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Abstract: In this work, the Relative Gain Array (RGA) is employed as a measure of input-output coupling 
in the operation of a two-degree-of-freedom (2DOF) helicopter platform. High levels of interaction between 
control channels typically affect the performance of multivariable control systems, especially when 
decentralized controllers are used. To address this, we propose a methodology that systematically modifies 
the RGA matrix to achieve a more favorable configuration, including decoupling, and improved closed-
loop performance. The approach involves analyzing the system's steady-state gain matrix and applying a 
transformation that shifts the RGA values toward a desired target structure. Simulation results demonstrate 
that the proposed modification produces a significant change in system response, reducing or increasing 
coupling effects as required. These findings suggest a promising direction for the design of RGA-based 
controllers in practical multivariable systems, such as aerial platforms. 

Keywords: Relative Gain Array, Multivariable control, Coupling, input-output interaction. 

1. INTRODUCTION 

Multivariable control systems often present significant 
challenges due to inherent input-output interactions, which can 
degrade the performance of decentralized control strategies. A 
widely used tool to evaluate such interactions is the Relative 
Gain Array (RGA), originally introduced by Bristol (1965), 
which provides insight into the steady-state coupling between 
manipulated and controlled variables. The RGA has become a 
standard method for variable pairing and assessing the 
feasibility of decoupling techniques. 

In the context of aerial platforms, such as two-degree-of-
freedom (2DOF) helicopters, the strong coupling between 
pitch and yaw dynamics presents challenges for controller 
design. Traditional control strategies may not adequately 
address these interactions, leading to suboptimal performance. 
Recent research has explored advanced control 
methodologies, including adaptive control Rodriguez et 
al.(2022), fault-tolerant control Zuñiga et al (2021), and model 
predictive control Zheng et al. (2024), to enhance the 
robustness and efficiency of such systems. For instance, 
studies have demonstrated the effectiveness of passive fault-
tolerant control in 2DOF helicopters, as well as the application 
of adaptive neural control to manage input saturation and time-
varying output constraints Wu, B. et al. (2022).  

Moreover, the integration of RGA with modern control 
techniques has shown promise in improving multivariable 
system performance. For example, the use of RGA in 
conjunction with autoencoder-based machine learning has 
been proposed to enhance process control applications 
Martello, R.H. et al. (2024). Additionally, the development of 
multivariable PID control using iterative linear programming 
and decoupling strategies has been explored to address the 
complexities of multivariable systems Garrido, J. et al. (2024). 

 

Despite these advancements, the RGA is purely used as a 
diagnostic measure. This paper explores a novel approach in 
which the RGA is intentionally modified to achieve a more 
favorable configurations for control purposes. Such approach 
could facilitate decoupling and improve closed-loop 
performance. This methodology actively modifies the RGA 
structure of a system, aiming to reduce coupling effects and 
enhance dynamic behavior. The proposed method involves 
analyzing the system’s steady-state gain matrix and applying a 
compensator to steer the RGA towards a desired target 
structure. The proposed methodology was applied to Quanser's 
mathematical model of a two-degree-of-freedom helicopter, 
demonstrating the effectiveness of this approach in modifying 
system response. 

The remainder of the paper is organized as follows: Section 2 
presents the Bristol–Shinskey procedure step by step, from the 
state–space model to the steady–state transfer matrix, and 
explicitly applies the mathematical definitions of the RGA 
elements. The 2-DOF helicopter model is also presented. 
Section 3 describes the proposed RGA modification 
methodology. These calculations are then directly connected 
to the helicopter case study and validated through simulation, 
ensuring that the explanation is both consistent and sufficiently 
detailed to support the proposed methodology. Section 4 
presents the simulation results and performance analysis of the 
2-DOF helicopter validating the coupling modification. 
Finally, Section 5 concludes the paper and 
outlines future work. 
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2. BRISTOL-SHINSKEY METHOD APPLIED TO THE PROPOSED 
SYSTEM 

The objective of this section is to demonstrate the Bristol-
Shinskey method for obtaining the degree of coupling of a 
two-degree-of-freedom Quanser helicopter model 
controlling pitch and yaw dynamics. The strong coupling in 
this system represents a challenge for controller design. 
 
The Quanser 2-DOF Helicopter experiment (Fig. 1), consists 
of a helicopter model mounted on a fixed base with two 
propellers that are driven by DC motors. The front propeller 
controls the elevation of the helicopter nose about the pitch 
axis and the back propeller controls the side to side motions 
of the helicopter about the yaw axis. The pitch and yaw 
angles are measured using high-resolution encoders. 

 
Figure 1. Quanser 2-DOF Helicopter. 

 
Based on Quanser, Q. (2011), the state-space linear 
dynamics describing the position-tension-joint-angle of the  
system is: 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) (1) 

the state vector is considered as: 
𝑥̇(𝑡) = [𝜃(𝑡) y(t) 𝜃̇(𝑡) ẏ(𝑡)]! (2) 

and the output equation is 
𝑦(𝑡) = [𝜃(𝑡) y(t)]! (3) 

where 𝜃(𝑡) and y(t) are the pitch and yaw angles, 
respectively, and the corresponding helicopter input vector 
𝑢(𝑡) = [𝑢" 𝑢#]!are control signals applied to pitch and 
yaw motors, respectively, and 
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𝐽!" = 𝐽&'_" +𝑚)&*+𝑙,-#
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𝐷 = A0 0
0 0B

(4) 

 
The model parameters used in (4) are defined in the Table 
1. 

Table 1. Parameters of 2DOF Helicopter 
𝐾$$ Pitch torque 0.204 N.m/V 
𝐾%% Yaw torque 0.072 N.m/V 
𝐾$% Yaw on pitch torque 0.0068 N.m/V 
𝐾%$ Pitch on yaw torque 0.0219 N.m/V 
𝐽&'_$ Total pitch moment 

of inertia 
0.0384 Kg.m2 

𝐽&'_% Total yaw moment of 
inertia 

0.0432 Kg.m2 

𝐵$ Pitch viscous 
damping 

0.800 N 

𝐵% Yaw viscous damping 0.318 N 
𝑚)&*+ Total moving mass 1.2872 Kg 
𝑙,- Center of mass length 

along helicopter body 
from pitch axis 

0.186 m 

 
This state space system is unstable but is controllable and 
observable. In order to analyze the coupling in a stable 
system it is used an arbitrary state feedback u(t)=-Kx(t) such 
that, assign the eigenvalues in [−1.5 −1.5 −1 −1]  
with   𝐾 = A 0.6417 −0.0640 −2.8922 0.0421

−0.1952 1.9193 0.8797 −1.2631B.   
The matrix transfer function 𝑇(𝑠) = 𝐶(𝑠𝐼 − 𝐴 + 𝐵𝐾)."𝐵 is 
defined as 

𝑇(𝑠):=

𝑦"

𝑦#
⎣
⎢
⎢
⎢
⎡
𝜃(𝑡)
𝑢$

𝜃(𝑡)
𝑢%

y(𝑡)
𝑢$

y(𝑡)
𝑢% ⎦

⎥
⎥
⎥
⎤

𝑢"							𝑢#

(10) 

 
where 

Pitch axis q 

Yaw axis y 
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𝜃(𝑡)
𝑢$

=
2.361𝑠# + 5.903𝑠 + 3.542

𝑠/ + 5𝑠0 + 9.25𝑠# + 7.5𝑠 + 2.25
y(𝑡)
𝑢$

=
0.2402𝑠# + 0.6004𝑠 + 0.3602
𝑠/ + 5𝑠0 + 9.25𝑠# + 7.5𝑠 + 2.25

𝜃(𝑡)
𝑢%

=
0.07871𝑠# + 0.1968𝑠 + 0.1181
𝑠/ + 5𝑠0 + 9.25𝑠# + 7.5𝑠 + 2.25

y(𝑡)
𝑢%

=
0.7895𝑠# + 1.974𝑠 + 1.184

𝑠/ + 5𝑠0 + 9.25𝑠# + 7.5𝑠 + 2.25

(11) 

 
To study the behavior of the system in steady state at step 
inputs, the final value theorem is applied to (10), where the 
behavior of the system is analyzed when s=0; therefore we 
have (12) 

𝑇(0) = A1.5742 0.05251
0.1601 0.5264 B . (12) 

 
 
 
Rewriting (12) we obtain the following: 

𝑦" = 1.5742𝑢" + 0.05251𝑢#
𝑦# = 0.1601𝑢" + 0.5264𝑢#

(13) 

The Bristol-Shinskey method is applied from (13) and will 
lead us to obtain a relative matrix array and with this matrix 
we can determine how each input affects the outputs 
Shinskey, F.G. (1996). 
 
The first element of the relative gain matrix is λ11, which 
gives us the coupling ratio of input one to output one and is 
obtained as in (14). For this relative gain, it is assumed that 
u2 remains constant to a change in the variable u1 of 
magnitude Δy1 (which is the partial derivative of y1), with 
this we obtain the numerator of the gain λ11, now we keep 
the output y2 constant and the rate of change of y1 with 
respect to u1 must be obtained, and this value will give us 
the denominator of equation (14) 

𝜆"" =

𝜕𝑦"
𝜕𝑢"

Q
1#

𝜕𝑦"
𝜕𝑢"

Q
%#

(14) 

λ11 is a dimensionless number called the relative gain of the 
output y1 to the input u1. The remaining elements of the 
RGA are defined as Chen, H. L M. (1983): 

𝜆"# =

𝜕𝑦"
𝜕𝑢#

Q
1"	

𝜕𝑦"
𝜕𝑢#

Q
%#

𝜆#" =

𝜕𝑦#
𝜕𝑢"

Q
1#

𝜕𝑦#
𝜕𝑢"

Q
%$

𝜆## =

𝜕𝑦#
𝜕𝑢#

Q
1"

𝜕𝑦#
𝜕𝑢#

Q
%$

(15) 

  
The subscripts indicate which input and output are 
considered for the analysis. The relative gain matrix (RGA), 
considering (14),(15) is shown in (16). An alternative 
method to obtain RGA based on T(0) is Δ = 𝑇(0) ×
(𝑇(0)!)." where × is evaluated element by element 
Albertos, P. y Antonio, S. (2006) 

𝛥 = U𝜆"" 𝜆"#
𝜆#" 𝜆##

V (16) 

 
Applying the partial derivatives (14) and (15) to the 2-DOF 
Helicopter system, it is obtained the following relative gain 
array 

𝛥 = A 1.0102 −0.0102
−0.0102 1.0102 B (17) 

In RGA, we observe couplings where each element has a 
meaning. The different values that an RGA can take are 
listed below. 
 
a) If we find a value with λij = 0, there is no relationship 
between the manipulated variable j and the controlled 
variable i. 
 
b) If we find a value with λij = 1, there is no interaction with 
other links. 
 
c) If we find a value with 0 < λij < 1, it means there is 
interaction; that is, a change in one manipulated variable 
will alter the other controlled variables. 
 
d) If we find a value with λij < 0, it indicates that there will 
be slow and poor dynamic responses, and this interaction 
forces the controlled variable to respond in the opposite 
direction of the direct response. As a result, the controlled 
variable moves in one direction and then, to a greater 
extent, in the opposite direction. 
 
e) If we find a value with λij = ∞, it indicates that both 
variables cannot be controlled simultaneously.   
In our work, the stabilizing feedback was intentionally 
introduced only as a preliminary step to enable steady–state 
coupling analysis. However, as shown by the RGA results, 
the strong input–output interactions remain after 
stabilization, which is precisely the motivation for our 
proposal to modify the RGA and improve the conditions for 
subsequent controller design. 
 
 

3. PROPOSED RGA MODIFICATION METHODOLOGY.  

In this section, the proposed method that performs the 
arbitrary change of the coupling degree is shown, applying 
it to the 2-DOF helicopter system. First, the steady-state 
analysis of a system is computed by applying the final value 
theorem when s=0, therefore we will have a system 
described in a general way by (18) 

𝑦" = 𝑎𝑢" + 𝑏𝑢#
𝑦# = 𝑐𝑢" + 𝑑𝑢#

(18) 

 
Considering (18), the relative gains (14) and (15) are the 
following: 
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𝜆"" =
𝑎

[𝑎 − 𝑏𝑐𝑑 \
=

𝜕𝑦"
𝜕𝑢"

Q
1#

𝜕𝑦"
𝜕𝑢"

Q
%#

𝜆"# =
𝑏

[𝑏 − 𝑎𝑑𝑐 \
=

𝜕𝑦"
𝜕𝑢#

Q
1"

𝜕𝑦"
𝜕𝑢#

Q
%#

𝜆#" =
𝑐

[𝑐 − 𝑑𝑎𝑏 \
=

𝜕𝑦#
𝜕𝑢"

Q
1#

𝜕𝑦#
𝜕𝑢"

Q
%$

𝜆## =
𝑑

[𝑑 − 𝑐𝑏𝑎 \
=

𝜕𝑦#
𝜕𝑢#

Q
1"

𝜕𝑦#
𝜕𝑢#

Q
%$

(19) 

Rewriting (19), where the variables x, y, w, and z are 
defined to indicate the values of the degree of coupling that 
are desired. The proposed relative gain array is  

𝛥$ = ]

𝑎𝑑
𝑎𝑑 − 𝑏𝑐 = 𝑥

𝑏𝑐
𝑏𝑐 − 𝑎𝑑 = 𝑦

𝑏𝑐
𝑏𝑐 − 𝑎𝑑 = 𝑤

𝑎𝑑
𝑎𝑑 − 𝑏𝑐 = 𝑧

` (20) 

 
From (20) the elements of this matrix can be rewritten as 

𝑎 =
−𝑥𝑏𝑐

(𝑑 − 𝑥𝑑) , 𝑏 =
−𝑦𝑎𝑑
(𝑐 − 𝑦𝑐)

𝑐 =
−𝑤𝑎𝑑
(𝑏 − 𝑤𝑏) , 𝑑 =

−𝑧𝑏𝑐
(𝑎 − 𝑧𝑎)

(21) 

where, it is observed that the elements of (21) are a 
function of the proposed relative gains. 
 
Subsequently, the degree of coupling that is desired to have 
in the system is proposed according to some desired 
performance of interaction between inputs and outputs. In 
the helicopter example, there was a relative gain matrix as 
in (17), in which input 1 dominates over output 1 and input 
2 over output 2. Just to show the methodology without 
pursuing a specific control objective, it is arbitrarily 
proposed that this interaction changes as shown in (22)  

𝛥$ = A−0.0002 1.0002
1.0002 −0.0002B . (22) 

That is, input 2 dominates more over output 1 and input 1 
over output 2. In reality, with this methodology, any 
positive, negative, large or small interaction can be assigned, 
modifying the original interaction of the system. This is 
important because, in process control, the use of RGA is a 
good way to analyze and propose input-output pairings. 
However, if the system exhibits weak or inadequate 
coupling, a controller design will have to deal with poor 
coupling. 
 
Comparing (22) with (20), and x and b=c=d=1 then 
 

𝑎 =
−𝑥𝑏𝑐

(𝑑 − 𝑥𝑑) = 0.0002 (23) 

 
Based on (18) and (23)  
 

𝑦" = 0.0002𝑢" + 𝑢#
𝑦# = 𝑢" + 𝑢#

(24) 

Representing (24) in a matrix way, we have the matrix of 
(25), which we will call Mproposal 

𝑀$34$456* = A0.0002 1
1 1B (25) 

 
Since the helicopter's steady-state response is (12) it will 
now be defined as Moriginal 

𝑀43+7+86* ≔ 𝑇(0) = A1.5742 0.05251
0.1601 0.5264 B (26) 

 
It is proposed that there exists a compensator C such that 
relates (25) and (26) as 

𝐶 = d𝑀43+7+86*e
." ∗ d𝑀$34$456*e (27) 

Therefore, 

𝐶 = A1.5742 0.05251
0.1601 0.5264 B

."
A0.0002 1

1 1B

𝐶 = A−0.0638 0.5778
1.9192 1.7241B

(28) 

It is proposed that this compensator can be applied to the 
original system of (10), 

𝑇proposal(𝑠) = [𝑇(𝑠)] ∗ [𝐶] (29) 

T?@ABCBDA(s) = ]

u"
y"

u#
y"

u"
y#

u#
y#

` (30) 

where 
 
𝑢!
𝑦!
=

0.0002999	𝑠" 	+ 	0.00225	𝑠# 	+ 	0.006974	𝑠$	
𝑠% 	+ 	10	𝑠& 	+ 	43.5	𝑠" 	+ 	107.5	𝑠# 	+ 	165.1	𝑠$⋯

⋯
+	0.01144	𝑠	' + 	0.01046	𝑠( + 	0.005061	𝑠	 + 	0.001012

+	161.2	𝑠' 	+ 	97.87	𝑠( 	+ 	33.75	𝑠	 + 	5.062
𝑢!
𝑦(
=

1.5	𝑠" 	+ 	11.25	𝑠# 	+ 	34.87	𝑠$	
𝑠% 	+ 	10	𝑠& 	+ 	43.5	𝑠" 	+ 	107.5	𝑠# 	+ 	165.1	𝑠$⋯

⋯
+	57.19	𝑠	' + 	52.31	𝑠( + 	25.31	𝑠	 + 	5.062
+	161.2	𝑠' 	+ 	97.87	𝑠( 	+ 	33.75	𝑠	 + 	5.062

𝑢(
𝑦!
=

1.5	𝑠" 	+ 	11.25	𝑠# 	+ 	34.87	𝑠$	
𝑠% 	+ 	10	𝑠& 	+ 	43.5	𝑠" 	+ 	107.5	𝑠# 	+ 	165.1	𝑠$⋯

⋯
+	57.19	𝑠	' + 	52.31	𝑠( + 	25.31	𝑠	 + 	5.062
+	161.2	𝑠' 	+ 	97.87	𝑠( 	+ 	33.75	𝑠	 + 	5.062

𝑢(
𝑦(
=

1.5	𝑠" 	+ 	11.25	𝑠# 	+ 	34.87	𝑠$	
𝑠% 	+ 	10	𝑠& 	+ 	43.5	𝑠" 	+ 	107.5	𝑠# 	+ 	165.1	𝑠$⋯

⋯
+	57.19	𝑠	' + 	52.31	𝑠( + 	25.31	𝑠	 + 	5.062
+	161.2	𝑠' 	+ 	97.87	𝑠( 	+ 	33.75	𝑠	 + 	5.062

(31) 

The transfer matrix (30) already has the new relative gain 
array. This is verified through the application of the Bristol-
Shinskey method, which begins with the steady-state 
response s=0 of (30), that satisfies the following system of 
equations: 
  

𝑦" = 0.0002𝑢" + 𝑢#
𝑦# = 𝑢" + 𝑢#

(32) 

 
It is important to note that (32) is equal to (24). Now, 
calculating the relative degrees corresponding to (32): 
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𝜆"" =

𝜕𝑦"
𝜕𝑢"

Q
1#

𝜕𝑦"
𝜕𝑢"

Q
%#

= −0.0002 𝜆"# =

𝜕𝑦"
𝜕𝑢#

Q
1"

𝜕𝑦"
𝜕𝑢#

Q
%#

= 1.0002

𝜆#" =

𝑑𝑦#
𝑑𝑢"

Q
1#

𝑑𝑦#
𝑑𝑢"

Q
%$

= 1.0002 𝜆## =

𝜕𝑦#
𝜕𝑢#

Q
1"

𝜕𝑦#
𝜕𝑢#

Q
%$

= −0.0002

(33) 

 
Representing these relative degrees in a matrix form, it is 
possible to see the relative gain matrix of the modified 
system as follows: 

𝛥 = A−0.0002 1.0002
1.0002 −0.0002B = 𝛥$ (34) 

 
Finally, it can be seen that the compensator (28) is capable 
of modifying the system (10) in the form of (30) affecting its 
interaction between inputs and outputs as it is required. 
 
 

4. SIMULATION RESULTS AND PERFORMANCE 
ANALYSIS 

 
This section shows the behavior of the 2-DOF helicopter 
stable with a RGA as in (17) and with a modified RGA as in 
(22). The block diagram in Fig. 2 was implemented in 
Matlab Simulink. 
 

 
Figure 2. Simulink to evaluate RGA. 

 
The simulations shown in Fig. 2 are indeed based on the 
linear state–space model presented in equation (4), 
stabilized with state feedback to enable steady–state 
analysis. The Simulink block diagram implements the 
corresponding state and output equations, allowing us to 
calculate and compare the original and modified RGA. 
Thus, the verification directly corresponds to the model 
described in the paper and supports the proposed 
methodology. 
In this simulation the system (4) is considered with K such 
that the stable feedback system (10) is obtained. Zero initial 
conditions are considered in the helicopter, and two step 
inputs are applied. The first input affects the pitch angle 

which at the beginning is zero and in 20 seconds changes to 
0.3 rad. The second input is a control signal applied to Yaw 
motor in which a step input is applied where at the 
beginning it is zero and after 60 seconds it changes to 0.5 
rad. The two feedback systems in Fig.2 are the same, 
considering that the upper system has the calculated 
coupling (17), while the lower system includes the 
compensator that modifies the coupling as in (22). In Fig.3, 
it is shown the response of the stable system that has the 
RGA (17) and in Fig. 4 the response of the system with the 
modified RGA (22). 
 

  
Figure 3. Helicopter response with RGA (17). 

  
Figure 4. Helicopter response with RGA (22). 

 
Based on the obtained responses, it can be observed that the 
interaction between inputs and outputs can be modified. 
This is evident in Fig. 3, where Input 1, applied at second 
20, has a greater effect on the pitch output angle than on the 
yaw output angle, which is consistent with (17). 
Subsequently, when Input 2 is applied, the pitch output 
angle remains largely unaffected, whereas the yaw output 
angle exhibits a significant response, consistent with 
equation (17). 
In the modified system shown in Fig 4, it can be seen that 
Input 1 barely affects the pitch output angle, which aligns 
with (22). Although, it slightly affects the yaw angle, it is 
still consistent with (22). Then, with Input 2, there is a 
noticeable effect on the pitch output angle, as expected in 
(22), and in this case, the yaw output angle is also affected, 
as shown in the coupling matrix. 
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It is important to note that the coupling of the system is 
being modified, and its behavior analyzed, but no control 
strategy is being applied to meet specific control objectives 
such as reference tracking or others. It is interesting that this 
work allows for the assignment of a relative gain matrix 
(RGA) that can help achieving more appropriate input-
output interaction response for controller design. 
 

 
 

5. CONCLUSIONS 
The proposed method provides a way to arbitrarily modify 
the degree of coupling in a system, allowing for the freedom 
to choose how inputs interact with outputs. The advantage 
of manipulating this coupling is that it enables the selection 
of input-output interactions in processes where coupling 
affects system performance, such as very large, negative, or 
very small couplings. These types of couplings are found in 
systems like refrigeration units, distillation columns, 
helicopters, aircraft, etc. 
The ability to modify the coupling allows the engineer to 
start from a better-conditioned system in terms of input-
output interaction, facilitating controller design. It is 
recommended to analyze different coupling configurations 
and their impact on controller performance. As future work, 
this coupling modification approach will be explored with 
different controllers. 
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