AMCA

IFAC*

Memorias del XX Congreso Latinoamericano de Control Automatico (CLCA 2025)
13-17 de Octubre, 2025. Cancuin, Quintana Roo, México
Copyright© AMCA, ISSN: 2594-2492

Arbitrary Change of the Relative Gain Array:
Application to a Helicopter

J.L. Orozco-Mora*, J. Ruiz-Leon**, E. Ruiz-Beltran***

*Departamento Electrica, Tecnologico Nacional de México/Aguascalientes
(jorge.om@aguascalientes.tecnm.mx)
**Centro de Investigacion y Estudios Avanzados del IPN/Guadalajara (javier.ruiz@cinvestav.mx)
**%* Departamento de Sistemas y Computacion, Tecnologico Nacional de Meéxico/Aguascalientes
(eruiz@aguascalientes.tecnm.mx)

Abstract: In this work, the Relative Gain Array (RGA) is employed as a measure of input-output coupling
in the operation of a two-degree-of-freedom (2DOF) helicopter platform. High levels of interaction between
control channels typically affect the performance of multivariable control systems, especially when
decentralized controllers are used. To address this, we propose a methodology that systematically modifies
the RGA matrix to achieve a more favorable configuration, including decoupling, and improved closed-
loop performance. The approach involves analyzing the system's steady-state gain matrix and applying a
transformation that shifts the RGA values toward a desired target structure. Simulation results demonstrate
that the proposed modification produces a significant change in system response, reducing or increasing
coupling effects as required. These findings suggest a promising direction for the design of RGA-based
controllers in practical multivariable systems, such as aerial platforms.
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1. INTRODUCTION

Multivariable control systems often present significant
challenges due to inherent input-output interactions, which can
degrade the performance of decentralized control strategies. A
widely used tool to evaluate such interactions is the Relative
Gain Array (RGA), originally introduced by Bristol (1965),
which provides insight into the steady-state coupling between
manipulated and controlled variables. The RGA has become a
standard method for variable pairing and assessing the
feasibility of decoupling techniques.

In the context of aerial platforms, such as two-degree-of-
freedom (2DOF) helicopters, the strong coupling between
pitch and yaw dynamics presents challenges for controller
design. Traditional control strategies may not adequately
address these interactions, leading to suboptimal performance.
Recent research has  explored advanced control
methodologies, including adaptive control Rodriguez et
al.(2022), fault-tolerant control Zufiiga et al (2021), and model
predictive control Zheng et al. (2024), to enhance the
robustness and efficiency of such systems. For instance,
studies have demonstrated the effectiveness of passive fault-
tolerant control in 2DOF helicopters, as well as the application
of adaptive neural control to manage input saturation and time-
varying output constraints Wu, B. et al. (2022).

Moreover, the integration of RGA with modern control
techniques has shown promise in improving multivariable
system performance. For example, the use of RGA in
conjunction with autoencoder-based machine learning has
been proposed to enhance process control applications
Martello, R.H. et al. (2024). Additionally, the development of
multivariable PID control using iterative linear programming
and decoupling strategies has been explored to address the
complexities of multivariable systems Garrido, J. et al. (2024).
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Despite these advancements, the RGA is purely used as a
diagnostic measure. This paper explores a novel approach in
which the RGA is intentionally modified to achieve a more
favorable configurations for control purposes. Such approach
could facilitate decoupling and improve closed-loop
performance. This methodology actively modifies the RGA
structure of a system, aiming to reduce coupling effects and
enhance dynamic behavior. The proposed method involves
analyzing the system’s steady-state gain matrix and applying a
compensator to steer the RGA towards a desired target
structure. The proposed methodology was applied to Quanser's
mathematical model of a two-degree-of-freedom helicopter,
demonstrating the effectiveness of this approach in modifying
system response.

The remainder of the paper is organized as follows: Section 2
presents the Bristol-Shinskey procedure step by step, from the
state—space model to the steady—state transfer matrix, and
explicitly applies the mathematical definitions of the RGA
elements. The 2-DOF helicopter model is also presented.
Section 3 describes the proposed RGA modification
methodology. These calculations are then directly connected
to the helicopter case study and validated through simulation,
ensuring that the explanation is both consistent and sufficiently
detailed to support the proposed methodology. Section 4
presents the simulation results and performance analysis of the
2-DOF helicopter validating the coupling modification.
Finally, Section 5 concludes the paper and
outlines future work.
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2. BRISTOL-SHINSKEY METHOD APPLIED TO THE PROPOSED
SYSTEM

The objective of this section is to demonstrate the Bristol-
Shinskey method for obtaining the degree of coupling of a
two-degree-of-freedom  Quanser  helicopter = model
controlling pitch and yaw dynamics. The strong coupling in
this system represents a challenge for controller design.

The Quanser 2-DOF Helicopter experiment (Fig. 1), consists
of a helicopter model mounted on a fixed base with two
propellers that are driven by DC motors. The front propeller
controls the elevation of the helicopter nose about the pitch
axis and the back propeller controls the side to side motions
of the helicopter about the yaw axis. The pitch and yaw
angles are measured using high-resolution encoders.

Yaw axis y
[l )

‘,\ ,
LAk
Pitch axis 0

Figure 1. Quanser 2-DOF Helicopter.

Based on Quanser, Q. (2011), the state-space linear
dynamics describing the position-tension-joint-angle of the
system is:

x(t) = Ax(t) + Bu(t)

y(6) = Cx(t) + Du(?) &y
the state vector is considered as:
) =[6@) y® 6@ y©®l" )
and the output equation is
y@® =[0@) yv®I" 3)

where 6(t) and y(t) are the pitch and yaw angles,
respectively, and the corresponding helicopter input vector
u(t) = [U1 Uuz2]"are control signals applied to pitch and
yaw motors, respectively, and
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The model parameters used in (4) are defined in the Table
1.
Table 1. Parameters of 2DOF Helicopter

Kpp Pitch torque 0.204 N.m/V
K, Yaw torque 0.072 N.m/V
K,y Yaw on pitch torque | 0.0068 N.m/V
Kyp Pitch on yaw torque | 0.0219 N.m/V
Jeqp Total pitch moment | 0.0384 Kg.m?
of inertia
Jeqy Total yaw moment of | 0.0432 Kg.m?
inertia
B, Pitch viscous | 0.800 N
damping
B, Yaw viscous damping | 0.318 N
Mpeli Total moving mass 1.2872 Kg
lem Center of mass length | 0.186 m
along helicopter body
from pitch axis

This state space system is unstable but is controllable and
observable. In order to analyze the coupling in a stable
system it is used an arbitrary state feedback u(t)=-Kx(t) such

that, assign the eigenvalues in [-1.5 —-1.5 -1 -—1]
with K = [ 0.6417 —0.0640 -—2.8922 0.0421
—0.1952 19193 0.8797 —1.26311

The matrix transfer function T(s) = C(sI — A+ BK)™'B is
defined as

o(t) 6(t)
B4 I u—y
T(s):=y2 v(®) v@) (10)
Up Uy
Uy U,
where
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8(t) 2.361s% + 5.903s + 3.542
Up T 5"+ 553 +9.25s% + 7.55 + 2.25
y(t) 0.2402s2 + 0.6004s + 0.3602
Uy, T s + 553 +9.255%2 + 7.55 + 2.25
8(t) 0.07871s? + 0.1968s + 0.1181
u, T 5%+ 553 +9.25s% + 7.55 + 2.25
w(t) 0.7895s2 + 1.974s + 1.184
w, st + 553 +9.255%2 + 7.55 + 2.25

(11)

y

To study the behavior of the system in steady state at step
inputs, the final value theorem is applied to (10), where the
behavior of the system is analyzed when s=0; therefore we
have (12)

_[1.5742 0.05251
T = [0.1601 0.5264 1’ (12)
Rewriting (12) we obtain the following:
y; = 1.5742u, + 0.05251u, (13)

y, = 0.1601w, + 0.5264u,
The Bristol-Shinskey method is applied from (13) and will
lead us to obtain a relative matrix array and with this matrix
we can determine how each input affects the outputs
Shinskey, F.G. (1996).

The first element of the relative gain matrix is A, which
gives us the coupling ratio of input one to output one and is
obtained as in (14). For this relative gain, it is assumed that
w remains constant to a change in the variable wi of
magnitude Ay1 (which is the partial derivative of y1), with
this we obtain the numerator of the gain A1, now we keep
the output y2 constant and the rate of change of y1 with
respect to ur must be obtained, and this value will give us
the denominator of equation (14)

9,
du, w

AN
du,

Y2
A1 is a dimensionless number called the relative gain of the
output y1 to the input ui. The remaining elements of the
RGA are defined as Chen, H. L. M. (1983):

(14)

11 =

_ Uzl _ Uslys _ Uzl
12 — % 21 — % 122 - % (15)
du, - Ju, " du, "

The subscripts indicate which input and output are
considered for the analysis. The relative gain matrix (RGA),
considering (14),(15) is shown in (16). An alternative
method to obtain RGA based on T(0) is A=T(0) X
(T(0)T)"* where X is evaluated element by element
Albertos, P. y Antonio, S. (2006)
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A=
122

| (16)
Applying the partial derivatives (14) and (15) to the 2-DOF
Helicopter system, it is obtained the following relative gain

array
_[1.0102 -0.0102

a=[Z50102 10102 an
In RGA, we observe couplings where each element has a

meaning. The different values that an RGA can take are
listed below.

a) If we find a value with Ay = 0, there is no relationship
between the manipulated variable j and the controlled
variable i.

b) If we find a value with Aj= 1, there is no interaction with
other links.

c) If we find a value with 0 < Aj < 1, it means there is
interaction; that is, a change in one manipulated variable
will alter the other controlled variables.

d) If we find a value with Aj < 0, it indicates that there will
be slow and poor dynamic responses, and this interaction
forces the controlled variable to respond in the opposite
direction of the direct response. As a result, the controlled
variable moves in one direction and then, to a greater
extent, in the opposite direction.

e) If we find a value with Aj = oo, it indicates that both
variables cannot be controlled simultaneously.

In our work, the stabilizing feedback was intentionally
introduced only as a preliminary step to enable steady-state
coupling analysis. However, as shown by the RGA results,
the strong input—output interactions remain after
stabilization, which is precisely the motivation for our
proposal to modify the RGA and improve the conditions for
subsequent controller design.

3. PROPOSED RGA MODIFICATION METHODOLOGY.

In this section, the proposed method that performs the
arbitrary change of the coupling degree is shown, applying
it to the 2-DOF helicopter system. First, the steady-state
analysis of a system is computed by applying the final value
theorem when s=0, therefore we will have a system
described in a general way by (18)

Y1 = auy + bu,
Y2 = cuy +du, (18)
Considering (18), the relative gains (14) and (15) are the
following:
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o (2
A _ a _ aul uy ﬂ_ _ b _ auz ul
" (a—29) | (b-22) [
d du, Vs c du, Vs (19)
9y, 9y,
1 = c _ ouql,, 1o = d _ ou, |,
2! (C_@) 9y, 2 (d_Q) 9y,
b du, " a du, "

Rewriting (19), where the variables x, y, w, and z are
defined to indicate the values of the degree of coupling that

are desired. The proposed relative gain array is
ad bc

A = ad—bczx bc—adzy
p bc ad

bc—ad=W ad—bczz

(20)

From (20) the elements of this matrix can be rewritten as

_ —xbc _ —yad

N CET) RN CE 21)
_ —wad _ —zbc

C_(b—wb)' " (a-za)

where, it is observed that the elements of (21) are a
function of the proposed relative gains.

Subsequently, the degree of coupling that is desired to have
in the system is proposed according to some desired
performance of interaction between inputs and outputs. In
the helicopter example, there was a relative gain matrix as
in (17), in which input 1 dominates over output 1 and input
2 over output 2. Just to show the methodology without
pursuing a specific control objective, it is arbitrarily

proposed that this interaction changes as shown in (22)
_[—0.0002 1.0002

%= 0002 —0.0002) (22)

That is, input 2 dominates more over output 1 and input 1

over output 2. In reality, with this methodology, any
positive, negative, large or small interaction can be assigned,
modifying the original interaction of the system. This is
important because, in process control, the use of RGA is a
good way to analyze and propose input-output pairings.
However, if the system exhibits weak or inadequate
coupling, a controller design will have to deal with poor
coupling.

Comparing (22) with (20), and xand b=c=d=1 then

Representing (24) in a matrix way, we have the matrix of
(25), which we will call Mproposal
0.0002 1
Mproposal = [ 1 1] (25)
Since the helicopter's steady-state response is (12) it will
now be defined as Moriginal
. _ [1.5742 0.05251
Moriginar = T(0) = [0.1601 0.5264 (26)
It is proposed that there exists a compensator C such that
relates (25) and (26) as

C= [Moriginal] ' * [Mproposal] (27)
Therefore,
C= [1.574-2 0.0525117" [0.0002 1]
0.1601 0.5264 11 (28)
C= [—0.0638 0.5778
19192 1.7241

It is proposed that this compensator can be applied to the
original system of (10),

Tproposal(s) = [T(S)] * [C] (29)
U U

Thodifiea () = ﬁi ﬁ; (30)
Y2 Y2

where

u;  0.0002999 s° + 0.002255° + 0.006974 s*
y;  s8 + 10s7 + 43556 + 107.5s5 + 165.1 54
+0.01144 s 3 + 0.01046 s% + 0.005061 s + 0.001012

+161.2s3 + 97.87s%2 + 33.75s + 5.062
uy 1.5s% + 11.255% + 34.87 s*

y, s® + 1057 + 43556 + 107555 + 1651s*
+57.1953% + 52.31s% + 25315 + 5.062

""¥161.2s3 + 97.87s2 + 33.75s + 5.062
U, 1.55% + 11.255% + 34.87 s*

Y. s® + 10s7 + 435s° + 107.5s5 + 165.1s%
+57.1953% + 52.31s% + 25315 + 5.062

""¥161.2s3 + 97.87s2 + 33.75s + 5.062
U, 1.5s% + 11.25s° + 34.87 s*

Y, % + 10s7 + 435s° + 107.5s5 + 165.1s%
+57.1953 + 52.315% + 25315 + 5.062

" +161.25% + 97.87s% + 33755 + 5.062
The transfer matrix (30) already has the new relative gain

array. This is verified through the application of the Bristol-
Shinskey method, which begins with the steady-state
response s=0 of (30), that satisfies the following system of
equations:

(BD

—xbc
=g —xg) 00002 (23) Y1 = 0.0002u, +u,
_ (32)
Yo =up T+,
Based on (18) and (23)
It is important to note that (32) is equal to (24). Now,
y; = 0.0002u; + u, calculating the relative degrees corresponding to (32):
_ (24)
Yo =up U,
65
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% %
Uy u; _ _ Uy ul _
Ay = - —0.0002 A, = . 1.0002
oul,, Otaly, (33)
dyZ 63’2
du, du,
Ay = Y2 — 10002 A, = Ul — _0.0002
21 @ 22 %
du1 y1 auZ V1

Representing these relative degrees in a matrix form, it is
possible to see the relative gain matrix of the modified

system as follows:
4 — [~0-0002
~ 1 1.0002

1.0002

—0.0002] =4, €2

Finally, it can be seen that the compensator (28) is capable
of modifying the system (10) in the form of (30) affecting its
interaction between inputs and outputs as it is required.

4. SIMULATION RESULTS AND PERFORMANCE
ANALYSIS

This section shows the behavior of the 2-DOF helicopter
stable with a RGA as in (17) and with a modified RGA as in
(22). The block diagram in Fig. 2 was implemented in
Matlab Simulink.

I+

Yow

::'»-—N\-' 3

- = T R —
o{ = o0 T
A Comprnaata &1 voagrtan c1 i oty

K1

Figure 2. Simulink to evaluate RGA.

The simulations shown in Fig. 2 are indeed based on the
linear state-space model presented in equation (4),
stabilized with state feedback to enable steady-state
analysis. The Simulink block diagram implements the
corresponding state and output equations, allowing us to
calculate and compare the original and modified RGA.
Thus, the verification directly corresponds to the model
described in the paper and supports the proposed
methodology.

In this simulation the system (4) is considered with K such
that the stable feedback system (10) is obtained. Zero initial
conditions are considered in the helicopter, and two step
inputs are applied. The first input affects the pitch angle

which at the beginning is zero and in 20 seconds changes to
0.3 rad. The second input is a control signal applied to Yaw
motor in which a step input is applied where at the
beginning it is zero and after 60 seconds it changes to 0.5
rad. The two feedback systems in Fig.2 are the same,
considering that the upper system has the calculated
coupling (17), while the lower system includes the
compensator that modifies the coupling as in (22). In Fig.3,
it is shown the response of the stable system that has the
RGA (17) and in Fig. 4 the response of the system with the
modified RGA (22).

Amgle

! —Pitch|
——Yaw |

an &0 B0 100 120 140 160 180 200
Tane

Figure 3. Helicopter response with RGA (17).

‘ ‘ Pitch|
‘ —Yaw

Figure 4. Helicopter resimnse with RGA (22).

Based on the obtained responses, it can be observed that the
interaction between inputs and outputs can be modified.
This is evident in Fig. 3, where Input 1, applied at second
20, has a greater effect on the pitch output angle than on the
yaw output angle, which is consistent with (17).
Subsequently, when Input 2 is applied, the pitch output
angle remains largely unaffected, whereas the yaw output
angle exhibits a significant response, consistent with
equation (17).

In the modified system shown in Fig 4, it can be seen that
Input 1 barely affects the pitch output angle, which aligns
with (22). Although, it slightly affects the yaw angle, it is
still consistent with (22). Then, with Input 2, there is a
noticeable effect on the pitch output angle, as expected in
(22), and in this case, the yaw output angle is also affected,
as shown in the coupling matrix.
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It is important to note that the coupling of the system is
being modified, and its behavior analyzed, but no control
strategy is being applied to meet specific control objectives
such as reference tracking or others. It is interesting that this
work allows for the assignment of a relative gain matrix
(RGA) that can help achieving more appropriate input-
output interaction response for controller design.

5. CONCLUSIONS

The proposed method provides a way to arbitrarily modify
the degree of coupling in a system, allowing for the freedom
to choose how inputs interact with outputs. The advantage
of manipulating this coupling is that it enables the selection
of input-output interactions in processes where coupling
affects system performance, such as very large, negative, or
very small couplings. These types of couplings are found in
systems like refrigeration wunits, distillation columns,
helicopters, aircraft, etc.

The ability to modify the coupling allows the engineer to
start from a better-conditioned system in terms of input-
output interaction, facilitating controller design. It is
recommended to analyze different coupling configurations
and their impact on controller performance. As future work,
this coupling modification approach will be explored with
different controllers.
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