la capacidad
del observador para corregir desviaciones significativas
en las estimaciones iniciales y garantizar la convergencia
hacia el dominio positivo a medida que evoluciona la
dinámica del sistema.

Las Figuras 1 a 3 presentan el comportamiento de las
variables de estado x1(t), x2(t) y x3(t), junto con sus co-
rrespondientes estimaciones superior e inferior generadas
por los observadores ΥO+ y ΥO− , respectivamente. Los
resultados obtenidos permiten observar que, pese a las
discrepancias iniciales, las trayectorias reales del sistema

permanecen acotadas dentro de los intervalos definidos
por los observadores, validando emṕıricamente la efectivi-
dad del esquema propuesto para encapsular el comporta-
miento del sistema ante condiciones iniciales adversas, aśı
como su robustez frente a la presencia de perturbaciones
no medidas.
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Figura 1. Estimación del estado x1(t) con el observador
intervalo por arriba y por abajo.
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Figura 2. Estimación del estado x2(t) con el observador
intervalo por arriba y por abajo. El estado x2(t) no
se considera disponible a diferencia de los otros dos.
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Figura 3. Estimación del estado x3(t) con el observador
intervalo por arriba y por abajo.

En la Figura 4 se presenta el comportamiento de la
entrada desconocida que afecta al sistema ΥS, aśı como
de su estimación superior.

5. CONCLUSIONES

En este trabajo se ha presentado un esquema de diseño
para Observadores por Intervalos de Entradas Descono-
cidas aplicables a sistemas lineales positivos. La metodo-
loǵıa propuesta extiende los enfoques convencionales de
UIO al marco de los sistemas positivos, incorporando res-
tricciones estructurales que garantizan la preservación de
la positividad en las dinámicas del observador, propiedad
fundamental en múltiples aplicaciones f́ısicas, qúımicas,
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Figura 4. Estimación de la perturbación.

biológicas y socioeconómicas. El diseño se formuló en
términos de desigualdades matriciales lineales (LMIs),
lo cual permitió establecer condiciones de diseño para
la existencia del observador, asegurar la cooperatividad
de los sistemas de errores de estimación, y garantizar
la convergencia de las estimaciones hacia las trayectorias
reales del sistema, incluso en presencia de perturbaciones
no medidas. Los resultados obtenidos respaldan la efecti-
vidad del enfoque propuesto para encapsular el comporta-
miento de sistemas positivos dentro de ĺımites superiores
e inferiores.
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